当前位置:文档之家› 空气源热泵地暖空调两联供系统的设计与施工方案图文【最新版】

空气源热泵地暖空调两联供系统的设计与施工方案图文【最新版】

空气源热泵地暖空调两联供系统的设计与施工方案图文【最新版】
空气源热泵地暖空调两联供系统的设计与施工方案图文【最新版】

空气源热泵地暖空调两联供系统的设计与施工方案图文

空气源热泵机组原理和结构

空气源热泵冷暖机组系统概述空气源热泵,除具备制取出采暖用热水的功能外,空气源热泵机组还能切换到制冷工况制取冷冻水。空气源热泵的基本原理是基于压缩式制冷循环,利用冷媒做为载体,通过风机的强制换热,从大气中吸取热量或者排放热量,以达到制冷或者制热的需求。

按照逆卡诺循环原理,该系统主要空气源热泵主机和末端两大部分组成。空气源热泵机组与末端共同使用,前者提供冷水或热水,后者将冷水或热水,通过热交换,提供冷气或采暖。空气源热泵机组是采暖系统中的主机,由于采用空气源冷凝器不需要冷却塔;而蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽

吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体)。

产品结构:

空气源热泵顶出风、侧出风结构

设计、选型与配置

一、空调负荷计算

1.空调负荷计算的组成(QL)

(1)由于室内外温差和太阳辐射作用,通过建筑物围护结构传

入室内的热量形成的冷负荷;

(2)人体散热、散湿形成的冷负荷;

(3)灯光照明散热形成的冷负荷;

(4)其他设备散热形成的冷负荷;

(5)渗透空气所形成的冷负荷

(6)新风量负荷

2.空调负荷计算方法简单介绍

空调动态负荷的计算显得比较繁琐,即便是采用一些简化手段,计算工作量也是比较大的。估算最简便,捷径行路,人之通性,慢慢的被它取而代之了。

但是估算的根据并不坚定,偏于保守是不可避免的,总是顾虑怕估算的小了,这也是可以理解的。估算法也要注意与实际相符合,要根据实际的经验以及不同建筑的各自不同的情况。目前空调负荷的计算还是以估算为主。

3.民用建筑空调单位面积冷负荷(qL)

4.负荷计算--单位面积冷负荷法

QL=qL×S

式中:QL--建筑物空调房间总冷负荷 (W) QL-- 冷负荷 (W/m2 )

S-- 空调房间面积 (m2)

二、空调末端(风机盘管)的计算与选择

(1)根据风量:房间面积、层高(吊顶后)和房间气体循环次数三者的乘积即为房间的循环风量。其对应的风机盘管高速风量,即可确定风机盘管型号。

(2)根据冷负荷:根据单位面积负荷和房间面积,可得到房间所需的冷负荷值。利用房间冷负荷对应风机盘管的中速风量时的制冷量即可确定风机盘管型号一般采用第二种方法--根据冷负荷选择风机盘管,在特殊场合如对噪音要求较高的场所,可用第一种方法进行校核。

确定型号以后,还需确定风机盘管的安装方式(明装或安装),送回风方式(底送底回,侧送底回等)以及水管连接位置(左或右)等条件。

房间面积较大时应考虑使用多个风机盘管,房间单位面积负荷较大,对噪音要求不高时可考虑使用风量和制冷量较大的风机盘管。注意:对于风管超过一定长度的风盘,应采用中、高静压的风盘,且出风管道上不宜多于两个出风口。

三、采暖负荷计算

1.采暖负荷计算的组成(Qn)

冬季采暖通风系统的热负荷,应根据建筑物下列散失和获得的热量确定:

1)围护结构的耗热量,包括基本耗热量和附加耗热量,

2)加热由门窗缝隙渗入室内的冷空气的耗热量

3)加热由门、孔沿及相邻房间浸入的冷空气的耗热量;

4)建筑内部设备得热;

5)通过其他途径散失或获得的热量。

对于一般民用住宅层高在3m 以下工程上可采用面积热负荷法进行概算。

单位面积热负荷法:Qn=K×qn×S

式中:Qn-- 建筑物的采暖设计热负荷,W

S-- 建筑物的建筑面积,m2;

qn -- 建筑物的采暖单位面积热负荷,W/m2,

K-- 附加系数

建筑各个区域的围护结构、冷空气渗透情况均有差别,如果需要计算的较为准确,应根据各个区域在建筑中的位置(如:是否靠近外墙、外墙上的门窗)和门窗(是否有冷空气渗透)进行分别计算。

2. 室内采暖单位面积热负荷计算(qn)

1)一般原则

别墅的负荷一般要比住宅的大一些。

别墅的顶层负荷要大于中间层或底层。

普通卫生间根据面积提供500~1000W的定值来计算。

别墅地下室一般不配。

客卧一般负荷相对较大。

对于外墙较大或玻璃面积较大的,建议做负荷计算

2)室内采暖单位面积热负荷估算表(qn)

3. 附加系数

附加系数为采暖面积与全房间面积的比值,根据下表进行选择:

上表的附加系数为标准推荐数值,在实际工程中应根据实际情况做出具体调整。

房间进深大于6 米时,以距外墙6 米为界分区当作不同的单独房间,分别计算供暖热负荷。

4.另一种采暖热负荷的估算办法

Qn=a×Rn×V×(tn-tw)

Qn -- 采暖热负荷 W

tn -- 室内空气温度℃

tw -- 室外供暖计算温度℃

V-- 建筑的体积 m3

Rn -- 体积热指标根据建筑的保温情况宜取0.4-0.7

a-- 修正系数。请参考下表

四、采暖末端计算与选择

1. 地暖盘管

地暖面盘管的管间距直接影响到地板的散热量,而地板散热量需满足室内负荷的要求。

管间距根据管材、室内设计温度、供水温度、地板材料等因素而定。

下表是PE-RT管材,地面材料为水泥地砖,在不同水温、室内温度和管间距的条件下的地面散热量(其他地面材料的散热量数据见附录1)

2. 散热片

根据散热片进出口水温,求出散热片平均水温;

根据室内设计温度求出散热温差;

根据散热温差查散热片选型表,获得单片散热量q。

五、空气源热泵冷暖机组配置计算

1. 确定建筑的负荷

由设计院获取

根据建筑物的负荷指标和相应建筑面积的乘积,得出建筑的负荷。

将各空调房间的负荷逐个相加得出空调总负荷。

2. 机组台数和容量的确定

机组总负荷的确定:建筑的负荷或空调总负荷×80%左右的同时使用率。公寓房可不考虑同时使用率。特殊情况需根据建筑功能和使用情况确定。

大、中型工程应选二台以上,但不宜过多,并考虑备用机组的可能性。

若建筑物的最大负荷与最小负荷的差距过大,宜大、小容量

机组搭配工作。

六、机组安装位置规划和环境控制

1. 机组安装位置规划

1) 热泵主机的安装与空调室外机的安装要求相似。可安装在屋顶、阳台、地面上。出风口应避开迎风方向。

2) 主机(侧出风)与四周墙壁或其他遮挡物之间的距离不能太小,出风口1米内不应有遮挡物,保证主机换热器的吸热散热不受阻碍。

3) 主机(顶出风)进风口1米内不能有遮挡物,出风口2米内不应有障碍物,保证主机换热器的吸热散热不受阻碍。

当机组安装在屋檐下或机组上方有水平障碍物时,机组的安装位置必须在通风良好的地方,否则容易发生气流短路,造成机组散热能力差。

2. 机组安装环境控制

1) 尽量不在阳光直射的地方。

2) 不在卧室的窗台或卧室的附近。

3) 进、出风有足够的距离,便于散热。

4) 能承受室外机自重的 2-3 倍以上的地方。

5) 没有油烟或其它腐蚀气体的地方。

6) 不影响其它因素或环境的地方。

七、采暖和冷暖系统介绍

1. 采暖和冷暖系统分类

1) 开式循环系统:管路中的循环水与大气相通的系统。循环水水与大气接触,易腐蚀管路;用户与机房高差较大时,水泵则需克服高差造成的静水压力,耗电量大。

2) 闭式循环系统:管路系统不与大气接触,在系统最高点设有排气阀的系统。管道与设备不易腐蚀;不需克服高度差,从而循

环水泵功率小。

3) 同程式系统:并联环路中的各支路的流程都是相等的系统。

◆优点:系统的水力稳定性好,各设备间的水量分配均衡。

◆缺点:由于采用回程管,管道的长度增加,水阻力增大,使水泵的能耗增加,并且增加了初投资。

4) 异程式系统:并联环路中的各支路流程不等的系统

◆优点:异程式系统简单,耗用管材少,施工难度小。

◆缺点:各并联环路管路长度不等,阻力不等,流量分配难以平衡。

5) 定水量系统:系统中循环水量为定值,或夏季和冬季分别采用不同的定水量,负荷变化时,改变供、回水温度以改变制冷量或制热量的系统。

特点:定水量系统简单,操作方便,不需要复杂的自控设备和变水量定压控制。

6) 变水量系统,一般适用于间歇性降温的系统(影院、剧场、大会议厅等):保持供水温度在一定范围内,当负荷变化时,改变供水量的系统。

特点:变水量系统的水泵的能耗随负荷较少而降低,在配管设计时可考虑同时使用系数,管径可相应减少,降低水泵和管道系统的初投资;但是需要采用供、回水压差进行流量控制,自控系统比较复杂。

八、采暖和冷暖系统介绍

空气源热泵采暖和冷暖常用系统型式

采暖系统图--带缓冲水箱

冷暖系统图--带缓冲水箱

九、水泵选型计算

冷暖系统按空调系统的水流量和水阻力选定水泵流量和扬程。

1. 水泵的流量

在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值乘以1.1~1.2倍的系数选用。

如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为没有考虑同时使用率情况下的总负荷。

L= Q×0.86/ △T

L-- 循环水流量 m3/h

Q-- 总负荷 kW

△T -- 进回水温差℃(采暖系统取10℃,冷暖系统取5℃) 水泵的流量 = (1.1~1.2)×系统循环水量

2.水泵的扬程

应为它承担的供回水管网最不利环路的总水压降。

最不利环路阻力计算经验公式如下:

Hmax =Δp1+Δp2+0.05L(1+ K)

△P1:机组内部的水压降;

△P2:最不利环路中并联的各末端装置的水压损失最大一台

(或部分)的水压降。

0.05L:沿程损失取每100m管长约5mH2O;

式中K为最不利环路中局部阻力当量长度总和与直管总长的比值。当最不利环路较长时K取0.2~0.3;最不利环路较短时K取0.4~0.6。

水泵扬程(mH2O)= (1.1~1.2)× Hmax

3. 其他要求

水泵必须选用热水泵,其Q~H 特性曲线,应是随着流量的增大,扬程逐渐下降的曲线。同时适用于水/乙二醇(最高30%)溶液。

应根据水泵提供商提供的参数要求,并根据现场水力系统的要求选泵,水泵应在其高效区内运行。

十、膨胀罐选型计算

空气源热泵+地暖+空调系统设计

空气能热泵+地暖+空调系统设计 武汉誉德远程智能化集中热水供应系统包括本地热水供应系统、远程控制子系统,刷卡消费子系统。本地系统采用空气源热泵原理,每消耗1份电量的同时从空气中吸收4份热量,能效比最高可达5.5,为您节省一半到四分之三的电费;凭借先进技术与精密工艺,整机系统固有能耗系数与热水输出率均优于国家一级能效的规定值。在热水系统的基础上,可以加入地暖、空调等组成一套,热水、暖气、冷气一整套解决方案。下面对这套系统的设计特点做一个简单的介绍。 武汉誉德 空气源热泵和地源热泵为热源的地暖设计系统图

节能高效:热泵效率高,一份电力可产生三份的制热量;热泵高效出水温度在45-50度之间可设定,可直接用于地暖;而燃气壁挂炉高效水温在70-80度,需要通过混水才能用于地暖。 经济性:热泵既可制冷又可采暖,一机双用,节省初投资;无需增设混水装置,并且运行费用也更低。 在设计热泵地暖系统时,要注意有几点是与壁挂炉地暖系统不一样的: 热泵的供回水温差是5度,而壁挂炉是10度,所以热泵地暖系统的循环水流量较大,需要用Φ20的管道。 热泵地暖系统需要将每个回路所覆盖的面积适当减小,同壁挂炉地暖系统相比,热泵地暖的铺设特点是:小面积、多回路。空气源热泵需考虑冬季的制热能力衰减系数,以保证冬季的采暖效果,能力衰减系数通常可以从热泵厂家获得。壁挂炉一天可以反复点火几百次,而热泵使用的都是定频压缩机,由于压缩机保护不能频繁启停,热泵在冬季还需要化霜,所以设置一个缓冲水箱可以有效保护压缩机,提升系统舒适度和稳定性。相较于目前市场流行的VRF+壁挂炉的家用中央空调和地暖系统,热泵不仅可以实现同样功能,而且可以节省一大笔初投资费用。有理由相信,热泵的空调地暖系统将逐渐成为高档家装市场的主力军。 在设计这种空调和地暖二合一的水系统时,要注意以下几点:两个水系统要分别进行水力计算,若两个最不利环路值相差较大时,需设置两个压差旁通阀。越来越多的用户会在冬季同时开启地暖和风机盘管,在设计时要注意用户的使用习惯、空调和地暖之间的水力平衡措施、空调开启率、是否需增大主机容量,以保证使用效果。同时需指导用户如何正确使用该系统,避免因操作不当而引起制热效果不好的投诉。 建议在地暖的供水主管上,即球阀前安装一个电动两通开关阀,在夏季时自动关断,防止夏季冷冻水的冷量渗入地暖系统中,造成地板下结露。通常联机控制器上会有一个富余的干接点信号可以用于连接该电动两通开关阀。 地暖系统建议使用带阻氧的PEX管或者PERT管,主管道系统建议使用铝塑管道,一方面可以良好的弯曲定型,不用中间接头,另一方面,也可以100%阻氧,延长系统寿命。明装可以用卡套式,插接式,如果有可能暗埋,最好用卡压式,由于安全性高,欧标是允许该方式暗埋的。

空气源热泵空调系统设计方案

空气源热泵空调系统设计 方案 第1章绪论 改革开放以来,随着国民经济的迅速发展和人民生活水平的大幅度提高,能源的消耗越来越大,其中建筑能源占相当大的比例。据统计,我国历年建筑能耗在总能耗的比例是19%~20%左右,平均值为19.8%。其中,暖通空调的能耗约占建筑总能耗的85%。在发达城市,夏季空调、冬季采暖与供热所消耗的能能量已占建筑物总能耗的40%~50%。特别是冬季采暖用的燃煤锅炉、燃油锅炉的大量使用,给大气环境造成了极大的污染。因此,建筑物污染控制和节能已是国民经济发展的一个重大问题。热泵空调高效节能、不污染环境,真正做到了“一机两用”(夏季降温、冬季采暖),进入20世纪90年代以来在我国得到了长足的发展,特别是空气源热泵冷热水机组平均每年以20%的速度增长,成为我国空调行业又一个引人注目的快速增长点。 所谓热泵,就是靠电能拖动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等)转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等)的目的。类似于人们把水自低水头压送至高水头的机械称为“水泵”,把气体自低压区送至高压区的机械称为“气泵”(在我国习称气体压缩机),因而把这种输送热能的机械称为“热泵”。因此,在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。空气源热泵的历史以压缩式最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。热泵的发展受制于能源价格与技术条件,所以其历史较为曲折,有高潮有低潮,但热泵发展的前景肯定是光明的。当前热泵研究的方向是向高温高效发展,即开发高温热泵并最大限度提高COP(性能系数 Coefficient of Performance)值,同时积极发展吸收和化学热泵等。空气源热泵热水机组的制造、推广和使用在我国只是最近10年的事,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。 热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺

空气源热泵供暖系统安装合同(完整版)

空气源热泵供暖系统安装合同 发包方:_____________________________________________(以下称甲方)承包方:_____________________________________________(以下称乙方) 根据《中华人民共和国经济合同法》和《建筑安装工程承包合同条例》及有关规定,经甲、乙双方协商,甲方同意将阳光等空气源热泵供暖系统的安装交由乙方负责,为明确双方责任,特签订以下条款: 第一条:工程项目 工程名称: 工程地点: 承包内容:空气源热泵供暖机组安装所需的材料、施工,系统的调试。甲方要求:施工过程中不影响居民正常休息。 第二条:施工准备 乙方负责组织施工管理人员和材料、施工机构进场的准备工作。 甲方负责提供空气源热泵机组、机箱铁架、。 第三条:工程期限 根椐双方商定,工程总工期为在2019年 10月 15日之前完工,合同签订后贰日内进场,乙方根据工作量合理安排人员进入场地,工作前应提前一天通知甲方,由甲方统一安排。 如遇到下列情况,经甲方代表签证后,工期相应顺延: 不能正常提供施工现场的水、电配置,施工场地的障碍物未能清除,进而影响进场施工。 在施工中如因停水、停电8小时以上或连续间歇性停水、停电3天以上(每次连续4小时以上),影响正常施工。 第四条:工程质量 乙方必须严格按照说明文件和国家或地方有关的建筑安装工程规范、规程和标准进行施工,并接受甲方代表的监督。 乙方在施工过程中必须遵守下列规定:

承担空气源热泵供暖系统所有安装工程,确保安装质量。 按要求保证空气源热泵供暖系统水路管线良好连接,设备电源线安全可靠,热泵机组和水管布放合理。安装过程中安排专业人士进行现场监督,确保质量和进度。对自已施工中所产生的垃圾进行清理,文明施工。凡因乙方施工不慎造成的事故和甲方场地或物资损坏,均由乙负责赔偿损失。 第五条:工程总量和结算方式: 一、经甲方批准的本工程总量为台的空气源热泵安装。 二、每台空气源热泵系统安装由乙方包工包料,甲方需支付乙方每台安装费用(小写:元) 三、付款方式: 以村为单位,施工完成后验收合格,每村一结算。 施工完成后验收合格 第六条:施工与设计变更 甲方交付的设计说明和有关技术资料,作为施工的有效依据,甲乙双方不得擅自变更。施工中如发现设计有错误或严重不合理的地方,乙方应及时通知甲方,由双方及时研究确定处理方法,乙方按变更的设计进行施工。 第七条:工程验收及保修 工程竣工验收,以国家颁布的《工程施工及验收规范》及施工说明书、施工技术文件和竣工技术文件为依据。 乙方完成施工后,负责清理好施工现场,按甲方要求编制完成竣工技术文件,向甲方发出验收通知单。产品经过甲方验收,确认合格后视为工程已竣工,可正式交付使用,工程当天起进入保修期。整体工程保修期为五年,在上述规定的保修期内,凡因工程质量问题引起的事故,其后果及责任由乙方全部承担。 第八条:违约责任 乙方的责任 如工程质量不符合合同规定的,则乙方负责无偿修理或返工,直至产品质量达到竣工标准。由乙方原因造成工期延误的,每逾期一日,应以工程总额的1%向甲方支付违约金。 甲方的责任

空气源热泵设计完整方案

第第一一章章 空空气气源源热热泵泵热热水水系系统统方方案案设设计计文文件件 目 录 第一章 空气源热泵热水系统方案设计文件 一、工程项目概况 二、地理位置及气候 三、工程设计依据 四、设计参数 五、热水系统设计计算 六、热泵设备选型 七、保温储热水箱选型 八、系统运行技术措施 第二章 运行成本分析 一、方案运行费 二、效益 三、不同形式制取热水成本分析

制取生活热水,考虑节约运行费用,新能源——空气源热泵热水机组是目前比较节能、环保的一个产品。 热泵热水器作为一种新型热水和供暖热泵产品,是一种可替代锅炉的供暖设备和热水装置。与传统太阳能相比,热泵热水器不仅可吸收空气中的热量,还可吸收太阳能。热泵热水器通过制冷剂温差吸热和压缩机压缩制热后,与水换热,大大提高热效率,充分利用了新能源,是将电热水器和太阳能热水器的各自优点完美的结合于一体的新型热水器。目前,热泵热水器有空气源热泵热水器系列,是开拓和利用新能源最好的设备之一。 热泵是利用设备内的吸热介质(冷媒)从空气或自然环境中采集热能,经压缩机压缩后提高冷媒的温度,并通过热交换器冷媒放出热量加热冷水,同时排放出冷气,制取的热水通过水循环系统送入用户进行采暖或直接用于热水供应。 热泵在使用低谷电时更能节约用电。 产品特征: 1、高效节能:其输出能量与输入电能之比即能效比(COP)一般在2~6之间,平均可达到3.5以上,而普通电热水锅炉的能效比(COP)不大于0.95,燃气、燃油锅炉的能效比(COP)一般只有0.6~0.8,燃煤锅炉的能效比(COP)更低一般只有0.3~0.7。 2、环保无污染:该产品是通过吸收环境中的热量来制取热水,所以与传统型的煤、油、气等燃烧加热制取热水方式相比,无任何燃烧外排物,制冷剂对臭氧层零污染,是一种低能耗的环保产品,具有良好的社会效益,是一种可持续发展的环保型产品。 3、运行安全可靠:整个系统的运行无传统热水器(燃油、燃气、燃煤)中可能存在的易燃、易爆、中毒、腐蚀、短路、触电等危险,热水通过高温冷媒与水进行热交换得到,电与水在物理上分离,是一种完全可靠的热水系统。 4、使用寿命长,维护费用低:该产品的使用寿命可长达10年以上,设备性能稳定,运行安全可靠,并可实现无人操作(全自动化智能程序控制)。 5、可一年四季全天候运行:热泵机组热源来源广泛,包括空气、阳光、雨水、地下水、工业废气、工业废水和海水等,无论白天、黑夜、室内、室外、地下室,不管晴天、阴天、刮风下雨或下雪都能照常工作。 6、适用范围广:可用于酒店、宾馆、工矿、学校、医院、桑拿浴室、美容院、游泳池、温室、养殖场、洗衣店、家庭等,可单独使用,亦可集中使用,不同的供热要求可选择不同的产品系列和安装设计,从任何角度满中您的要求。

空气源热泵机组设计应用及案例分析

空气源热泵机组设计应用及案例分析 空气源热泵机组(简称“热泵机组”)自二十世纪四十年代发明至今,其技术已日臻完善,广泛应用于办公楼、宾馆、娱乐业、厂房、住宅等各行各业不同规模的工程中,市场占有率一直较高,究其原因,皆因其有如下优点:热泵机组夏季供冷,冬季供热,不需另设锅炉房;主机安装在屋顶,可省去冷冻机房、锅炉房土建投资及冷热系统投资;COP值较高,自动化程度高。 一、热泵机组类型及其特点: 1.涡旋式压缩机热泵机组: 涡旋式压缩机为容积式压缩机,具有运转平稳、振动小、噪音低等优点,常用于空气-空气热泵机组,适用于中、小型工程。 2.活塞式压缩机热泵机组: 活塞式压缩机为容积式压缩机,结构复杂、转速低、振动大、噪音大、单机容量较小,多机头组合可拼装成100万大卡/时左右热泵机组,COP=3.0~3.5; 3.螺杆式压缩机热泵机组: 螺杆式压缩机也为容积式压缩机,结构简单、运转平稳、振动小、噪音低、寿命长,COP=3.5~4.5,适用于中、小型工程,多机头热泵机组可用于较大工程。单螺杆为平衡式单向运转,磨损小,无轴向推力,其排气效率比双螺杆略低。 二、热泵机组设计: 1.选用原则: 热泵机组有优点也有缺点,与同容量单冷冷水机组相比,其用电量大,造价高,冬季随室外气温下降制热量衰减严重、结霜严重等,因此,①当某工程有蒸汽源时,空调冷热源应尽量采用“单冷冷水机组加热交换器”方案。无锡市正在形成城市蒸汽热力网,我们应优先采用以上方案。②本人认为医院、宾馆等对冬季采暖温度要求较高的工程不适宜采用热泵机组,办公楼、饭店等工程则较适宜,因为它们一般白天使用,热泵机组制热量衰减小,就算采暖效果差些,室内人员可多穿衣服,影响小些。 2.选型方法:

空气源热泵热水机供热水系统工程设计

空气源热泵热水机组中央供热水系统工程 设计方案 一、工程概况及甲方要求: 1.工程概况 贵校柳州南亚、冠亚校区综合楼入住师生约700人,其中南亚校区400人,冠亚校区300人,人均用热水按30kg/天计算,总量为: 21000 kg/天(55℃) 2.甲方要求: A、要求在两栋楼天面安装空气热泵热水机组中央供热水工程,解决师生冲凉用热 水的问题。 B、要求安装电辅助加热装置,以防冬天极端最冷(气温<0℃时)辅助热泵加热。 C、要求定时供应热水。 D、要求安装回水系统,以方便学生用热水。 E、要求设备自动化,以方便管理。 二、设计依据: 1.B12021.3-2000《空气调节机能源效率限定值及能源等级》 2.GB19577-2004《冷水机组能效限定值及能源效率等级》 3.GB50015-2003《建筑给水排水设计规范》 4.GB50268-97《给水排水管道工程施工及验收规范》 5.JGJ116-98《建筑抗震加固技术规程》 6.GB50057-94《建筑物防雷设计规范》 7.JGJ/T16-92《民用建筑电气设计规范》 8. GB4272-92《设备及管道保温技术通则》 9.甲方要求 三、设计方案:

我公司根据国家规范、标准和本公司一贯秉承的“安全、实用、节能、美观”八字设计思想,体现设备实用性、合理性和技术先进性,结合贵校楼面的基本情况,设计空气源热泵中央供热水系统方案,具体如下: (一)、南亚校区 1.在综合楼天面安装“金星牌”KRS-15A空气热泵热水机组壹台,组成一套空气热泵中央供热水系统。系统在标况下每小时产55℃热水1283kg,机组运行9.5小时就能满足该楼师生日用热水的要求。 2.在综合楼天面安装10m3、2m3储热水箱各一个,另在地上安装2m3储热水箱一个(供给负一楼教师及饭堂用热水),水箱内胆采用:δ=1.5mm SUS304/2B食品级不锈钢,水箱外壳采用不锈钢、保温层采用聚氨酯整体发泡填充,厚度为50MM。 3.在空气热泵热水机组与储热水箱之间安装一套ISG40-100加热循环系统。当储热水箱中的热水未达到设定温度时,加热循环泵启动将储热水箱中的水抽至热泵热水机组进行循环加热,直至水温达到设定要求,确保热水的温度恒定。 4.在天面及地上水箱中各安装12KW电辅助加热壹套,以便冬天极端最冷时辅助加热。5.在供热水主管上安装一套ISG40-100加压回水系统。该系统有两个作用:第一,在设定的供水时间段内,开启向管网内供水,以保证供热水管网压力;第二,该系统受温度控制,当供热水管网中水温达不到冲凉的温度时,将管网中的低温水抽回储热水箱二次加热,这样既可以保证打开花洒就有热水可用,又不浪费水源,节约开支。6.在补冷水管安装DF32补水电磁阀一台,DN32电子除垢器一套(净化水质)。该电磁阀受时间和水箱的水位控制,在设定的时间段内当储热水箱水位降至设定水位下限时,电磁阀开启补水;当水位达到客户设定的上限要求时,电磁阀关闭停止补水。7.天面热水管道均采用PPR管(室内管网由土建方负责),并用橡塑保温材料,外用铝皮包装。 8.供热水管采用浮球取水装置,该装置在浮力的作用下,始终浮在水箱的上部,取得的都是水箱中较高温度的热水。

空气能采暖制冷设计方案书(新)

山东济南空气能采暖制冷方案书 目录 一、工程概况.............................................. 错误!未定义书签。 二、方案选型 (4) 三、气象参数 (6) 四、负荷计算 (6) 五、设备选型 (7) 1、主机选配 (7) 2.风机盘管选配 (7) 六、經濟效益、節能降耗 (7) 七、運行費用預估 (8) 一、工程概況 工程名称:济南市铁路宿舍 工程位置:山东省济南市 工程概况:项目位于山东省济南市,其中冬季暖气片采暖、中央空调制冷/制热,其中 采暖面积700平米,中央空调面积1400平方。 方案选型 本设计采用“伊蕾科斯”商用采暖设备,采用集中供热方式,实现冬季供热功能,夏 季制冷的冷热联供功能。

二、气象参数

空调设计根据当地气候、环境和建筑进行计算后,对某一房间或空间内的温度、湿度、洁净度和空气流动速度等进行调节与控制,从而为用户创造安全环保、舒适节能的和谐环境。本设计工程位于山东省济南市,其计算参数如下所示。 室外计算参数 室内计算参数 三、负荷计算 在进行热泵选型时,要同时考虑制冷量和制热量。制冷量为空调区所需最大冷负荷,制热量由建筑所需供暖热负荷构成。 在选择热泵时,要在满足最大冷负荷和热负荷的同时增加10%的富裕量;这是由于进行负荷计算时,配管的公共通道部分未考虑进来;实际上,冷/热量在通过公共配管通道时,总会损失一部分冷/热量。 该建筑冷负荷,经负荷计算及规范得知,寒冷地区建筑的空调冷负荷指标为80W/㎡左右,空调面积1400㎡,总负荷大小112kw kW符合要求。 热负荷由外围护结构和内围护结构的基本耗热量及其附加耗热量和冷空气渗透耗热量组成;冬季采暖的室内设计温度设为22℃,经负荷计算及规范得知,寒冷地区建筑的采暖热负荷指标为60W/㎡左右,采暖面积700㎡,总负荷大小42 kW符合要求。 采暖区域的热负荷汇总见表:

空气源热泵项目设计方案

空气源热泵项目设计方案公司是集科研、生产、销售、服务于一体的专业制作中央空调、净化空调的高科技技术企业。先后与全国著名高等学府、通用机械研究院等单位进行技术合作,科研攻关,通过把高科技成果产品化,坚持技术创新,发展具有自主知识产权的专利技术,生产研发出了高效能的中央空调系列产品。 公司定位于节能减排的可再生能源和新能源产业领域。公司主导产品地源热泵、污水源热泵、工业废热余热型热泵、海水源热泵、水冷冷水机组、水冷离心机组、空气源热泵机组等热泵系列产品及中央空调、净化空调末端系列产品,是利用浅层地热能、污水热能、工业废热余热、海洋热能、空气能等低品位的可再生能源和新能源的重要技术装备产品。公司生产制造的热泵系列产品已为超过4000万平方米的建筑提供可再生能源供热热源和供冷冷源,年运行节能量超过40万吨标准煤。 十二五期间,公司将为社会提供10000台热泵机组,以年节约100万吨标准煤为目标,有效降低温室气体和有害气体的排放,为祖国节能减排事业贡献力量! 我们珍惜每一个客户的选择和认可,敬重每一个客户的批评和建议,感关心和支持世纪昌龙的每一个朋友和合作伙伴。我们将继续以优良的售后服务,巩固并拓展销售市场,真诚地希望与您携手共创辉煌。 2、产品简介 公司专业生产经营热泵型中央空调系列,目前公司产品已发展到第四代、拥

有十大系列一百五十多个型号。 公司产品主要分为中央空调主机和空调末端设备两大单元; 中央空调主机单元主要包括:水源热泵、地源热泵和空气源热泵三大板块; 空调末端设备单元主要包括:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调等。 (1)中央空调主机单元 从热源利用上:既可利用地下水,又可利用河水、湖水等地表水、工业废水、城市污水、洗浴污水以及油田回注水等;从压缩机选型上:既有半封闭螺杆式机组、全封闭涡旋式机组,又有离心式机组;从换热器选型上:既有钎焊板式换热器、干式、满液式换热器,又有套管换热器。从形式上:既有风冷式,也有水冷式。 (2)空调末端单元 公司空调末端设备单元共分为四大系列,两百多个产品规格,从形式上可分为:风机盘管、射流风机、组合式空调器、新风换气机和组合式净化空调器等;从送风方式上分为:独立送风设备和集中送风设备;从送风质量上分为:室自然风循环设备和净化加湿设备;从静音方式上可分为:普通型和高静音型;

空气源热泵系统设计方案

目录 一、空气源热泵热水系统造价 (2) 二、系统设备详细说明 (6) 三、公司企业优势 (14) 四、广东长菱热泵厂家实力介绍 (16) 五、售后保修服务 (20) 六、近几年部分工程业绩 (23)

一、空气源热泵热水系统造价 序号货物名称规格型号数量单位单价合计品牌 1 空气源热泵热CL-H-120K 额定输入功率: 8.8kw; 制热量:36kw; 谷轮全封闭涡旋式 压缩机; 机组外壳为防腐喷 塑钢板材质。 1 台31410 31410 广东长菱 2 空气源热泵热CL-H-40K 额定输入功率: 4.4kw; 制热量:19kw; 谷轮全封闭涡旋式 压缩机; 机组外壳为防腐喷 塑钢板材质。 1 台16500 16500 广东长菱

3 热泵基础采用4#角钢焊制 1 组300 300 现场制作 4 保温水箱CAP-BS(PE)-10 考虑到该校水质腐 蚀性比较强,故采用 PE材质保温水箱 1 个30000 30000 福建开普 5 水箱基础采用10#槽钢焊制 1 组2000 2000 现场制作 6 全自动控制柜CAP-DK-01 液位显示,且可自动 调节;可以设温度、 时间等保证全自动 运行;面板直观易操 作,无人值守,自动 运行。 1 套5200 5200 福建开普 7 热泵循环泵PH-254E 功率:330w; 扬程:15m; 流量:6t/h; 2 台1350 2700 德国威乐 8 热水供水泵PH-254E 功率:330w; 扬程:15m; 流量:6t/h; 1 台1350 1350 德国威乐 9 冷水补水泵PH-101E 1 台660 660 德国威乐

空气源热泵空调组织方案

中央空调及地暖系统工程组织方案 空 气 源 热 泵 空 调 建设单位: 设计单位: 施工单位: 编制日期:年月日

第一章:编制依据 第二章:工程概况 第三章:施工目标及现场组织机构 第四章:施工部署 1施工准备 2材料采购内控措施 3工程质量保证措施 4安全生产保证措施 第五章:施工方案 1 机组安装 2机组单台安装 3机组多台安装 4空调设备主要施工工艺流程 5风机与管道施工方法及主要技术措施 6地暖设计要求与施工 7系统调试 第六章:安装工程应注意事项 第七章:用户服务 1技术维护计划及保证措施

2保修期的保修工作 3保修期后的回访保修 4技术维护资料编制及移交 施工组织设计总述 空调工程是现代化工业与民用建筑不可缺少的部分,在国民经济中占有重要的地位。制冷设备长期安全经济运行,安装质量是一个很重要的方面。我公司不仅依托优良产品的优势,更有从事空调工程安装丰富经验的技术人员、管理人员和施工人员。为了提高系统施工管理水平,科学地安排施工程序,在保证质量的基础上,缩短工期,加快工程进度,特编制此方案。明确施工任务的目标及主要施工技术方法和相应的保证措施,并以最佳的施工班子,精心组织、科学管理采取有效的技术措施,进一步完善落实质量保证体系。我们对该项工程建设单位明确承诺,以优良的工程质量,最科学的施工方法,高效率按期竣工,做好文明施工,环境保护,全面完成此项工程任务。 第一章:编制依据 1.1国家及地方现行有关图集、规范、标准。 1.2设计空调施工图(依据空调图纸) 1.3国家现行有关法规

1.4中央空调及地暖安装工程系统调试工程有关说明 第二章:工程概况 2.1工程概况 2.2工程名称: 2.3建设单位: 2.4设计单位: 2.5施工单位: 2.6建筑面积: 第三章:施工目标及现场组织机构 3.1施工目标 3.1.1响应建设单位提出的工期要求及结合实际情况,保证在合同期内安装、调试完备。 3.1.2质量目标:精心施工,争创精品工程,工程施工质量达到国家验收优良标准。 3.2施工安全目标 3.2.1施工工亡,重伤事故为零。 3.2.2杜绝重大设备,火灾事故。 3.2.3负伤率控制在4%以下。 3.3文明施工目标

空气源热泵系统设计方案

空气源热泵系统设计方案 长期以来空气源热泵空调系统,主要应用于长江流域及其以南地区。本文主要介绍低温空气源热泵系统在北方地区的应用案例,并对系统设计的注意事项进行了阐述,对系统初投资和运行费用进行了分析。实际运行证明,低温空气源热泵空调系统在北方制热是可行的,并且运行费用很低。 1 工程简介 XX最大的综合类图书市场。本建筑长49.2m,宽35.1m,总建筑面积6900m2;建筑共计4层,总高度为15.9m。一层、二层、三层是图书市场,四层为办公室。本建筑自2001年6月开始施工,2019年10月完工,2020年11月空调开始调试运行。 2 空调计算设计参数 2.1 室外空调计算参数,见表1。 2.2 室内空调设计参数,见表2。 3 冷热源选择 3.1 冷热源选择依据 秦皇岛市是全国闻名的度假旅游城市,市政府对环境污染问题特别重视,尤其是冬季供暖产生的污染问题。秦皇岛市供暖期较长,约为5个月。供暖资源也很丰富:煤、油、城市集中煤气、电和城市集中供热,由于本项目在开发区,没有城市集中供热,燃煤也被禁止使用,可利用的资源仅为油、城市集中煤气和电。秦皇岛市没有电增容,城市煤气有市政费用。同时在与开发商接触过程中,开发商提出以下几点要求:

①安全、环保、没有污染;②运行费用低;③系统运行可靠;④维护方便。 3.2 冷热源初投资比较 根据开发商提出的要求,提供以下比较方案:方案1,空气源热泵空调系统;方案2,螺杆冷水机组+电锅炉;方案3,螺杆冷水机组+煤气锅炉;方案4,螺杆冷水机组+油锅炉。各种方案初投资,见表3。 3.3 运行费用分析比较 夏季,各种方案的系统制冷系数接近,又由于秦皇岛市夏季制冷期较短,这里不做比较,仅对冬季供热时的运行费用进行分析比较,结果见表4。 3.4 结果分析 通过以上分析可以看出,空气源热泵空调系统不仅初投资较低,其冬季运行费用也优于其他三种方案,所以,本工程选用低温空气源热泵机组作为空调系统冷热源。 4 机房设计

空气能热泵采暖系统膨胀罐的工作原理及安装注意事项(优.选)

空气能热泵采暖系统膨胀罐的工作原理及安装注意事项 1.膨胀罐的结构 膨胀罐是由罐体、气囊、法兰盘(进/出水口)及补气口四部分组成。 A. 罐体一般为碳钢材质,外面是防锈烤漆层或不锈钢材质; B. 气囊为EPDM(三元乙丙橡胶)环保橡胶; C. 气囊与罐体之间出厂时已充好气体,一般无需自己加气,除非系统需要更大的预充压力; D. 法兰盘为碳钢或不锈钢材质,通常膨胀罐容积越大接口会越大,一般在一寸左右,可以按照系统需求来选择接多少通的阀,以方便使用和维修; E. 外形有固定脚跟无固定脚、立式卧式之分,可按照系统安装的需求来选择。 隔膜式膨胀罐的罐体中间由隔膜将罐体分成二部分,上部分是罐体与隔膜之间预冲了一定压力的氮气,下部分是用来储水。气囊式膨胀罐则是气囊在罐体内,气囊用来储水,在气囊与罐体之间预冲有一定要的氮气。根据系统需求,可分别预冲不同压力的氮气。膨胀罐的最大工作压力8bar,最高工作温度为—10~140℃、预冲压力:2.5bar。 2.膨胀罐的工作原理 当膨胀罐用于系统中时,由于系统压力比预冲气体的压力高,所以会有一部分工作介质进到气囊内(对隔膜式来讲是进入罐体内),直至压力平衡。当系统压力再度升高,系统压力再次大于预冲气体的压力时,又会有一部分介质进入橡胶囊内来压缩橡胶囊和罐体之间的氮气,氮气被压缩后罐体内压力升高,当升高到跟系统压力一致时,气囊内的水会被气体挤出补充到系统内,使系统压力升高,知道系统介质压力同橡胶囊和罐体间的气体压力相等,橡胶囊内的水不再向系统补给,膨胀罐的主要作用是用于维持系统动态的平衡。 3.膨胀罐的作用 膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,起到缓冲系统压力波动,消除水锤起到稳压卸荷,保证系统的水压稳定的作用。 4.膨胀罐的安装注意事项 (1)膨胀罐在供暖系统中一般建议安装在系统水温相对低点的回水端或储热水箱的冷水入水端。24L以下的气压罐因自重较轻可直接连到系统管道上。为避免膨胀罐在工作时进水和自重对系统管道产生较大的荷载,对于24L以上的膨胀罐其自身带有三角支架,可以用金属软管把膨胀罐连接到系统,埋地螺钉固定膨胀管支脚,以确保使用过程中的平稳。 (2)膨胀罐附近要安装安全阀,以避免在系统压力异常时损坏气压罐和系统其他部件。(3)在供暖闭式循环系统上,不能把膨胀罐装在水泵的出水口,这样可能会造成水泵的气蚀。 (4)膨胀罐在热力系统中,如空调、锅炉、热泵等一般安装在系统的回水端。 (5)测试膨胀罐气囊时,建议直接用水压测试,严禁使用锐利器件碰触气囊。 (6)膨胀罐的工作介质一般为水或防冻液的混合物(水的比例不得小于50%)。 (7)膨胀罐应一年检查一次预冲压力,如果发现压力下降应及时补气,以免影响其正常使

空气源热泵三联供方案

空气源热泵三联供工程 1.三联供的分类 这里所说的三联供是可以提供空调、地暖和热水三种功能的热泵机组。也称为三联供热泵、三联供空调、冷暖热水三联供、空调地暖热水三联供、空调热水三联供、热水空调三联供、空调地暖热水三用机、空调热水机、空调热水一体机、冷气热水机、空调热水器、三合一热泵等等,从中央空调角度来看,三联供又被称为全热回收型中央空调。 按照热源的来源不同,三联供分为空气源热泵三联供和地源热泵三联供。其中地源的产品又被称为水源热泵三联供、三联供地源热泵等,空气源热泵三联供也被称为空气能三联供、空气源空调热水机、空气源热泵三用机、等等。从用途上来分类,空气源热泵三联供分为家用空气能三联供和商用空气能三联供。也称为家用空调热水器和商用空调热水器。 2.空气源热泵三联供的工作原理 (1)单独制热水时:热水换热器配套的循环水泵工作,空调换热器的循环水泵不工作,翅片换热器的风机工作,压缩机运行后工质在热水换热器中放热,在翅片换热器中吸热,形成制热水过程。 (2)制热水兼制冷时:热水换热器配套循环水泵工作,空调换热器的循环水泵工作,翅片换热器的风机不工作,压缩机运行后工质在热水换热器中放热,在空调换热器中吸热,形成制冷兼制热水过程。 (3)单独制冷时:热水换热器的循环水泵不工作,空调换热器的循环水泵工作,翅片换热器的风机工作,压缩机运行后工质在翅片换热器中放热,在空调换热器中吸热,形成制冷过程。 (4)单独制热时:热水换热器的循环水泵不工作,空调换热器的循环水泵工作,翅片换热器的风机工作,压缩机运行后工质在翅片换热器中吸收热能,在空调换热器中放出热能,形成制热过程。

其中空调换热器在夏季作为制冷换热器,在冬季作为地暖换热器,为了配合不同水管路的流向,空调换热器水管路上需要有阀门来切换。 3.空气源热泵三联供系统组成与运行过程 对于客户而言,除了知晓三联供主机之外,还需要知道三联供系统的整体构造和运行过程。 三联供系统包括主机部分(含水泵,膨胀罐等)、室内末端部分(含线控器等)、室内地暖部分(含分水器和温控器等)、中央热水部分(含水箱、回水控制等)。 三联供一般有“制冷”、“制冷兼热水”、“热水”、“制热”、“制热兼热水”五种模式。 在需要空调和热水的情况下,设定“制冷兼热水模式”。在此模式下,当空调管道回水温度高于12℃时启动“制冷”运行,直到回水温度低于7℃(可设定)停机;当热水箱中水温低于50℃时启动“热水”运行,直到水温到达55℃(可设定)停机;当回水温度高于12℃同时热水箱中水温低于50℃时启动“制冷兼热水”运行,直到热水箱水温到达55℃或者空调回水温度低于7℃(可设定)停机。在此模式下,启动空调末端(风机盘管)就可以得到保持设定温度、清凉干爽的室内环境,开启热水龙头,就可以得到50-55℃的生活热水。 在仅仅需要空调的情况下,设定“制冷模式”。在此模式下,当空调管道中的回水温度高于12℃时启动“制冷”运行,直到回水温度低于7℃(可设定)停机;热水功能不启动。在此模式下,启动空调末端(风机盘管)就可以得到保持设定温度、清凉干爽的室内环境。 在仅仅需要热水的情况下,设定“热水模式”。在此模式下,当热水箱中水

空气源热泵设计

项目空气源热泵系统设计方案 编制单位: 日期:

目录 一、工程概况 (3) 二、地理位置及气侯 (3) 三、工程设计依据 (4) 四、设计参数 (4) 五、热水系统的设计计算 (4) 六、热泵设备选型 (5) 七、保温储热水箱的选型 (6) 八、系统运行技术措施 (6) 九、运行成本分析 (8)

一、工程概况 名称:地址:结构类型:层数:面积:,计划夏季冷水人/天;冬季用热水约人/天。 二、地理位置及气侯 本项目位于中纬度欧亚大陆东岸,面对太平洋,季风环流影响显著,冬季受蒙古冷高气压控制,盛行偏北风;夏季受西太洋副热带高气压左右,多偏南风。气候属暖温带半湿润大陆季风型气候,有明显由陆到海的过渡特点:四季明显,长短不一;降水不多,分配不均;季风显著,日照较足;地处滨海,大陆性强。年平均气温12.3℃。7月最热,月平均气温可达26℃;1月最冷,月平均气温为-4℃。年平均降水量为550~680毫米,夏季降水量约占全年降水量的80%。 三、工程设计依据 1、甲方提供的工程项目概述及要求; 2、《建筑给水排水设计手册》; 3、《建筑给水排水设计规范》; 4、《给水排水常用数据手册》; 5、全国民用建筑工程设计技术措施---给水排水。

四、设计参数 1、夏季冷水的供水温度:7℃; 冷水的回水温度:12℃。 2、冬季热水的供水温度:55℃; 热水的回水温度:45℃。 3、全年平均冷水温度为15℃。 4、用水量,每天需要55℃热水 10*50L/= T。 五、热水系统的设计计算 1、根据《建筑给水排水设计规范》GB50015-2003 ①全天耗热量计算: 夏季1kcal/kg.℃×0.5吨×( ℃ -℃)1031.05 = KW ; 冬季:1kcal/kg.℃×吨× (55-5℃)1031.05 = KW; 春秋季:1kcal/kg.℃×0.5吨×(55-15℃)1031.05= KW; ②小时耗热量计算:热泵每天运行时间不超过24小时,从节约投资和经济运行最合理考虑,在冬季不利天气下,我们计算按照每天最长18小时计算。

120平米独栋住宅空气源热泵供暖制冷和热水方案

120平米独栋住宅空气源热泵供暖制冷和热水方案 一、方案概况 太原郊区一独栋住宅面积120平方米(非节能建筑),拟采用空气源热泵作为冬季采暖、夏季制冷和四季热水提供设备。 二、供暖和制热水所需热能计算 1.供暖计算依据: 依据《城市热力网设计规范》CJJ34采暖热指标推荐值q(W/m2): 太原属于温带大陆性季风气候,全年平均气温在4.3-9.2℃之间;冬季采暖期计算温度-12℃,最低气温均值-20℃,极端最低气温-27.8℃,平均温度-2.6℃。 CJJ34采暖热指标推荐值是标准节能建筑按采暖期室外计算温度和室内维持18℃计算的每期平米所需热负荷,在确定具体设计对象的热负荷时,还应考虑房屋的结构、墙体保温、门窗密封、朝向和风力等因素; 采暖热负荷计算工式为:W = c·㎡(kw.h) 式中:w——采暖热负荷量(kw.h);c——单位采暖负荷。 2. 供暖所需热能计算 考虑到住宅为非节能建筑,采暖热负荷按70W每平方计算,则: 120平米住宅所需热负荷为70х120/1000=8.4KW 3. 制热水所需热能计算 考虑住宅常住5人,每人每天平均需55度热水60升,按冷天平均进水温度10度计算最大所需热能,则: 5х60х(55-10)х1.163/1000=15.7KW

三、功率配置和设备选型 制热水需热能15.7KW,按设备每天工作运行8小时计算,每小时所需功率为1.96KW,加上住宅所需热负荷8.4KW,合计为10.4KW。 对照西莱克超低温空气源各机组零下7-15度输出功率,最佳机型配置为LSQ05RD热水优先型机组。 四、热水优先型LSQ05RD机组介绍 a)产品外观: b)产品特点: (1)制冷、制热、生活热水一体化功能,可24小时提供热水。 (2)冬季低温运行,比普通中央空调热效率高50-80%。 (3)夏季可制冷,与普通中央空调一样。 (4)主要零部件均采用国际著名品牌元件;无污染环境,无排放,环保节能。 (5)全部系统采用智能化电脑控制,用户在室内操作,无需专人看管; (6)运行费用低,后期维护少,运行稳定,易满足建筑设计及安装的需要。 c)技术参数:

空气源热泵系统设计指南设计

空气源热泵系统设计指南 空气源热泵系统设计指南空气源热泵就是利用室外空气的能量,通过机械做功,使得能量从低位热源向高位热源转移的制冷(制热)装置。它以冷凝器放出的热量来供热,以蒸发器吸收热量来制冷。就热力循环的过程而言,制冷机和热泵都是基于逆卡诺循环而实现其功能的,由于这种装置在运行过程中,总是一侧吸热,另一侧排热,所以,一台装置伴生并兼具制冷和制热两种功能。空气源热泵的技术措施:1、具有可靠的融霜控制,融霜时间总和不应超过运行周期时间的20%。 空气源热泵系统设计指南 空气源热泵就是利用室外空气的能量,通过机械做功,使得能量从低位热源向高位热源转移的制冷(制热)装置。它以冷凝器放出的热量来供热,以蒸发器吸收热量来制冷。 就热力循环的过程而言,制冷机和热泵都是基于逆卡诺循环而实现其功能的,由于这种装置在运行过程中,总是一侧吸热,另一侧排热,所以,一台装置伴生并兼具制冷和制热两种功能。 空气源热泵的技术措施: 1、具有可靠的融霜控制,融霜时间总和不应超过运行周期时间的20%。 2、冬季设计工况时机组性能系数(COP),冷热风机组不小于1.8,冷热水机组不应小于2.0。

3、寒冷地区采用空气源热泵机组应注意以下事项: 1)室外计算干球温度低于-10℃的地区,应采用低温空气源热泵机组; 2)室外温度低于空气源热泵平衡点温度(即空气源热泵供热量等于建筑物耗热量)时,应设置辅助热源。 4、机组进风口的气流速度宜控制在1.5-2.0m/s,排气口的排气速度不宜小于7m/s。 5、热泵机组的基础高度一般应大于300mm,布置在可能有积雪的地方时,基础高度需加高。 重点公式和基本数据: 一、基本耗热量公式:Q=K×F×ΔT 其中: Q—围护结构基本耗热量,W; K—围护结构传热系数,W/(㎡.℃); F—围护结构传热面积,㎡; ΔT—室外计算温差,℃; 用于计算门、窗、墙、地面、屋面各部分围护结构的基本耗热量 常用围护结构传热系数K(W/(㎡.℃))

空气源热泵供暖系统安装合同

空气源热泵供暖系统安装合同 发包方:(以下称甲方) 承包方:(以下称乙方) 根据《中华人民共和国经济合同法》和《建筑安装工程承包合同条例》及有关规定,经甲、乙双方协商,甲方同意将密云区雨昕阳光等空气源热泵供暖系统的安装交由乙方负责,为明确双方责任,特签订以下条款: 第一条:工程项目 工程名称:密云区空气源热泵供暖系统安装工程 工程地点: 承包内容:空气源热泵供暖机组安装所需的材料、施工,系统的调试。甲方要求:施工过程中不影响居民正常休息。 第二条:施工准备 乙方负责组织施工管理人员和材料、施工机构进场的准备工作。 甲方负责提供空气源热泵机组、机箱铁架、。 第三条:工程期限 根椐双方商定,工程总工期为在2016年10月15日之前完工,合同签订后贰

日内进场,乙方根据工作量合理安排人员进入场地,工作前应提前一天通知甲方,由甲方统一安排。 如遇到下列情况,经甲方代表签证后,工期相应顺延: 不能正常提供施工现场的水、电配置,施工场地的障碍物未能清除,进而影响进场施工。 在施工中如因停水、停电8小时以上或连续间歇性停水、停电3天以上(每次连续4小时以上),影响正常施工。 第四条:工程质量 乙方必须严格按照说明文件和国家或地方有关的建筑安装工程规范、规程和标准进行施工,并接受甲方代表的监督。 乙方在施工过程中必须遵守下列规定: 承担空气源热泵供暖系统所有安装工程,确保安装质量。 按要求保证空气源热泵供暖系统水路管线良好连接,设备电源线安全可靠,热泵机组和水管布放合理。安装过程中安排专业人士进行现场监督,确保质量和进度。对自已施工中所产生的垃圾进行清理,文明施工。凡因乙方施工不慎造成的事故和甲方场地或物资损坏,均由乙负责赔偿损失。 第五条:工程总量和结算方式: 一、经甲方批准的本工程总量为台的空气源热泵安装。 二、每台空气源热泵系统安装由乙方包工包料,甲方需支付乙方每台安装费用(小写:元)

空气源热泵热水机供热水系统工程设计说明

空气源热泵热水机供热水系统工程设计-----------------------作者:

-----------------------日期:

空气源热泵热水机组中央供热水系统工程 设计方案 一、工程概况及甲方要求: 1.工程概况 贵校柳州南亚、冠亚校区综合楼入住师生约700人,其中南亚校区400人,冠亚校区300人,人均用热水按30kg/天计算,总量为: 21000 kg/天(55℃) 2.甲方要求: A、要求在两栋楼天面安装空气热泵热水机组中央供热水工程,解决师生冲凉 用热水的问题。 B、要求安装电辅助加热装置,以防冬天极端最冷(气温<0℃时)辅助热泵 加热。 C、要求定时供应热水。 D、要求安装回水系统,以方便学生用热水。 E、要求设备自动化,以方便管理。 二、设计依据: 1.B12021.3-2000《空气调节机能源效率限定值及能源等级》 2.GB19577-2004《冷水机组能效限定值及能源效率等级》 3.GB50015-2003《建筑给水排水设计规范》 4.GB50268-97《给水排水管道工程施工及验收规范》 5.JGJ116-98《建筑抗震加固技术规程》 6.GB50057-94《建筑物防雷设计规范》 7.JGJ/T16-92《民用建筑电气设计规范》 8. GB4272-92《设备及管道保温技术通则》

9.甲方要求 三、设计方案: 我公司根据国家规范、标准和本公司一贯秉承的“安全、实用、节能、美观”八字设计思想,体现设备实用性、合理性和技术先进性,结合贵校楼面的基本情况,设计空气源热泵中央供热水系统方案,具体如下: (一)、南亚校区 1.在综合楼天面安装“金星牌”KRS-15A空气热泵热水机组壹台,组成一套空气热泵中央供热水系统。系统在标况下每小时产55℃热水1283kg,机组运行9.5小时就能满足该楼师生日用热水的要求。 2.在综合楼天面安装10m3、2m3储热水箱各一个,另在地上安装2m3储热水箱一个(供给负一楼教师及饭堂用热水),水箱内胆采用:δ=1.5mm SUS304/2B食品级不锈钢,水箱外壳采用不锈钢、保温层采用聚氨酯整体发泡填充,厚度为50MM。 3.在空气热泵热水机组与储热水箱之间安装一套ISG40-100加热循环系统。当储热水箱中的热水未达到设定温度时,加热循环泵启动将储热水箱中的水抽至热泵热水机组进行循环加热,直至水温达到设定要求,确保热水的温度恒定。 4.在天面及地上水箱中各安装12KW电辅助加热壹套,以便冬天极端最冷时辅助加热。 5.在供热水主管上安装一套ISG40-100加压回水系统。该系统有两个作用:第一,在设定的供水时间段内,开启向管网内供水,以保证供热水管网压力;第二,该系统受温度控制,当供热水管网中水温达不到冲凉的温度时,将管网中的低温水抽回储热水箱二次加热,这样既可以保证打开花洒就有热水可用,又不浪费水源,节约开支。 6.在补冷水管安装DF32补水电磁阀一台,DN32电子除垢器一套(净化水质)。 该电磁阀受时间和水箱的水位控制,在设定的时间段内当储热水箱水位降至设定水

相关主题
文本预览
相关文档 最新文档