当前位置:文档之家› 非一般的晶体管-微电子器件发展展望

非一般的晶体管-微电子器件发展展望

非一般的晶体管-微电子器件发展展望
非一般的晶体管-微电子器件发展展望

“一个蝴蝶可以刮起一阵风,一个士兵可以开始一场战争”,那么一项伟大的发明呢?

1947年12月,美国贝尔实验室的肖克莱、巴丁和布拉顿组成的研究小组,研制出一种点接触型的锗晶体管。于是乎,大名鼎鼎的、影响人类文明进程的晶体管就此诞生。1956年,这三人因发明晶体管同时荣获诺贝尔物理学奖。

在晶体管诞生60多年后的今天,其体积几乎缩小到了极限:贝尔实验室1947年制造的第一个晶体管是手工打造的,而现在一个针头的空间就能塞进去6000多万个32nm晶体管(针头直径约1.5毫米);如果百米飞人博尔特的步幅是32nm,那么完成一百米赛程需要跑31.25亿步;32nm晶体管的栅极长度约为30nm,英文句点符号“.”的面积大约有0.1平方毫米,可以放进去400多万个32nm晶体管;Intel 32nm技术的栅极高度是0.9nm,而报纸的平均厚度为0.1毫米,也就是说111111个栅极堆叠起来才有一张报纸厚。

所有数字都揭示着晶体管已经“小”到令人叹为观止。但是凡事都有个极限,无限接近物质的极限意味着晶体管已经步入老年了吗?

晶体管的前世今生?晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术、汽车和电话等发明相提并论。晶体管的本名是半导体三极管,是内部含有两个PN 结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。晶体管出现后,人们就能用一个小巧的、消耗功率低的电子器件,来代替体积大、功率消耗大的电子管了。

晶体管的发明为后来集成电路的问世吹响了冲锋号。除了能够很方便的储存信息、发送信号,晶体管还具有当初人们不曾料想的特性:它可持续缩小体积,这使得晶体管与电子产品可以稳定地降价,且功能变得越来越好。这一理论最终成就了摩尔定律。

2006年2月英特尔正式推出45nm晶体管(图1)。与65nm芯片相比,其密度提高2倍,

达10亿个晶体管,开关速度提高20%,功耗降低30%。这种45nm工艺采用了Cu互连、低k介质,应变硅和193nmArF光刻。

32nm晶体管则采用第二代高k金属珊技术,即栅的长度为30nm左右,等价的栅极氧化物厚度仅为0.9nm,同时整体性能将有超过22%的提升。32nmSRAM测试芯片最早出现在2007年9月,芯片尺寸可以从45nm的0.346μm2减小到0.171μm2。回顾Intel 的晶体管技术发展历程,Intel 每两年即可将晶体管的尺寸缩小30~50%(图2)。

摩尔定律是一个残酷无情的“监工”,就在最新技术刚刚投入生产,人们认为可以暂时停下脚步好好休息一下时,往往会愕然发现,下一代技术在两年后就要按时推出,再过两年又一代新技术……

IBM院士StuartS.P.Parkin博士介绍说,有摩尔定律的指引,新器件的出现是必然的,它的进步速度在很大程度上取决于相关材料、设备的进展,当然也和市场紧密相连。在晶体管的技术路线图上,22nm节点之后的等比例缩小很可能需要在SOI或体硅晶圆上采用全耗尽CMOS结构。也很可能会采用TSV 3-D互连和SiC应力层。

向新器件结构的转换已经启动(图3),在15nm技术路线图上,IBM和英特尔已经确认了全耗尽CMOS结构,而一些其它的垂直晶体管结构也得到了极大重视。部分耗尽或传统的体硅晶体管变得愈加困难,为了获得所需的短沟性能,需要全耗尽器件架构——像finFET这样的垂直器件或平面SOI——才可以完成对沟道的控制。

尽管普遍的观点是全耗尽结构会出现在15nm节点,但IBM已经考虑22nm技术节点时,在其旗舰MPU工艺技术中采用全耗尽工艺。英特尔在22nm还将继续采用体硅技术。英特尔将于2011年底推出采用22nm工艺的MPU。去年九月英特尔发布了带有SRAM阵列和周边逻辑电路的22nm测试芯片,其中每个存储器阵列为364Mb,芯片共有290亿个晶体管。该芯片采用了第三代后栅极高k/金属栅工艺,也就是在栅极工艺的最后沉积栅介电?应变硅如何“应变”??半导体工业缩小芯片的主要动机是:增加每一片晶圆层和金属。?

上的芯片数目,从而降低成本;缩短载流子扩散路径,从而提高芯片处理速度。但是,芯片小型化使工艺技术面临着新的问题:散热和量子隧道效应的处理。一个新的思路就是寻找新的电子材料,基于硅材料的应变硅技术由此诞生。

在2009年北京微电子论坛先进半导体工艺研讨会上,中芯国际的技术处长吴汉明博士为大家展示了晶体管未来的走向,应变硅技术是杀手锏之一。应变硅是满足65nm以下工艺要求的一种高端硅基新材料。应变硅由在SiGe等原子距离较大的衬底上外延生长Si而成。该材料的制作原理之一是在锗硅上外延硅,由于硅原子在锗原子之间力的作用下发生了应变,扩张了原子间距,因而这种材料被称为“应变硅”。当硅晶格受到应力产生应变,可将传输

载子的有效质量缩小,迁移率及饱和速度均增加。因此在同样组件尺寸下,若使用应变硅技术作为载子的传输通道,因其电子与空穴的载子迁移率增加,可达到增加组件速度与驱动电流的目标。

形成应变的方式很多,可藉由制程工艺、材料上自然晶格常数的差异或是组件封装等等方式来达成。应变硅则可通过如下三种方法获得:(1)工艺诱导法,通过晶体管周围薄膜和结构之间的应力形成;(2)在器件通道下方嵌入Si-Ge层;(3)对整片晶圆进行处理。英特尔推出一种包含全硅化(FUSI)镍电极的45nm节点技术,并将由FUSI生成的金属与单轴应变硅沟道相结合,硅化电极提高了电荷密度,应变硅增强了载流子迁移率,从而使其性能比传统的氮氧化硅-多晶硅栅电极提高20%,改进驱动电流20%。东芝推出一种合并两种应变硅形成的45nm节点工艺,它把双应力衬底和位于漏/源极区域的淀积Si-Ge相结合,避免将高k介电材料引入栅氧化物,仍继续采用氮氧化物(SiON)。

总体来说,应变硅技术对硅进行了拉伸,从而加速了电子在芯片内的流动,不用进行小型化就可以提高性能和降低功耗。Stuart S.P. Parkin博士对应变硅的前景表示乐观,认为如果与绝缘硅技术一起使用,应变硅技术可以更大程度地提高性能并降低功耗。其未来挑战在于如何了解并优化各种不同来源应力之间的相互作用。

新型晶体管FinFET:万丈高楼平地起

“万丈高楼平地起”,没错,晶体管也要“拔地而起”了。通过简单地缩小垂直尺寸和水平尺寸来开发新一代晶体管技术的时代早已过时。Intel资深fellowYan Borodovsky博士说:“摩尔定律毫无疑问仍将继续,但找到兼顾性能与成本的最佳方案乃首要任务,取代“传统”形式的技术升级,现在必须开发新材料和新结构,提供更小的尺寸,满足人们对高密度、高性能和低能耗的要求。”

为了提高45nm晶体管电流密度、减小短沟道效应和改善栅极控制,业界提出了多种新型晶体管结构,如三栅极结构、FinFET(鳍式场效晶体管,Fin Field Effect Transi stor)、Omega-FET和多栅极FET等。

平面器件不可能被无限微缩下去。如果采用FinFET,就好像打开了一扇新的门,可以通过集成垂直器件而提升晶体管密度。FinFET确实有进一步提高晶体管密度的潜力,IBM 在2009年将其用于FinFET研究的晶圆数目增加了一倍。

FinFET是一种新的CMOS晶体管,被誉为22nm的革命性器件之一(图5)。它的栅极长度已可小于25nm,未来预期可以进一步缩小至9nm,约是人类头发宽度的1万分之1。FinFET源自于目前传统标准的晶体管—场效晶体管的一项创新设计。Stuart S.P. Parkin 博士说,在传统晶体管结构中,控制电流通过的栅极,只能在栅极的一侧控制电路的接通与断开,属于平面的架构。在FinFET的架构中,栅极成类似鱼鳍的叉状3D架构,可于电路的两侧控制电路的接通与断开。这种设计大幅改善电路控制并减少漏电流,还能大幅缩短晶体管的闸长(图6)。

习惯是一种可怕的东西,往往会阻碍创新,“平面结构”由于保持了人们习惯的设计风格因而备受欢迎。但采用了FinFET,则必须把器件加起来使用。设计时不存在随意的宽度,因此只能将其量化并增加指型沟道的数目。FinFET工艺非常困难是业界人士的共识。

对于光刻来说,要能够克服侧壁图形转移的问题;对于刻蚀来说,栅极刻蚀则是另一个挑战。在指型结构附近栅极会卷曲,使得栅极轮廓的表征非常困难。对那些可接受的晶体管性能来说,栅极需要尽量直。在平面结构中,栅极在一个平面上,但在FinFET中,栅极在整个晶圆的表面与沟道高低交错。这带来一些根本性的问题,需要找到集成所有工艺完成整个器件的方法。由于垂直结构带来的光刻和刻蚀挑战,大多数公司都对FinFET非常谨慎,从某种程度上来讲,通过外延抬升源极/漏极的结构本质上已经是一种垂直结构了。

在2009年的IEDM上,采用FinFET技术实现0.06μm2或者0.039μm2单元面积的超微细SRAM亮相。但是,这些产品都利用了电子束直描技术,实用化方面还存在问题。美国IBM、美国GLOBALFOUNDRIES、东芝及NEC电子(现为瑞萨电子)组成的小组近期发布了以现有ArF光刻技术实现的0.063μm2超微细SRAM研究成果。通过采用Sidewall ImageTransfe技术,实现了40nm的Fin间距,解决了基于FinFET的SRAM 的另一课题——因使用多个Fin而导致面积增大的问题。同时,还实现了80nm这一全球最小的栅极间距。作为实现超微细SRAM的技术,这一成果给人FinFET更为出色的强烈印象。FinFET大展拳脚的时间点似乎更加明朗化。

SOI:CPU煮熟鸡蛋将成为历史?CPU热到可以煮熟鸡蛋的故事已成经典,它说的正是芯片功耗过高的问题。曾有人预言,高功耗将导致摩尔定律提前终结。这并非危言耸听。高功耗产生高温度,提高了封装成本,也产生了许多新的故障,加大了测试复杂度,提高了测

试成本。高的芯片功耗产生很多负面影响,而为了保证摩尔定律,就要采用低功耗设计,这又反过来加大了设计复杂度。凡此种种都对摩尔定律产生了终结效应。

StuartS.P. Parkin博士说,绝缘硅(SOI,Silicon-On-Insulator)的出现主要是解决芯片的功耗问题,这是22nm节点晶体管的希望,当然也是挑战。该技术利用一层SiO2绝缘薄膜,将各个晶体管与最底下的硅晶圆分开,而在常规的CMOS中,晶体管是直接与硅晶圆接触的(图7)。SiO2薄膜层能有效的使电子从一个晶体管的门电路流到另一个晶体管的门电路,不会让多余的电子渗漏到晶圆上。由于不会有电子渗漏而浪费电能,因此功耗更小。

通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势。

据IBM公司的数据显示,同类SOI芯片与CMOS芯片相比,SOI芯片的速度可以快20%~30%,而能耗为CMOS芯片能耗的一半或三成。采用SOI技术的45nm PMOS晶体管驱动电流增加30%。

在22nm节点,SOI晶圆上关键硅层的厚度是6.3nm,而15nm则更薄,约5nm。硅层是如此之薄,如果破坏了顶层的硅,那么根本没有修复的余地。为了避免材料损伤,采用了原位掺杂而非注入工艺,这是因为原位掺杂是一项无损伤的工艺。

目前比较广泛使用且比较有发展前途的SOI的材料主要有注氧隔离的SIMOX(Seperati on by Implanted Oxygen)材料、硅片键合和反面腐蚀的BESOI(Bonding-Etch back SOI)材料和将键合与注入相结合的Smart Cut SOI材料。在这三种材料中,SIM

OX适合于制作薄膜全耗尽超大规模集成电路,BESOI材料适合于制作部分耗尽集成电路,而Smart Cut材料则是非常有发展前景的SOI材料,它很有可能成为今后SOI材料的主流。

其实,晶体管一路走来的历史,就是技术的不断新陈代谢和市场诉求相辅相成的过程。当整个产业链发展进入良性循环时,一切的发展进步都将会是顺理成章的,好在这样的趋势正在发生。

微电子器件_刘刚前三章课后答案

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢建立联系的,即 c h p h E ====υω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点 来看,半导体和绝缘体都存在着禁 带,绝缘体因其禁带宽度较大 (6~7eV),室温下本征激发的载流子 近乎为零,所以绝缘体室温下不能 导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

微电子导论论文--发展及历史

中国微电子技术发展现状及发展趋势 论文概要: 介绍了中国微电子技术的发展现状,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。 一.我国微电子技术发展状况 1956年7月,国务院科学专业化规划委员会正式成立,组织数百各科学家和技术专家编制了十二年(1965—1967年)科学技术远景规划,这个著名的《十二年规划》中,明确地把发展计算机技术、半导体技术、无线电电子学、自动化和遥感技术放到战略的重点上,我国半导体晶体管是1957年研制成功的,1960年开始形成生产;集成电路始于1962年,于1968年形成生产;大规模集成电路始于70年代初,80年代初形成生产。但是,同世界先进水平相比较,我们还存在较大的差距。在生产规模上,目前我国集成电路工业还没有实现高技术、低价格的工业化大生产,而国外的发展却很快,美国IBM 公司在日本的野洲工厂生产64K动态存贮器,1983年秋正式投产后,每日处理硅片几万片,月产量为上百万块电路,生产设备投资约8000万美元。日本三菱电机公司于1981年2月开始动土兴建工厂,1984年投产,计划生产64K动态存贮器,月产300万块,总投资约为1.2亿美元。 此外,在美国和日本,把半导体研究成果形成工业化生产的周期也比较短。在美国和日本,出现晶体观后,形成工业生产能力是3年;出现集成电路后形成工业生产能力是1—3年;出现大规模集成电路后形成工业生产能力是1—2年;出现超大规模集成电路后形成工业生产能力是4年。我国半导体集成电路工业长期以来也是停留在手工业和实验室的生产方式上。近几年引进了一些生产线,个别单位才开始有些改观,但与国外的差距还是相当大的。 从产品的产值和产量方面来看,目前,全世界半导体与微电子市场为美国和日本所垄断。这两国集成电路的产量约占体世界产量的百分之九十,早期是美国独占市场,而日本后起直追。1975年美国的半导体与集成电路的产值是66亿美元,分离器件产量为110多亿只,集成路为50多亿块;日本的半导体与集成电路的产值是30亿美元,分离器件产量为122亿只,集成电路为17亿块。1982年美国的半导体与集成电路的产值为75美元,分离器件产量为260多亿只,集成电路为90多亿块;日本的半导体与集成电路的产值为38亿美元,分离器件产量300多亿只,集成电路40多亿块。我国集成电路自1976年至1982年,产量一直在1200万块至3000万块之间波动,没有大幅度的提高,1982年我国半导体与集成电路的产值是0.75亿美元,产量为1313万块,相当于美国1965年和日本1968年的水平。(1965年美国的半导体与集成电路的产值是0.79亿美元,产量为950万块;1968年日本的半导体与集成电路的产值为0.47亿美元,产量为1988万块)。 在价格、成本、劳动生产率、成品率等方面,差距比几十倍还大得多,并且我国小规模集成电路的成品率比国外低1—3倍;中规模集成电路的成品率比国外低3—7倍。目前中、小规模集成电路成品率比日本1969年的水平还低。从经济效益和原材料消耗方面考虑,国外一般认为,进入工业生产的中、小规模集成电路成品率不应低于50%,大规模集成电路成品率不应低于30%。我国集成电路成品率的进一步提高,已迫在眉睫,这是使我国集成电路降低成本,进入工业化大生产、提高企业经济效益带有根本性的一环。从价格上来看,集成电路价格是当前我国集成电路工业中的重大问题,产品优质价廉,市场才有立足之地。我国半导体集成电路价格,长期以来,降价较缓慢,近两三年来,集成电路的平均价格为每块10元左右,这种价格水平均相当于美国和日本1965

微电子工艺习题总结(DOC)

1. What is a wafer? What is a substrate? What is a die? 什么是硅片,什么是衬底,什么是芯片 答:硅片是指由单晶硅切成的薄片;芯片也称为管芯(单数和复数芯片或集成电路);硅圆片通常称为衬底。 2. List the three major trends associated with improvement in microchip fabrication technology, and give a short description of each trend. 列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势 答:提高芯片性能:器件做得越小,在芯片上放置得越紧密,芯片的速度就会提高。 提高芯片可靠性:芯片可靠性致力于趋于芯片寿命的功能的能力。为提高器件的可靠性,不间断地分析制造工艺。 降低芯片成本:半导体微芯片的价格一直持续下降。 3. What is the chip critical dimension (CD)? Why is this dimension important? 什么是芯片的关键尺寸,这种尺寸为何重要 答:芯片的关键尺寸(CD)是指硅片上的最小特征尺寸; 因为我们将CD作为定义制造复杂性水平的标准,也就是如果你拥有在硅片某种CD的能力,那你就能加工其他所有特征尺寸,由于这些尺寸更大,因此更容易产生。 4. Describe scaling and its importance in chip design. 描述按比例缩小以及在芯片设计中的重要性 答:按比例缩小:芯片上的器件尺寸相应缩小是按比例进行的 重要性:为了优电学性能,多有尺寸必须同时减小或按比例缩小。 5. What is Moore's law and what does it predict? 什么是摩尔定律,它预测了什么 答:摩尔定律:当价格不变时,集成电路上可容纳的晶体管数,月每隔18个月便会增加1倍,性能也将提升1倍。 预言在一块芯片上的晶体管数大约每隔一年翻一番。 第二章 6. What is the advantage of gallium arsenide over silicon? 砷化镓相对于硅的优点是什么 答:优点:具有比硅更高的电子迁移率;减小寄生电容和信号损耗的特性;集成电路的速度比硅电路更快;材料的电阻率更大。 7. What is the primary disadvantage of gallium arsenide over silicon? 砷化镓相对于硅的主要缺点是什么 答:主要缺点:缺乏天然氧化物;材料的脆性;成本比硅高10倍;有剧毒性在设备,工艺和废物清除设施中特别控制。

微电子技术的发展

什么是集成电路和微电子学 集成电路(Integrated Circuit,简称IC):一半导体单晶片作为基片,采用平面工艺,将晶体管、电阻、电容等元器件及其连线所构成的电路制作在基片上所构成的一个微型化的电路或系统。 微电子技术 微电子是研究电子在半导体和集成电路中的物理现象、物理规律,病致力于这些物理现象、物理规律的应用,包括器件物理、器件结构、材料制备、集成工艺、电路与系统设计、自动测试以及封装、组装等一系列的理论和技术问题。微电子学研究的对象除了集成电路以外,还包括集成电子器件、集成超导器件等。 集成电路的优点:体积小、重量轻;功耗小、成本低;速度快、可靠性高; 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向; 衡量微电子技术进步的标志要在三个方面:一是缩小芯片器件结构的尺寸,即缩小加工线条的宽度;而是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功一这种组件为基础的混合组件; 1958年美国的杰克基尔比发明了第一个锗集成电路。1960年3月基尔比所在的德州仪器公司宣布了第一个集成电路产品,即多谐振荡器的诞生,它可用作二进制计数器、移位寄存器。它包括2个晶体管、4个二极管、6个电阻和4个电容,封装在0.25英寸*0.12英寸的管壳内,厚度为0.03英寸。这一发明具有划时代的意义,它掀开了半导体科学与技术史上全新的篇章。 1960年宣布发明了能实际应用的金属氧化物—半导体场效应晶体管(metal-oxide-semiconductor field effect transistor ,MOSFET)。 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路; 由于MOS电路在高度集成和功耗方面的优点,70年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费事和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 微电子发展状态与趋势 微电子也就是集成电路,它是电子信息科学与技术的一门前沿学科。中国科学院王阳元院士曾经这样评价:微电子是最能体现知识经济特征的典型产品之一。在世界上,美国把微电子视为他们的战略性产业,日本则把它摆到了“电子立国”的高度。可以毫不夸张地说,微电子技术是当今信息社会和时代的核心竞争力。 在我国,电子信息产业已成为国民经济的支柱性产业,作为支撑信息产业的微电子技术,近年来在我国出现、崛起并以突飞猛进的速度发展起来。微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 1.微电子发展状态 1956年五校在北大联合创建半导体专业:北京大学、南京大学、复旦大学、

微电子器件刘刚前三章课后答案

课后习题答案 1.1 为什么经典物理无法准确描述电子的状态?在量子力学 中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。然而,电子和光子是微观粒子,具有波粒二象性。因此,经典物理无法准确描述电子的状态。 在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢建立联系的,即 c h p h E ηη====υ ω υ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢。 1.2 量子力学中用什么来描述波函数的时空变化规律? 解:波函数ψ是空间和时间的复函数。与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。如果用()t r ,ψ表示粒子的德布洛意波的振幅,以 ()()()t r t r t r ,,,2 ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体 积元z y x ???中检测到粒子的概率正比于()z y x t r ???2,ψ。

1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不能 导电。半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。所以半导体在室温下就有一定的导电能力。而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解:本征半导体中所有载流子都来源于价带电子的本征激发。由此产生的载流子称为本征载流子。本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002 式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。 1.5 什么是施主杂质能级?什么是受主杂质能级?它们有何异同?

浅谈我对微电子的认识

[键入公司名称] 浅谈我对微电子的认识 [键入文档副标题] X [选取日期] [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

我是电子信息科学与技术专业的学生,考虑到微电子对我们专业知识学习的重要性,我怀着极大的热情报了《微电子入门》这门选修课。希望通过这门课的学习,使我对微电子有更深入的认识,以便为以后的专业课学习打下基础。 微电子是一门新兴产业,它的发展关系着国计民生。它不仅应用于科学领域,也被广泛应用于国防、航天、民生等领域。它的广泛应用,使人们的生活更见方便。现代人的生活越来越离不开电子。因此,对电子的了解显得十分重要。微电子作为电子科学的一个分支,也发挥着日益重要的作用。通过几周的学习,我对微电子有了初步的认识。 首先,我了解了微电子的发展史,1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。1964年出现了磁双极型集成电路产品。 1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。 70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

(完整版)微电子技术发展现状与趋势

本文由jschen63贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 微电子技术的发展 主要内容 微电子技术概述;微电子发展历史及特点;微电子前沿技术;微电子技术在军事中的应用。 2010-11-26 北京理工大学微电子所 2 2010-11-26 北京理工大学微电子所 3 工艺流程图 厚膜、深刻蚀、次数少多次重复 去除 刻刻蚀 牺牲层,释放结构 多 工艺 工工艺 2010-11-26 工 5 微电子技术概述 微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和;微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向;衡量微电子技术进步的标志要在三个方面:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 2010-11-26 北京理工大学微电子所 6 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功以这种组件为基础的混合组件; 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路;由于MOS电路在高度集成和功耗方面的优点,70 年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 2010-11-26 北京理工大学微电子所 7 微电子技术的发展特点 超高速:从1958年TI研制出第一个集成电路触发器算起,到2003年Intel推出的奔腾4处理器(包含5500 万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%;辐射面广:集成电路的快速发展,极大的影响了社会的方方面面,因此微电子产业被列为支柱产业。

微电子技术发展趋势及未来发展展望

微电子技术发展趋势及未来发展展望 论文概要: 本文介绍了穆尔定律及其相关内容,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。由于这是我第一次写正式论文,恳请老师及时指出文中的错误,以便我及时改正。 一.微电子技术发展趋势 微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。微电子技术的发展,大大推动了航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的迅猛发展。微电子技术的发展和应用,几乎使现代战争成为信息战、电子战。在我国,已经把电子信息产业列为国民经济的支拄性产业。如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 集成电路(IC)是微电子技术的核心,是电子工业的“粮食”。集成电路已发展到超大规模和甚大规模、深亚微米(0.25μm)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。 1965年,Intel公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。 穆尔定律受两个因素制约,首先是事业的限制(business Limitations)。随着芯片集成度的提高,生产成本几乎呈指数增长。其次是物理限制(Physical Limitations)。当芯片设计及工艺进入到原子级时就会出现问题。 DRAM的生产设备每更新一代,投资费用将增加1.7倍,被称为V3法则。目前建设一条月产5000万块16MDRAM的生产线,至少需要10亿美元。据此,64M位的生产线就要17亿美元,256M位的生产线需要29亿美元,1G位生产线需要将近50亿美元。 至于物理限制,人们普遍认为,电路线宽达到0.05μm时,制作器件就会碰到严重问题。 从集成电路的发展看,每前进一步,线宽将乘上一个0.7的常数。即:如果把0.25μm看作下一代技术,那么几年后又一代新产品将达到 0.18μm(0.25μm×0.7),再过几年则会达到0.13μm。依次类推,这样再经过两三代,集成电路即将到达0.05μm。每一代大约需要经过3年左右。 二.微电子技术的发展趋势 几十年来集成电路(IC)技术一直以极高的速度发展。如前文中提到的,著名的穆尔(Moore)定则指出,IC的集成度(每个微电子芯片上集成的器件数),每3年左右为一代,每代翻两番。对应于IC制作工艺中的特征线宽则每代缩小30%。根据按比例缩小原理(Scaling Down Principle),特征线条越窄,IC的工作速度越快,单元功能消耗的功率越低。所以,IC的每一代发展不仅使集成度提高,同时也使其性能(速度、功耗、可靠性等)大大改善。与IC加工精度提高的同时,加工的硅圆片的尺寸却在不断增大,生产硅片的批量也不断提高。以上这些导致

√增强载流子迁移率是新一代微电子器件和电路发展的重要方向

增强载流子迁移率是新一代微电子器件和电路发展的重要方向 (作者:Xie Meng-xian,电子科技大学微固学院) (1)集成电路发展状况: 作为微电子技术的主体——集成电路,它的发展已经经历了若干个重要阶段,从小规模、中规模,到大规模、乃至超大规模、特大规模等。微电子技术的这种长足的进步,在很大程度上就是在不断努力地缩短场效应器件的沟道长度,这主要是通过改善微电子工艺技术、提高加工水平来实现的。尽管现在沟道长度已经可以缩短到深亚微米、乃至于纳米尺寸了,但是要想再继续不断缩短沟道长度的话,将会受到若干因素的限制,这一方面是由于加工工艺能力的问题,另一方面是由于器件物理效应(例如短沟道效应、DIBL效应、热电子等)的问题。因此,在进一步发展微电子技术过程中,再单只依靠缩短沟道长度就很不现实、甚至也可能了,则必须采用新的材料、开发新的工艺和构建新的器件结构,才能突破因缩短沟道所带来的这些限制。 实际上,从集成电路的发展趋势来看,大体上可以划分为三大阶段: ①K时代(Kbit,KHz):微细加工的时代(不断缩短有效尺寸)~“微米时代”; ②M时代(Mbit,MHz):结构革命的时代(不断改进器件和电路结构)~“亚微米时代”; ③G时代(Gbit,GHz):材料革命的时代(不断开发新材料、新技术)~“10纳米时代”。 现在已经开始进入G时代,因此,在不断开发新技术的同时,特别值得注意的是新材料的开发;不仅要开发新型的半导体材料(例如宽禁带半导体、窄禁带半导体、大极性半导体等),而且也要开发各种新型的辅助材料(例如高K、低K介质材料,Cu电极材料,新型表面钝化材料等)。器件和电路研究者应该多加注意新材料的开发应用;而新材料研究者应该多加注意往器件和电路的应用上下功夫。 在新的材料和工艺技术方面现在比较受到重视的是高介电常数(高K)材料和Cu互连技术。当沟道长度缩短到一定水平时,为了保持栅极的控制能力,就必须减小栅极氧化层厚度(一般,选取栅氧化层厚度约为沟道长度的1/50),而这在工艺实施上会遇到很大的困难(例如过薄的氧化层会出现针孔等缺陷);因此就采用了高介电常数的介质材料(高K材料)来代替栅极氧化物,以减轻制作极薄氧化层技术上的难度。另外,沟道长度缩短带来芯片面积的减小,这相应限制了金属连线的尺寸,将产生一定的引线电阻,这就会影响到器件和电路的频率、速度;因此就采用了电导率较高一些的Cu来代替Al作为连线材料,以进一步改善器件和电路的信号延迟性能。可见,实际上所有这些高K材料和Cu互连等新技术的采用都是不得已而为之的,并不是从半导体材料和器件结构本身来考虑的。 显然,为了适应器件和电路性能的提高,最好的办法是另辟途径,应该考虑如何进一步发挥半导体材料和器件结构的潜力,并从而采用其他更有效的技术措施来推动集成电路的发展。现在已经充分认识到的一种有效的技术措施就是着眼于半导体载流子迁移率的提高(迁移率增强技术)。 (2)迁移率增强技术: 迁移率(μ)是标志载流子在电场作用下运动快慢的一个重要物理量,它的大小直接影响到半导体器件和电路的工作频率与速度。 对于双极型晶体管而言,高的载流子迁移率可以缩短载流子渡越基区的时间,使特征频率(f T)提高,能够很好的改善器件的频率、速度和噪音等性能。 对于场效应晶体管而言,提高载流子迁移率则具有更加重要的意义。因为MOSFET的最大输出电流——饱和漏极电流I DS可表示为:

微电子的技术发展方向

1 微电子技术发展方向 21世纪初微电子技术仍将以尺寸不断缩小的硅基CMOS工艺技术为主流;随着IC设计与工艺水平的不断提高,系统集成芯片将成为发展的重点;并且微电子技术与其他学科的结合将会产生新的技术和新的产业增长点。 1.1 主流工艺——硅基CMOS电路 硅半导体集成电路的发展,一方面是硅晶(圆)片的尺寸愈来愈大,另一方面是光刻加工线条(特征尺寸)愈来愈细。 从硅片尺寸来看,从最初的2英寸,经过3英寸、4英寸、5英寸、6英寸发展到当今主流的8英寸。据有关统计,目前世界上有252条8英寸生产线,月产片总数高达440万片,现在还在继续建线。近几年来又在兴建12英寸生产线,硅晶片直径达12英寸(300mm),它的面积为8英寸片(200mm)的2.25倍。1999年11月下旬,由Motorola与Infineon Technologies联合开发的全球首批300mm 晶片产品面市。该产品是64M DRAM,采用的是0.25μm工艺技术,为标准的TSOP 封装。据介绍,300mm晶片较200mm晶片,每个芯片的成本降低了30%~40%。到目前,已经达到量产的12英寸生产线已有6条,它们是: (1)Semiconductor 300公司,位于德国德累斯顿,开始月产1500片,由0.25μm进到0.18μm。 (2)Infineon公司,位于德国德累斯顿,0.14μm,开始月产4000片。 (3) TSMC公司,位于我国台湾新竹, Fab12工厂生产线,由0.18μm进到0.15μm以至0.13μm,开始月产4500片。 (4)三星公司,位于韩国,Line 11生产线,0.15/0.13μm,开始月产1500片。 (5)Trecenti公司,位于日本那珂N3厂,月产能7000片,0.15/0.13μm。 (6)Intel公司的D1C厂,开始月产4000片,0.13μm。 此外,已经建厂,开始试投的也已有9条线;正在建的有4条线。 采用12英寸晶片生产的IC产品,据报道已有:韩国三星公司批量生产512M 内存(DRAM);美国Altera公司在台湾TSMC公司加工生产可编程逻辑器件(PLD),采用0.18μm技术;美国Intel公司在2001年3月份宣布,在当年采用0.13μm 技术建12英寸生产线量产CPU。其余各线主要做存储器电路,DRAM、SRAM或Flash。 在光刻加工线条(特征尺寸)方面,如前所述,在主流0.25μm技术之后,已有0.18μm、0.15μm以至0.13μm技术连续开发出来并投入使用。

微电子行业前景与就业形势

微电子行业前景与就业形势 当前,我们正在经历新的技术革命时期,虽然它包含了新材料、新能源、生物工程、海洋工程、航空航天技术和电子信息技术等等,但是影响最大,渗透性最强,最具有新技术革命代表性的乃是以微电子技术为核心的电子信息技术。 自然界和人类社会的一切活动都在产生信息,信息是客观事物状态和运动特征的一种普通形式,它是为了维持人类的社会、经济活动所需的第三种资源(材料、能源和信息)。社会信息化的基础结构,是使社会的各个部分通过计算机网络系统,连结成为一个整体。在这个信息系统中由通讯卫星和高速大容量光纤通讯将各个信息交换站联结,快速、多路地传输各种信息。在各信息交换站中,有多个信息处理中心,例如图形图像处理中心、文字处理中心等等;有若干信息系统,例如企事业单位信息系统,工厂和办公室自动化系统,军队连队信息系统等等;在处理中心或信息系统中还包含有许多终端,这些终端直接与办公室、车间、连队的班排、家庭和个人相连系。像人的神经系统运行于人体一样,信息网络系统把社会各个部分连结在信息网中,从而使社会信息化。海湾战争中,以美国为首的多国部队的通讯和指挥系统基本上也是这样一个网络结构,它的终端是直接武装到班的膝上(legtop)计算机,今后将发展到个人携带的PDA(Person-al Date Assistant)。 实现社会信息化的关键部件是各种计算机和通讯机,但是它的基础都是微电子。当1946年2月在美国莫尔学院研制成功第一台名为电子数值积分器和计算器(Electronic Numlerical Inte-grator and Computer)即ENIAC问世的时候,是一个庞然大物,由18000个电子管组成,占地150平方米,重30吨,耗电140KW,足以发动一辆机车,然而不仅运行速度只有每秒5000次,存储容量只有千位,而且平均稳定运行时间才7分钟。试设想一下,这样的计算机能够进入办公室、企业车间和连队吗所以当时曾有人认为,全世界只要有4台ENIAC就够了。可是现在全世界计算机不包括微机在内就有几百万台。造成这个巨大变革的技术基础是微电子技术,只有在1948年Bell实验室的科学家们发明了晶体管(这可以认为是微电子技术发展史上的第一个里程碑),特别是1959年硅平面工艺的发展和集成电路的发明(这可以认为是微电子技术第二个里程碑),才出现了今天这样的以集成电路技术为基础的电子信息技术和产业。而1971年微机的问世(这可以认为是微电子技术第三个里程碑),使全世界微机现在的拥有率达到%,在美国每年由计算机完成的工作量超过4000亿人年的手工工作量。美国欧特泰克公司总裁认为:微处理器、宽频道连接和智能软件将是下世纪改变人类社会和经济的三大技术创新。 当前,微电子技术发展已进入“System on Chip”的时代,不仅可以将一个电子子系统或整个电子系统“集成”在一个硅芯片上,完成信息加工与处理的功能,而且随着微电子技术的成熟与延拓,可以将各种物理的、化学的敏感器(执行信息获取的功能)和执行器与信息处理系统“集成”在一起,从而完成信息获取、处理与执行的系统功能,一般称这种系统为微机电系统(MEMS:Micro Electronics Machinery System),可以认为这是微电子技术又一次革命性变革。集成化芯片不仅具有“系统”功能,并且可以以低成本、高效率的大批量生产,可靠性好,耗能少,从而使电子信息技术广泛地应用于国民经济、国防建设乃至家庭生活的各个方面。在日本每个家庭平均约有100个芯片,它已如同细胞组成人体一样,成为现代工农业、国防装备和家庭耐用消费品的细胞。集成电路产业产值以年增长率≥13%,在技术上,集成度年增长率46%的速率持续发展,世界上还没有一个产业能以这样高的速度持续地增长。1990年日本以微电子为基础的电子工业产值已超过号称为第一产业的汽车工业而成为第一大产业。2000年电子信息产业,将成为世界第一产业。集成电路的原料主

微电子技术的发展

微 电子技术的发展 摘要:微电子技术是科技发展到一定阶段的时代产物,是对当今社会经济最具影响力的高新技术之一。本文主要对微电子技术的概念、发展及其在社会各大产业中的应用进行了浅析的探讨。 【关键词】微电子技术发展应用 微电子技术的核心技术是半导体集成电路,微电子技术的发展及应用影响我们生产生活的方方面面。对促使经济发展,人类的进步有着巨大的影响力。随着社会经济的发展,为了达到社会经济的发展对微电子技术的需求,实现社会经济在技术支持下快捷稳定发展,我们必须要不断地对微电子技术进行优化和改进,积极地探索更深层次的微电子技术知识,使微电子技术更好地服务于社会经济发展。相信微电子技术不仅是在当今,乃至未来社会发展中微电子技术必将是促使社会发展进步的主导产业。 1微电子技术的概念 微电子技术是信息化时代最具代表性的高新技术之一,它的核心技术半导体集成电路技,术由电路设计、工艺技术、检测技术、材料配置以及物理组装等购置技术体系。微电子技术基于自身集成化程度高,反应敏捷、占用空间较小等优势特点目前在有关涉及电子产业中得以广泛的应用。 2 微电子技术的发展现状 国外微电子的发展 自1965年发明第一块集成电路以来,特别是过去的十年中,全球微电子产业一直处于高速发展的时期,推动着信息产业的高速发展。集成电路产业及其产品是带动整个经济增长的重要因素。集成电路已发展到超大规模和甚大规模、深亚微米μ

m)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。1965年,Intel 公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。自从20 世纪50 年代后期集成电路问世以来, 就一直追求在芯片上有更多的晶体管, 能够完成更多的功能, 从一代到下一代芯片的基本价格变化却很小, 这是由于较高的集成度导致完成每项功能的价格降低。这是驱动芯片发展的最基本动力。现在还在向更小的工艺发展。技术飞速的进步, 促使人们不断探究现代半导体器件最终的物理极限。 国内微电子发展 早在1965年,我国的集成电路就开始起步,而此时世界上最著名的芯片制造商英特尔还没有成立。由于体制等众多的原因,我国在这一领域与国外差距越来越大。目前,我国集成电路产业已具备了一定的发展规模,形成了从电路设计、芯片制造和电路封装三业并举,与集成电路有关的主要材料、测试设备、仪器等支持业也相继配套发展,在地域上呈现相对集中的格局,京津、苏浙沪、粤闽地区成为集成电路产业较为发达的区域。。我国集成电路设计业在过去的几年中有了长足的进步,高等院校、科研院所、企业从事集成电路设计的单位越来越多。然而国内集成电路设计企业规模,设计人员的平均数量还未达到国际同类公司的水平。随着信息时代的到来,微电子技术得以快速发展,在信息时代中扮演中重要角色,是影响时代发展的关键技术之一。从微电子技术的发展历程来看,上世纪五十年代贝尔实验室发明了晶体管,晶体管的面世标志着微电子技术的诞生。在随后的几年内经过科学家的不断努力,又发明了集成电路。集成电路的发明为后来的微型计算机的发明奠定了坚实的技术基础。直至上世纪七十年代,集成电路在微型计算机中的成功应用,标志着微电子技术的发展达到了空前的高度。随着微电子技术的进一步发展,以集成电路为核心的微电子技术经过科学家的优化和改进,较上世界刚诞生的微电子技术集成化程度足足提高了近500 万倍,另外在微电子技术产品体积方面也大大地缩小。一个微小的单独的集成片就能集成几千万个集体管。自改革开发以来,国家对微电

微电子技术发展趋势与展望

微电子技术发展趋势与展望 摘要:随着科技不断发展和人们生活需求不断提高,在日常生活中,微电子技术已经应用的比较广泛了,然而只有不断利用、研究、开发和探索,把微电子技术投入到更多人们生活的领域中,为生活提供更多的方便。现在通过对微电子技术的一些探讨的同时,也对未来生活中更多方面使用微电子技术的美好憧憬和展望。 关键词:微电子;技术;趋势 一、前言 如今国家在科研方面取得较大进步,都来源于科学技术不断的创新,微电子技术就是如此,在生活中随处可见,小到一个简单的玩具跑车,大到国家核心装备,这些都离不开微电子技术。作为一名高中生,微电子技术已经逐渐踏入高中校园,在物理课实验中通过老师介绍了集成电路等,我们或多或少的对微电子技术有了些许了解。微电子技术从核心意义上来说具有体积小,把较为繁琐的任务简单处理,由于体积小的这一特征,使得微电子技术能够在科学发展中占有重要地位。 二、微电子技术的发展 微电子技术在我们生活中能够占领如此重要地位,是因为微电子技术在每个人不断努力下,逐渐对这项技术不断完善,在完善中逐渐成熟,所以才能够投入到生活中为方便生活所用。(1)微电子技术的兴起。早在1957年的时候,我国就开始对微电子技术付出努力,成立了专门机构和选拔出了大量的科研人才投入到这项技术的开发,随后随着技术不断的更新,半导体晶体管、无线电和集成电路等相继被研发利用。但是对比与80年代的美国等发达国家而言,在这些技术上的比较还是相差甚远。但也是这时候,国家对这项技术的投入也加大了许多,包括经济和人才的投入,知道近些年来,国家把微电子技术视为国家科技发展的重要核心之一。(2)微电子技术的现状。从微电子技术被发明到现在,它已经凭借着速度快、质量轻、工作效率高的多种特点,在在各种科技产品中得到重用,它是一款结合集成电路和半导体材料高水平电子技术,最近几年来,我国在微电子技术行业取得很大的进步,把提升国民经济和微电子技术相结合起来,在电子

微电子工程学复习题

第一章: 1、电子器件微型化和大规模集成的含义是什么?其具有怎样的实际意义。 答:电子器件微型化主要是指器件的最小尺寸,也就是特征尺寸变小了。大规模集成是指在单个芯片上所继承的电子器件数量越来越多。 电子器件微型化和大规模集成的意义: 1)提高速度和降低功耗只有提高集成度,才能减少电子系统内部的连线和最大限度地减少封装管壳对速度的影响。提高速度和提高集成度是统一的,前者必须通过后者来实现。同时采用低功耗、高速度的电路结构(器件结构) 2)提高成品率与可靠性大规模集成电路内部包含的大量元件都已彼此极其紧密地集成在一块小晶片上,因此不像中、小规模集成电路组成的电子系统那样,由于元件与元件,或电路与电路之间装配不紧密,互连线长且暴露在外,易受外界各种杂散信号的干扰,所以说大规模集成电路提高了系统可靠性。 为了提高为电子器件的成品率,需要在少增加电路芯片面积的前提下尽可能容纳更多的电子元件,也就是采取提高元件密度的集成方法。 3)低成本大规模集成电路制造成本和价格比中、小规模集成电路大幅度下降是因为集成度和劳动生产率的不断提高。 综上所述,大规模和超大规模集成电路的微型化、低成本、高可靠和高频高速四大特点,正是电子设备长期追求的技术指标和经济指标,而这四大特点中后三个特点皆源于微型化的特点。因此这四大特点是统一的、不可分割的。 2、超大规模集成电路面临哪些挑战? 答:首先是大直径的硅材料, 随着集成电路技术的发展,硅单晶直拉生产技术,在单晶尺寸、金属杂质含量、掺杂元素和氧分布的均匀性及结晶缺陷等方面得到了不断的改进。目前,通常使用的硅单晶抛光片的直径已达到300mm,400mm硅单晶片的制造也已经开始。如何控制400mm晶体中点缺陷将是面临的重大挑战。 其次是光刻技术:在微电子制造技术中,最为关键的是用于电路图形生成和复制的光刻技术。更短波长光源、新的透镜材料和更高数字孔径光学系统的加工技术,成为首先需要解决的问题;同时,由于光刻尺寸要小于光源波长,使得移相和光学邻近效应矫正等波前工程技术成为光学光刻的另一项关键技术。 最后是器件工艺。当器件的沟道长度缩小到0.1um时,已开始逼近传统的半导体物理的极限。随之而来的是栅氧化层不断减薄,SiO2作为传统的栅氧化层已经难以保证器件的性能。同时随着半导体器件工艺的特征尺寸不断地缩小,芯片内部的多层内连线工艺也逐渐成为半导体工艺发展的挑战。 3、阐述微电子学概念及其重要性。 答:微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、子系统及系统的电子学分支。 微电子学作为电子学的一门分支学科,主要是研究电子或离子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学。 微电子学是以实现电路和系统的集成为目的的,故实用性极强。微电子学中所实现的电路和系统又称为集成电路和集成系统。 微电子学是信息领域的重要基础学科,在信息领域中,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息载体的科学,构成了信息科学的基石。其发展水平直接影响着整个信息技术的发展。 微电子科学技术是信息技术中的关键之所在,其发展水平和产业规模是一个国家经济实力的重要标志。

相关主题
文本预览
相关文档 最新文档