当前位置:文档之家› (完整word版)相似三角形复习专题.doc

(完整word版)相似三角形复习专题.doc

(完整word版)相似三角形复习专题.doc
(完整word版)相似三角形复习专题.doc

荣江学校 九年级 数学(上) 导学案 班别:

姓名:

相似三角形复习专题

★知识点一: 比例线段

1、比例线段: 在四条线段 a,b, c,d 中,如果 a 和b 的比等于 c 和 d 的比,即

a

c

,那么这四条线段 a, b, c, d

b

d

叫做成比例线段,简称比例线段。

2、比例中项:如果三个数

a ,

b ,

c 满足比例式

a b

,那么 b 叫做 a 、 c 的比例中项,

此时有 b 2

ac 。

b c

3、黄金分割:如果点 P 把线段 AB 分成两条线段 AP 和 PB ,使

PB AP

,那么称线段 AB 被点 P 黄金分割,

AP AB

点 P 叫做线段 AB 的黄金分割点,比值叫做黄金比。

5 1

≈ 0.618

全 长

2

4、比例式变形:

a c a b

c

d a a c 5

、(比例的有关性质) :

b

d

b

d

b d

b

a b ,交换内项

)

b d

c d (

a c

a c

d c

,交换外项 )

a c bc

d c a b

b d b a (

b

ad

b

c d

d

a

d

b

同时交换内外项 )

(比例基本定理)

合比性质: a b

c d

c a (

b

d

等比性质:

a c

m d

n

0)

a c m a

b

d

n (b

等比性质 :

d

n

b

b

1、如果 a = 2 ,那么 a =_____。

A . 1

B .

4

C .

5

D .

7

b 3 a + b

7

4

4

a =3 a +b

的值是 (

,则 )

x

x+y

2、若 b 5 b

8 3 3

5 5. 若 3x -4 y =0,则 y =

, y = .

A 、 5

B 、 5

C 、 2

D 、 8

1.

下列各组数中,成比例的是(

3、已知:

a

b b c

c a

,求 a : b : c 的值

6.

10 11

15

A.-7,-5 , 14,5

B.-6 ,-8 , 3,4 4.( 2015 东营)若 y

3 ,则 x

y

的值为(

x )

C.3 , 5, 9, 12

D.2

,3, 6, 12

x

4

★知识点二: 相似三角形

1、定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。如△

ABC 与△ DEF 相似,记作△ ABC ∽△ DEF 。

几种特殊三角形的相似关系:两个全等三角形一定相似。

两个等腰直角三角形一定相似。 两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

1、下列四组图形中,一定相似的是 ( )

A. 正方形 与矩形

B. 正方形与菱形

C. 菱形与菱形

D. 正五边形与正五边形

2.给出下列四个命题,其中真命题有()

(1)等腰三角形都是相似三角形;

(2)直角三角形都是相似三角形;

(3)等腰直角三角形都是相似三角形;(4 ) 等边三角形都是相似三角形.

A. 1 个 B . 2 个 C . 3 个D. 4 个

★知识点三:相似三角形的判定

1、定义法:相等,

2、平行法:平行于三角形一边的直线和其它两边

成比例的两个三角形相似.

( 或两边的延长线) 相交,所构成的三角

形与原三角形相似.

3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两

个三角形相似.简述为:两角对应相等,两三角形相似.

4、判定定理 2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相

等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判

定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这

两个三角形相似.简述为:三边对应成比例,两三角形相似.

6.直角三角形相似:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这

两个直角三角形相似。

归纳总结:可以看出只要将全等三角形判定定理中的“ 对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知

识掌握的方法。

1 如图,D、E分别是△ABC的边AB、AC上的点,请你添加一个条件,使△ABC和△ AED相似。在图上标示或写出你添加的条件,并说说理由。( 想到的越多越厉害哟!)

A

A

D D

B C B C

交流:要使有公共角(或一对角相等)的两个三角形相似,选用的判定是()尽管所填的条件不同,两个三角形的对应关系只有()种。

如何寻找有利的角?有利的角包含哪些:

3.数学口诀 ---- 证等积式或比例式

证相似,比线段,添线平行成习惯;

等积式子比例换,寻找线段很关键;

直接证明有困难,等量代换少麻烦;

斜边上面作高线,比例中项一大片.

平行法:

1. 如图, DE∥ BC,在下列比例式中,不能成立的是()

A. =

B. =

C. =

D. =

A D

2. 如图, AB与 CD相交于点 O, AD∥ BC, AD∶ BC=1∶ 3,AB=10,则 AO的长是 ___________. O

3. 如图, F 是平行四边形ABCD对角线 BD上的点, BF:FD=1:3 ,则 BE:EC=() C B

4. 如图所示,在 ?ABCD中, BE交 AC,CD于 G,F,交 AD的延长线于 E,则图中的相似三角形有()

A.3 对

B.4 对

C.5 对

D.6 对

5. 如图,在△ABC中,∠ ACB=90°, AC=8, AB=10, DE垂直平分 AC交 AB于点 E,则 DE的长为()

A. 6 B . 5 C .4 D . 3

6. 如图, (1) 若 AE:AB=________, 则△ ABC∽△ AEF; (2) 若∠ E=_______,则△ ABC∽△ AEF.

7. 如图,在□ABCD中,对角线 AC, BD相交于点 O, P是 BC边中点, AP交 BD于点 Q.

则的值为 ________.

两角相等:

1.如图,在△ ABC中,∠ BAC=90°, M是 BC的中点,过点 A 作 AM的垂线,交 CB的延长线于点 D.求

证:△ DBA∽△ DAC.

2 、如图, CD是直角三角形 ABC斜边上的高,已知AB=25cm,BC=15cm,求 BD的长。

C

A D B

两边夹角:

1.( 2015 随州)如图,在△ABC 中,点 D 、 E 分别在边AB、 AC 上,下列条件中不能判断△ABC∽△ AED 的是()

A .∠ AED=∠B

B .∠ ADE=∠ C

AD AC AD AE C .

AB

D .

AC

AE

AB

2.如图,△ ABC 中, E 、F 分别是 AB 、AC 上的两点,且 ,若△ AEF 的面积为 2,则

四边形 EBCF 的面积为

三边比例:

1、给出下列条件,判断 ABC 与 A B C 是否相似,并说明理由。

( 1) AB 2, BC 2, AC

10, A B

2, B C 1, A C5

( 2) AB 1.5, BC

6, AC 5, A B 3, B C 12, A C

10

直角三角形斜、直分别成比例:

1 .如图,∠

ACB= ∠ ADC=90 AC=°, , AD=2 .问当 AB 的长为多少时,这两个直角三角形相似.

综合:

1. 若△ ABC 与△ A 1B 1C 1 的相似比为 2:3 ,△ A 1 B 1C 1 与△ A 2B 2C 2 的相似比为 2:3 ,那么△ ABC 与△ A 2B 2C 2 的相似比为

2. 在△ ABC 中,已知 AB=3,BC=5。在△ A / B / C / 中,已知 A / B / =6,若△ ABC ∽△ A / B / C / ,则 B / C / =

3.( 2015 荆州)如图,点 P 在△ ABC 的边 AC 上,要判断△ ABP ∽△ ACB ,添加一个条件,不正确的是(

A .∠ ABP=∠C ;

B .∠ APB=∠ AB

C ; C .

AP

AB ; D . AB AC

AB

AC

BP

CB

4. 已知△ ABC 中,点 D 、E 分别在边 AB 、 AC 上。下列条件中,

不 能推 断△ ADE 与△ ABC 相似的是( )

. .

(A )∠ ADE = ∠B ;(B )∠ ADE = ∠ C ;( C )

AD DE ;( D )

AD

AE ;

AB BC

AC AB

★知识点四: 相似三角形的几种基本图形

注意

1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“ A ”型和“ X ”型。

AD DE AE 2、在利用定理证明时要注意 A 型图的比例

,每个比的前项是同一个三角形的三条边,而比的后项是另一个

AB

BC

AC

三角形的三条对应边,它们的位置不能写错,尤其是要防止写成

AD DE AE 的错误。

DB

BC

EC

( 1) 如图:称为“平行线型”的相似三角形(有“

A 型”与“ X 型”图)

A

E D

A

D

E

(2)

C

B

C

(有“反 A 共角型”、

B

如图:其中∠

(3)

1=∠ 2,则△ ADE ∽△ ABC 称为“斜交型”的相似三角形。

(1)

“反 A 共角共边型”、

“蝶型”)

A

A D

1

E

E

4

E

1

A

D

1 D

2

C

2

B

2

C

C

B B

( 3) 如图:称为“垂直型” (有“双垂直共角型” 、“双垂直共角共边型(也称“射影定理型”

)”“三垂直型” )

A

A A

E

D

2

1

E E

B

E

D

C(D)

B

C

B

B

C

A

C

D

(补充图)

补充:如图(射影定理型公式)①

(4) 如图:∠ 1=∠2,∠ B=∠D ,则△ ADE ∽△ ABC ,称为“旋转型”的相似三角形。 3、掌握相似三角形的判定定理并且运用相似三角形定理证明三角形相似及比例式或等积式。 4、添加辅助平行线是获得成比例线段和相似三角形的重要途径。

★知识点五: 相似三角形的性质定理:

(1) 相似三角形的 ____________ (2) 相似三角形的 ______________

(3) 相似三角形的对应 _________的比,对应 _____的比和对 应 ___________ 的比都等于相似比。 (4) 相似三角形的 周长比等于 _______。

(5) 相似三角形的 面积比等于 __________ 。 ( 6)相似三角形的传递性

如果△ ABC ∽△ A 1B 1C 1,△ A 1B 1C 1∽△ A 2B 2C 2,那么△ ABC ∽A 2B 2C 2 1. 两个相似多边形一组对应边分别为

3cm , 4.5cm ,那么它们的相似比为 (

)

2 若△ ABC ∽△ DEF, △ABC 与△ DEF 的相似比为1∶ 2,则△ ABC 与△ DEF 的周长比为( )

A .1∶ 4

B . 1∶ 2

C . 2∶ 1

D .1∶ 2

3 两个相似三角形的周长之比为 3:

4 ,则这两个三角形的面积之比为:

4 两相似三角形的相似比为 1 : 3,面积和为 80,则较大的三角形面积为

5.一个三角形三边长之比为 4:5:6,三边中点连线组成的三角形的周长为

30cm ,则原三角形最大边长为 (

A 、 44 厘米

B 、 40 厘米

C 、 36 厘米

D 、 24 厘米

6. 如图,在△ ABC 中, DE ∥ BC , AD =3, BD = 2,则△ ADE 与四边形 DBCE 的面积比是( )

( A ) 3︰ 2;

(B )3︰ 5;

( C ) 9︰ 16;

(D )9︰ 4.

A

D E

B

C

7. 如图,点 D 、 E 分别为△ ABC 的边 AB 、 AC 上的中点,则△ ADE 的面积与四边形 BCED 的面积的比为( )

A . 1: 2

B

.1: 3

C

. 1: 4

D

. 1: 1

8、 ABC 中, DE//BC ,且 S ADE :S 梯形 BCED =1:2 ,则 DE:BC 的值是(

A . 1:2

B .1:3

C . 1: 2

D . 1: 3

9、如图,在 □ ABCD 中, E 是 BC 的中点,且∠ AEC=∠DCE ,下列结论不正确 的是 ( )

... A

D

A 、 BF=1

DF

B

、 S △ FAD =2S △ FBE

2

F

C 、四边形 AEC

D 是等腰梯

D 、∠ AEB=∠ADC

B

C

★知识点六:相似三角形的应用

E

1 如图 , 铁路道口的栏杆短臂长 1m,长臂长 16m.当短臂端点下降 0.5m 时 , 长臂端点升高(杆的宽度忽略不计)

A.4m

B.6m

C.8m

D.12m

2. (2013 .北京 )如图,为估算某河的宽度,在河对岸边 选定一个目标点 A ,在近岸取点 B , C , D ,使得 AB ⊥

BC ,CD ⊥ BC ,点 E 在 BC 上,并且点 A , E ,D 在同一条直线上.若测得 BE = 20m ,EC = 10m ,CD = 20m ,则

河的宽度 AB

等于 ( )

A . 60m

B . 40m

C . 30m

D . 20m

3.( 2015 天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点

P 处放一水平的平面镜,光

4

CD

C

ABIBD CDI BD

AB=2

BP=3

米, PD= 12 米,那么该古城墙的高度

CD 是______米

4.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿 AB= 2m ,它的影子 BC=1.6m ,木竿 PQ 的影子有一

部分落在了墙上, PM= 1.2m , MN=0.8m ,求木竿 PQ 的长度

5. 小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从

镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21 米,以及他与镜子的距离CE=2.5 米,已知他的眼睛距离地面的高度DC=1.6 米,请你帮助小强计算出教学楼的高度。(根据光的反射定律:反射角等于入射角)

6 .如图,路灯(P 点)距地面8 米,身高 1.6 米的小明从距路灯的底部(O 点) 20 米的 A 点,沿 OA 所在的

直线行走14 米到 B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?

7. 如图△ ABC中,AB=8,AC=6, 如果动点 D 以每秒 2 个单位长的速度, 从点 B出发沿 BA 方向向点 A 运动 , 同时点 E 以

每秒 1 个单位的速度从点 A 出发测AC方向向

点C 运动 , 设运动时间为t(单位:秒). 问t 为何值时△ADE与△

ABC

相似 .

8.如图所示,九年级 (1)班课外活动小组利用标杆测量学校旗杆的高度,

平距离 BD=15 m ,人的眼睛与地面的高度 EF= 1.6 m,人与标杆CD 已知标杆高度 CD =3 m,标杆与旗杆的水的水平距离 DF = 2 m,求旗杆 AB 的高度.

9. 在 Rt △ABC中,∠ C=90°, AC=20cm, BC=15cm,现有动点P 从点

A 出发,沿 AC向点 C 方向运动,动点Q从点

C 出发,沿线段CB也向

点B 方向运动,如果点P 的速度是4cm/ 秒,点Q的速度

2cm/秒,它们同时出发,当有

一点到达所在线段的端点时,就停止运动.设运动时间为

( 1)当 t=3 秒时,这时, P, Q两点之间的距离是多少?

( 2)若△ CPQ的面积为S,求 S 关于 t 的函数关系式.

t 秒.求:

( 3)当 t 为多少秒时,以点C, P, Q为顶点的三角形与△ABC相似?

10. 如图 , 抛物线 y=ax 2+2.5x-2与x轴相交于点A( 1,0 )与点 B, 与 y 轴相交于点C.

(1)确定抛物线的解析式;

(2)连接 AC、 BC,△ AOC与△ COB相似吗?并说明理由;

(3)点 N 在抛物线的对称轴上 , 在抛物线上是否存在点 M,使得以点 N、 M、 A、B 为顶点的四边形是平行四边形?若存在 , 求出对应的点 M、N 的坐标;若不存在 , 请说明理由.

11.有一块三角形的余料ABC ,它的边长BC=120mm ,高 AD=80mm ,要把它加工成正方形零件,使正方形的

一边在 BC 上,其余两个顶点分别在AB,AC 上,问加工成的正方形零件的边长为多少mm?

★知识点七:比例式的证明

出现证明等式成立的题型解题步骤:

1、利用比例式的基本性质将等式乘积式变成。

2、优先使用三点定型法定出三角形,在三点定型法无法优先定型时再考虑等积式、等线段、中间比去代换。

3、利用相似判定方法证出结果。

1.已知:如图,在Rt△ ABC 中,∠ ACB= 90°, CD ⊥ AB 于 D,想一想,

(1)图中有哪两个三角形相似 ?

(2)求证: AC2= AD· AB; BC2= BD · BA;

(3)若 AD= 2, DB = 8,求 AC, BC, CD ;

(4)若 AC=6, DB = 9,求 AD , CD,BC ;

(5)求证: AC· BC= AB· CD.

2.如图所示,如果D, E, F 分别在 OA, OB, OC 上,且 DF ∥ AC, EF∥ BC.求证: (1)OD ∶OA=OE∶ OB;

(2)△ ODE∽△ OAB;

(3)△ ABC∽△ DEF .

相似三角形基本类型证明题

发现、构造相似三角形的基本图形证题 支其韶 吴复 相似三角形主要有四种基本类型。 一、平行线型 如图1,若DE ∥BC ,则△ADE ∽△ABC 。 例1. 已知,如图2所示,AD 为△ABC 的中线,任一直线CF 交AD 、AB 于E 、F 。 求证:FB AF 2ED AE = 。 例2. 已知,如图3所示,BE 、CF 分别为△ABC 的两中线,交点为G 。 求证:2 GF GC GE GB ==。 例3. 已知,如图4所示,在△ABC 中,直线MN 交AB 、AC 和BC 的延长线于X 、Y 、Z 。 求证: AY CY CZ BZ BX AX ??=1。

二、相交线型 如图5,若∠1=∠B ,则可由公共角或对顶角得△ADE ∽△ABC 。 例4. 已知,如图6所示,△ABC 中,AB=AC ,D 为AB 上的点,E 为AB 延长线上的点, 且AE AD AB 2 ?=。 求证:BC 平分∠DCE 。 例5. 已知,如图7所示,CD 为Rt △ABC 的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G 。 求证:FB FC FG 2 ?=。 三、旋转型 如图8,若∠BAD=∠CAE ,则△ADE 绕点A 旋转一定角度后与△ABC 构成平行线型的相似三角形。

如图9,直角三角形中的相似三角形,若∠ACB=?90,AB ⊥CD ,则△ACD ∽△CBD ∽△ABC 。 例6. 已知,如图10所示,D 为△ABC 内的一点,E 为△ABC 外的一点,且∠EBC=∠DBA ,∠ECB=∠DAB 。 例7. 已知,如图11所示,F 为正方形ABCD 的边AB 的中点,E 为AD 上的一点,AE=41 AD , FG ⊥CE 于G 。 求证:CG EG FG 2 ?=。 例8. 已知,如图12所示,在平行四边形ABCD 中,O 为对角线BD 上的点,过O 作直线分别交DC 、AB 于M 、N ,交AD 的延长线于E ,交CB 的延长线于F 。 求证:OE ·ON=OM ·OF 。

相似三角形全讲义(教师版)

相似三角形全讲义(教师版)

————————————————————————————————作者:————————————————————————————————日期:

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相似三角形压轴题专题

中考全国试卷分类汇编 相似三角形 1. 如图,Rt A ABC 中,/ ACB=90°, / ABC=60°, BC=2cm, D 为BC的中点,若动点E以1cm/s 的速度从A 点出发,沿着A T B-A的方向运动,设E点的运动时间为t秒(O WH 6),连接。巳当厶BDE是直角三角形时,t的值为() A. 2 B. 2.5或3.5 C. 3.5或4.5 D. 2或3.5 或4.5 点评:此题考查了含30°角的直角三角形的性质?此题属于动点问题,难度适中,注意掌握 分类讨论思想与数形结合思想的应用. 2. 如图所示,在平行四边形ABCD中,AC与BD相交于点O, E为0D的中点,连接AE并延长交DC于 点F,则DF: FC=() A. 1: 4 B. 1: 3 C. 2: 3 D. 1: 2 点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的 关键是根据平行证明△ DF0A BAE,然后根据对应边成比例求值.

如图,在 △ ABC 中/A=60° BM 丄AC 于点M , CN 丄AB 于点N , P 为BC 边的中点,连接 PM , PN,贝U 下列结论:①PM=PN ;②土—空;③△ PMN 为等边三角形; ④当/ ABC=45时,BN= =PC.其中正确的 AB _AC 个数是( ) A . 1个 B. 2个 C 3个 D . 4个 点评:本题主要考查了直角三角形 30°角所对的直角边等于斜边的一半的性质, 相似三角形、 等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析 图形并熟练掌握性质是解题的关键. 4. 如图,在平面直角坐标系中,四边形 OABC 是边长为2的正方形,顶点 A 、C 分别在x , y 轴的正半轴 上.点Q 在对角线0B 上,且QO=OC,连接CQ 并延长CQ 交边AB 于点P.则点P 的坐标为 __________________________ 点评:本题考查了相似三角形的判定与性质,正方形的对角线等于边长的 及坐标与图形的性质,比较简单,利用相似三角形的对应边成比例求出 题的关键. 5 . 如图,/ BAC=Z DAF=90°, AB=AC, AD=AF ,点 D 、E 为 BC 边上的两点,且/ DAE=45°,连 接 EF 、BF , 则下列结论: cl _______ B 3. 二倍的性质,以 BP 的长是解 B P C

全等相似三角形证明经典50题与相似三角形

2016专题:《全等三角形证明》 1. 已知:D 是AB 中点,∠ACB=90°,求证: 1 2 CD AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 4. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 A C D E F 2 1 D A B

5.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 6.已知:AB=CD,∠A=∠D,求证:∠B=∠C 7.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.D C B A F E A B C D

8.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA

9.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): 10.如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 11.如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。

12.AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF 13.如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。 14.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF. 15.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF。

初中数学经典相似三角形练习题(附)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. 4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?

(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. 5.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP. 6.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似? 7.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.

8.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似? 9.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似. 10.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

(完整版)相似三角形专题

【一】知识梳理 【1】比例 ①定义:四个量a,b,c,d中,其中两个量的比等于另两个量的比,那么这四个量成比例 ②形式:a:b=c:d, ③ 性质:基本性质: d c b a = ac=bd 4,比例中项: b c c a =ab c= 2 【2】黄金分割 定义:如图点C是AB上一点,若BC AB AC? = 2,则点C是AB的黄金分割点,一条线段的黄金分割点有两个 AC AC BC AB AB BC AB AB AC 618 .0 2 1 5 382 .0 2 5 3 618 .0 2 1 5 ≈ - = ≈ - = ≈ - = 注意:如图△ABC,∠A=36°,AB=AC,这是一个黄金三角 形, 【3】平行线推比例 AB AB BC618 .0 2 1 5 ≈ - = d c b a = 注:比例式有顺序性的,比例线段没有负的,比例数有正有负 1、可以把比例式与等积式互化。 2、可以验证四个量是否成比例 上比全=上比全,下比全=下比全,上比下=上比下,左比右=左比右 全比上=全比上,全比下=全比下下比上=下比上

【4】相似三角形 1、相似三角形的判定 ①AA 相似:∵∠A=∠D, ∠B=∠E ∴△ABC ∽△DEF ②‘S A S ’ E B EF BC DE AB ∠=∠=,Θ ∴△ABC ∽△DEF ③‘S S S ’EF BC DF AC DE AB = Θ ∴△ABC ∽△DEF ④平行相似: ∵DE ∥BC ∴△ADE ∽△ABC 2、相似三角形的性质 ①相似三角形的对应角相等,对应边成比例 ②相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比 ③相似三角形的面积比等于相似比的平方 3、相似三角形的常见图形 ‘A 型图’ ‘ X 型图’ ‘K 型图’ ‘母子图’ ‘一般母子图’ AC 2 =AD ?AB 母子图中的射影定理

相似三角形经典的基本图形及练习题

D A B C 相似中的基本图形练习 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。 而识别(或构造)A 字型、X 字型、母子相似型、旋转型等基本图形是解证题的关键。 1.A 字型及变形 △ABC 中 , AD=2,BD=3,AE=1 (1)如图1,若DE ∥BC , 求CE 的长 (2)如图2,若∠ADE=∠ACB , 求CE 的长 2. X 字型及变形 (1)如图1,AB ∥CD ,求证:AO :DO=BO :CO (2)如图2,若∠A=∠C ,求证:AO ×DO=BO ×CO 3. 母子相似型及变形 (1)如右图,在△ABC 中, AD 把△ABC 分成两个三角形△BCD 和△CAD ,当∠ACD =∠B 时,说明△CAD 与△ABC 相似。 说明:由于小三角形寓于大三角形中,恰似子依母怀,故被称为“母子三角形” (2)如图, Rt △ABC 中 ,CD ⊥AB, 求证:AC 2=ADxAB,CD 2=ADxBD, 4. 旋转型 如图,若∠ADE=∠B ,∠BAD=∠CAE ,说明△ADE 与△ABC 相似 A D B

练习题 1、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC DE = ;S △GED :S △GBC = ; 2、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ; 3、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 , NC BN = ; 4、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ; 5、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 二、选择题 6、如图,在△ABC 中,高BD 、CE 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、AD ·AC=AE ·AB D 、CO ·DO=BO ·EO 7、如图,D 、E 分别是△ABC 的边AB 、AC 上的点, AD BD =CE AE =3, 且∠AED=∠B ,则△AED 与△ABC 的面积比是( ) A 、1:2 B 、1:3 C 、1:4 D 、4:9 8、已知,如图, 在△ABC 中,DE ∥BC ,AD=5,BD=3,求S △ADE :S △ABC 的值。 9、如图,已知在△ABC 中,CD=CE ,∠A=∠ECB ,试说明CD 2 =AD ·BE 。 A B C D E G 图1 A B C D E 图2 A B C M 图3 A B C D E 图4 A B C D F 图5 G E A E C D O A B C D E C A B D E A B C D E

全等三角形相似三角形证明(中难度题型)

全等三角形证明经典50题.doc 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 1. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 B C D F A D B C B C

已知:∠1=∠2,CD=DE,EF 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 8.已知:AB知:AB=CD,∠A=∠D,求证:∠B=∠C A D B C B A C D F 2 1 E C D B D C B A F E A B C D A

10. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

15.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交 AP 于D .求证:AD +BC =AB . 16.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 17.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若 AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立请给予证明;若不成立请说明理由. P E D C B A D C B A

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

2018中考专题相似三角形

2018中考数学专题相似形 (共40题) 1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点. (1)求证:BD=CE; (2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长; 2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F. (1)如图1,若BD=BA,求证:△ABE≌△DBE; (2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC; ②AG2=AF?AC. 3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; (2)若AD=3,AB=5,求的值.

4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF ⊥DE,垂足为F,BF分别交AC于H,交CD于G. (1)求证:BG=DE; (2)若点G为CD的中点,求的值. 5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF; (2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论. 6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD. (1)证明:∠BDC=∠PDC; (2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.

最新(相似三角形)证明题

1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。 2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由, 3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值, 4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗?请说明理由;(2)若S =5,BD=10,求DE的长。 5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45. 求AF的长。 6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。 求证: BM·PA=PN·BP

7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。 8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE∥AB交AC的延长线于点E。 9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结 CE,求证:DE2=AE?CE 10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F. (1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长. 11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB 、AC上,这个正方形零件的边长是多少? N P A

九上学生相似三角形讲义全

第1讲相似图形与成比例线段 【学习目标】 1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。 2、了解成比例线段的概念,会确定线段的比。 【学习重点】相似图形的概念与成比例线段的概念。 【学习难点】成比例线段概念。 【学习过程】 知识点一:比例线段 定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两 条线段的比,如果a c b d ,那么就说这四条线段a、b、c、d叫做成比例线 段,简称比例线段。 例:如四条线段的长度分别是4cm、8cm、3cm、6cm判断这四条线段是否成比例? 解: 练习一: 1、如图所示:(1)求线段比AB BC、 CD DE、 AC BE、 AC CD (2)试指出图中成比例线段 2、线段a、b、c、d的长度分别是30mm、2cm、0.8cm、12mm判断这四条线段是否成比例? 3、线段a、b、c、d的长度分别是2、3、2、6判断这四条线段是否成比例? 4、已知A、B两地的实际距离是250m若画在图上的距离是5cm,则图上距离与实际距离的

比是___________ 5、已知线段a= 12、 b =2+c=2若a c b x =,则x =_________若()0b y y y c =>, 则y =__________ 6、下列四组线段中,不成比例的是 ( ) A a=3 b=6 c=2 d=4 C a=4 b=6 c=5 d=10 知识点二:比例线段的性质 比例性质是根据等式的性质得到的,推理过程如下: (1) 基本性质:如果 a c b d =,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形 b d a c =、a b c d =、c d a b = (2) 合比性质:如果 a c b d =,那么a b c d b d ±±= (3) 等比性质:如果 a c e m b d f n ====()0b d f n ++++≠,那么 a c e m a b d f n b ++++=+++ + 例2 填空: 如果23a b =,则a = 2a = 、 a b b += 、 a b b -= 练习二: 1、已知35a b =,求a b a b +- 2、若 234a b c ==,则23a b c a ++=_________ 3、已知mx ny =,则下列各式中不正确的是( ) A m x n y = B m n y x = C y m x n = D x y n m = 4、已知570x y -=,则 x y =_______

相似形与相似三角形专题复习(精编题目)精编版

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB = ====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=bc 。如果ad=bc (a ,b ,c ,d 都不等于0),那么d c b a =。 ②合比性质:如果d c b a =,那么d d c b b a ±=±。 ③等比性质:如果d c b a ==???=n m (b+d+???+n ≠0),那么 b a n d b m c a =+???+++???++ ④b 是线段a 、d 的比例中项,则b 2=ad.

相似三角形几何题

1、如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。 求证:AC AF AB AE ?=?; 2为了加强视力保护意识,小明想在长为米,宽为米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、 丙位同学设计方案新颖,构思巧妙.(10分) (1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立 在对角线AC 上,问:甲生的设计方案是否可行?请说明理由. (2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处. (3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视 力表.如果大视力表中“E ”的长是,那么小视力表中相应“E ”的长是多少cm ? 3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(12分) (1)求证:AB ·AF =CB ·CD ; (2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2 . ①求y 关于x 的函数关系式; ②当x 为何值时,△PBC 的周长最小,并求出此时y 的值. 4已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1. (1)求证:△ABD ∽△CBA ; (2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长. H H (图1) (图2) (图3) ㎝ A C F 3m B 5m D A B C D E F P ·

与相似三角形有关的各类专题

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD. 例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45° (1)求证:△ABD ∽△DCE ; (2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由? 例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B : 1)求证:△ADF ∽△DEC ; 2)若AB=4,33 AD ,AE=3,求AF 的长。

考点二:射影定理: 例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。 例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=14 AD ,EG ⊥CF 于点G , (1)求证:△AEF ∽△BCE ; (2)试说明:EG 2 =CG ·FG. 例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形; (2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长; (3)在线段AC 上是否存在一点P ,使得2AE 2 =AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.

相似三角形推理证明复习题(含答案)

相似三角形推理证明 1.(顺义18期末19)如图,E 是□ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G . (1)填空:图中与△CEF 相似的三角形有 ; (写出图中与△CEF 相似的所有三角形) (2)从(1)中选出一个三角形,并证明它与△CEF 相似. 19. (1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形 ∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D ∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分) 2.(大兴18期末19)已知:如图,在△ABC 中,D ,E 分别为AB 、 AC 边上的点, 且AE AD 53= ,连接DE . 若AC =4,AB =5. 求证:△ADE ∽△ACB. 19.证明:∵ AC =3,AB =5,35AD AE = , ∴ AC AB AD AE =.……………………………… 3分 ∵ ∠A =∠A ,……………………………… 4分 ∴ △ADE ∽△ACB .……………………… 5分

3.(丰台18期末18)如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4, 求AC 的长. 18. 解:∵DE ∥BC , ∴AD AE DB EC =.……2分 即243EC =. ∴EC =6.……4分 ∴AC =AE + EC =10. ……5分 其他证法相应给分. 4.(怀柔18期末18)如图,在△ABC 中,D 为AC 边上一点,BC =4,AC =8,CD=2. 求证:△BCD ∽△ACB . 18. 证明:∵BC =4,AC =8,CD =2.…………………………1分 ∴………………………………………3分 又∵∠C =∠C …………………………………………………………………………4分 ∴ △BCD ∽△ACB ……………………………………………………………………5分

《相似三角形》最全讲义(完整版).docx

相似三角形基本知识 知识点一:放缩与相似形 1?图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位?用、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括?立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小 得 到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形. 3?相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a. b的长度分別是m、n,那么就说这两条线段 a _ m 的比是a: b = m: n (或〃n) 2、比的前项,比的后项:两条线段的比a: b屮。a叫做比的前项,b叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 兰_ £ 3、比例:两个比相等的式子叫做比例,如芦° a _ £ 4、比例外项:在比例“ d(或a: b=c: d)中a、d叫做比例外项。 a _ c 5、比例内项:在比例〃〃(或a: b = c: d)中b、c叫做比例内项。 a _ c 6、第四比例项:在比例〃d(或a: b=c: d)中,d叫a、b、c的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为U(或a:b=b:c时,我们把b 叫做a和d的比例中项。 &比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

相似三角形经典习题

! 相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB ) 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 ~ 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. ` 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() # A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S :S △DEF =4:25,则DE:EC=() △ABF

相关主题
文本预览
相关文档 最新文档