光纤通信论文
- 格式:doc
- 大小:97.00 KB
- 文档页数:5
光纤通信概述通信原理论文(一)光纤通信概述通信原理论文光纤通信是一种传输信息的方法,通过利用光纤传输光的方式来传输信息。
相较于传统的电缆传输方式,光纤传输方式有着更高的传输速度和更大的传输容量,因此已经被广泛应用于很多领域之中。
光纤通信的传输原理由两部分构成:信号的传输和光波的传输。
信号的传输是指电子信号通过光纤中的信号处理器进行数字化,然后通过调制器将其转换为光信号。
光信号的传输是指在光纤中的光信号的传输。
这两部分共同构成了光纤通信的传输原理。
光纤通信的传输速率是指可以在单位时间内传输的数据量。
它的速率一般用每秒钟传输的比特数(bps)来表示。
光纤通信的传输速率很高,可以达到1Gbps或更高。
由于传输速率越高,传输的数据量越大,因此光纤通信的传输容量也很大。
光纤通信的传输容量是指在单位时间内可以传输的最大数据量。
传输容量决定了光纤通信可以传输多少数据,传输速率决定了将这些数据传输到目的地所需的时间。
光纤通信主要有两个部分构成:发送端和接收端。
发送端是指发送信息的终端设备,它通常由一个数字到模拟转换器、一个调制器和一个激光二极管组成。
接收端是指接收信息的终端设备,它通常由一个接收器和一个放大器组成。
在光纤通信中,发送端的任务是将信号转换为光信号,并将其通过光纤发送到接收端。
接收端的任务是收集光信号并将其转换为电信号,然后将其发送到接收端的终端设备。
总的来说,光纤通信是一种高速、高容量的通信方式。
它的传输原理由信号的传输和光波的传输构成,传输速率和传输容量都很高。
通过发送端和接收端的协调工作,光纤通信可以将信息准确、快速地传输到目的地。
随着技术的不断改进,光纤通信在未来的通信领域中有着广阔的发展前景。
光纤通信工程本科毕业论文光纤通信传输技术的发展为电力通信带来了很大的改变,光纤通信技术的发展对完善电力通信系统有重要的作用。
下文是店铺为大家搜集整理的关于光纤通信工程本科毕业论文的内容,欢迎大家阅读参考!光纤通信工程本科毕业论文篇1浅析光纤通信技术应用及发展光纤通信技术在我国的发展才刚刚开始起步,还需要许多的地方需要改进。
但是,随着光纤通信技术的发展,光纤通信技术所应用到的范围也越来越广泛。
因此,当前的社会是离不开光纤通信技术的。
本文将会从新形势下光纤通信技术应用及发展分析为题,分别从光纤通信技术的应用、光纤通信技术未来的发展趋势两个方面对此进行探讨。
希望本文可以对我国光纤通信技术的发展起到帮助作用。
一、光纤通信技术的应用由于当前在全球范围之内都已经步入了网络化、信息化的社会。
所以网络对于人们越来越重要。
而光纤通信技术对于网络化、信息化的发展具有不可忽视的作用。
光纤通信技术已经渗透到了我们生活的方方面面。
包括光纤通信技术在电力通信网中的应用、光纤通信技术在广播电视网中的应用、光纤通信技术在电线干线传输网中的应用。
下面,我们就一一为大家介绍光纤通信技术在这几个领域的应用。
(一)光纤通信技术在电力通信网中的应用光纤通信技术在电力通信网中的应用极大的改善了我国供电网络的环境,改善了我国电力网络不稳点的问题。
那么,光纤通信技术为什么会被应用到电力通信网中。
这主要是因为光纤通信技术拥有了诸多的优点,这些优点对电力通信网的发展具有重要的作用。
因此,目前我国的电力通信网正在朝着光纤的方向发展下去。
光纤通信技术在电力通信网中的应用也是最为广泛的。
目前光纤通信技术在电力通信网中的应用已经形成了一套系统的、完善的体系。
近几年来光纤通信技术在电力通信网中的应用受到了社会各界的广泛好评,越来越受到人民的欢迎。
(二)光纤通信技术在广播电视网中的应用光纤通信技术出了广泛的应用于电力通信网中,在广播电视网中的应用也是非常广泛的,同时也是非常重要的,是值得我们去认真研究的。
光纤传输通信及设备论文光纤传输通信及设备论文光纤传输通信及设备论文【1】【摘要】光纤传输通信已经成为现代通信的主要支柱,在现代的通信网络中有着举足轻重的作用。
光纤传输成为了这些年来新兴的技术,因为它自身的方便和快捷的特点,引起了广大人民的欢迎。
但是,光纤通信和传输技术仍然存在问题,光纤作为一种传输的媒介,为光的传输提供了比较庞大且廉价的电信网络能够支持比较大体积和距离的传输。
所以,对我国光纤通信与传输技术的发展有着深远的影响。
【关键词】光纤传输;通信;设备目前,人类社会已步入信息时代,信息的价值也体现得越来越明显,深处信息的时代谁掌握有用的信息,谁就能够在竞争中取胜。
随着信息量的增大,传输设备显然就成为了一个突破口。
在这种条件下,以光纤为主要代表的光纤传输通信和设备技术已经相应产生,光纤传输设备比传统的模式拥有巨大的容量和速度。
近年来,通过科技人员的研究,光纤传输通信技术在应用方面有很大的进步。
一、光纤传输通信及设备的发展现状(一)传输性并不理想目前,在光纤传输通信网光缆的线路中大多数采用的是G·652这种常规性的单模光纤,这种光纤对于1.55微米的波长,尽管产生的损耗相对较少,但是色散值比较大,大约18pa/(nm·km),所以,很显然这种常规性的单模光纤运用在1.55微米波长时传输性是不理想的。
为了有效的达到越来越大的信息体积以及长距离的运输,应该使用低损耗的和低色散的单模光纤。
色散位移光纤为零时和掺饵光纤放大器进行混合使用时因为光纤的非线性产生的四波混频,会影响WDM的正常应用,这也就表明,光纤色散为零对WDM很不利。
(二)光纤通信系统所使用的光学器件需要改进近几年为了适应WDM系统的要求,我们开始研制多波长光源的器件,它大部分是把多路的激光管陈列排开,连接着一个星型耦合器能够制成混合的集成光组件。
对于光纤通信系统的接收端机,它的光电监测器以及前置放大器,大多数是向高频率或者是宽频带响应的方向进行发展,PIN光电二极管接受改进之后仍然可以符合需求,最近几年据报道发明了一种以行波式进行分布的光电检测器,它对1.55微米的光波可以检测的3db频率带宽能够达到78GHz。
《电力系统光纤通信超长站距传输系统研究与应用》篇一一、引言在电力系统的发展中,信息传输的速度和稳定性成为确保电网高效、安全运行的关键因素。
随着科技的进步,光纤通信以其大容量、高速度、低损耗的独特优势,已经成为电力通信网的核心技术。
尤其当面临超长站距传输需求时,如何实现高效稳定的数据传输,是当前电力系统中亟待研究的问题。
因此,电力系统光纤通信超长站距传输系统的研究与应用显得尤为重要。
二、电力系统光纤通信概述光纤通信技术以其出色的性能在电力系统中得到广泛应用。
光纤通信具有传输速度快、传输距离远、抗干扰能力强、保密性好等优点,是电力系统中不可或缺的信息传输方式。
然而,随着电网规模的扩大和复杂度的提高,超长站距传输成为光纤通信面临的新挑战。
三、超长站距传输系统研究针对超长站距传输的需求,研究主要集中在以下几个方面:1. 光纤技术的研究与优化:包括新型光纤材料的研究、光纤损耗的降低、色散控制的优化等,以提高光纤的传输性能。
2. 光放大技术的研发:如光中继放大技术,通过在传输过程中对光信号进行放大,以延长传输距离。
3. 新型调制编码技术:如相干检测技术、偏振复用技术等,通过提高光信号的抗干扰能力,保证在长距离传输中的信号质量。
4. 网络协议的优化:针对超长站距传输的特性,对网络协议进行优化,提高数据的传输效率和可靠性。
四、超长站距传输系统的应用超长站距传输系统在电力系统中有着广泛的应用,主要包括以下几个方面:1. 智能电网建设:在智能电网中,光纤通信是实现信息共享和远程控制的关键技术,超长站距传输系统能够满足智能电网大范围、高效率的信息传输需求。
2. 电力调度中心:电力调度中心需要实时、准确地收集电网信息,超长站距传输系统能够保证调度指令和实时数据的快速传输。
3. 新能源接入:随着新能源的接入,电网的复杂度增加,需要更高效的光纤通信网络进行信息传输和控制。
超长站距传输系统能够满足这一需求。
4. 故障诊断与保护:通过超长站距传输系统,可以实时监测电网的运行状态,及时发现故障并进行保护动作,保证电网的安全稳定运行。
高速光纤通信技术论文-通信技术论文-通信传播论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——1高速光纤通信系统随着科学技术的日新月异,互联网的大数据、云计算、平台、移动互联网将人类带入了高速的信息时代,互联网和通信方式改变着人们的生活、工作方式,通信方式发生了质的飞跃。
同时,人们对通信系统的传输性能,也提出了更高的要求。
通信方式从电缆通信、微波通信、光纤通信,再到目前的研究热点高速光纤通信。
光纤通信是三大支柱通信方式的主体。
光纤通信系统,顾名思义,是利用光作为载波、以光纤作为传输媒介进行传输信息的通信系统,光纤实际上是一种极细的光导纤维,由纯度很高的玻璃拉制而成。
普通光纤通信的传输速率一般是10Gb/s,高速光纤通信的传输速率可达到40Gb/s、160Gb/s 甚至更高。
事实上,在光纤通信的不同发展阶段,高速的含义是不同的。
目前通常把STM-16等级以上的系统称为高速光纤通信系统,也有人称之为超高速光纤通信系统。
光纤通信作为当前三大通信方式的主体,有着较为明显的优势:光纤通信的频带较宽,可用带宽约50000GHz,容量大可同时传输更多的路数;光纤通信比任何的传输都具有更小的损耗,损耗小带来的直接好处就是中继距离长,传输稳定可靠;另外抗电磁干扰性强、保密性好。
2高速光纤通信系统面临的挑战高速光纤通信系统快速发展,并得到广泛应用的同时,也存在着一些问题。
比如光信噪比(OSNR),OSNR是光纤信号与噪声的比值,OSNR 的大小直接影响传输信号质量的优劣,OSNR过大,传输距离会相应减小。
另外,色散、非线性效应等问题也是影响高速光纤通信传输的主要因素。
色散会使脉冲展宽、强度降低,增大误码率,信号畸变失真,直接降低通信质量。
色散一般分为两类:群速度色散和偏振模色散(PMD)。
群速度色散和偏振模色散效应对系统的传输性能、传输速率和传输距离都会有明显的损害。
PMD的问题在以往的光纤传输中就存在,传输速率越高,PMD的影响也越加明显。
光纤通信技术的发展史及其现状【内容摘要】光纤通信符合了高速度、大容量、高保密等要求,但是,光纤通信能实际应用到人类传输信息中并不是一帆风顺的,其发展中经历了很多技术难关,解决了这些技术难题,光纤通信才能进一步发展。
本文从光源及传输介质、光电子器件、光纤通信系统的发展来展示光纤通信技术的发展。
【关键词】光纤通信技术光纤光缆光有源器件光无源器件光纤通信系统【正文】光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。
光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。
作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。
将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。
一、光纤通信技术的形成(一)、早期的光通信光无处不在,这句话毫不夸张。
在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。
打手势是一种目视形式的光通信,在黑暗中不能进行。
白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。
另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。
望远镜的出现则又极大地延长了这类目视形式的光通信的距离。
这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。
近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。
这种光电话利用太阳光或弧光灯作光源,通过透镜把光束聚焦在送话器前的振动镜片上,使光强度随话音的变化而变化,实现话音对光强度的调制。
在接收端,用抛物面反射镜把从大气传来的光束反射到硅光电池上,使光信号变换为电流传送到受话器。
光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。
变电站光纤通信论文随着社会的不断发展,电力行业的重要性越来越突出。
而在电力行业中,变电站是一个非常关键的环节。
变电站光纤通信技术的应用,对于电力的输送、发展和安全具有重要的意义。
本文将通过对变电站光纤通信的论文进行分析,介绍变电站光纤通信技术的应用和意义。
首先,我们来看看什么是变电站光纤通信技术。
变电站光纤通信技术指的是在变电站内部各个部分的设备之间,采用光纤通信技术进行传输。
这种通信方式破除了传统的电缆传输方式,能够提供更快速、更稳定的数字通信,同时也具备更高的安全性。
在变电站光纤通信技术的应用方面,它主要有以下几种方式:1. 供电系统远程调度供电系统远程调度是光纤通信技术的一项主要应用。
通过利用光纤特有的高速、低噪音及免收电磁干扰等优点来传输数据,实现对远程供电站的控制、调度和管理。
光纤通信技术的应用,可以大大提高供电系统的反应速度,使整个供电系统更加稳定可靠。
2. 供电系统优化管理变电站光纤通信技术还可以应用于供电系统的优化管理中。
通过光纤通信技术,能够对变电站内各种设备状态进行实时监控,及时发现和解决各种故障,从而降低停运时间,大大提高供电系统的工作效率。
3. 电力质量监测电力质量是指电力状况的各种参数,如电压、电流、频率等。
在供电系统中,电力质量的稳定性和可靠性至关重要。
通过变电站光纤通信技术,能够对供电系统中的电力质量进行实时监测,及时发现并解决电力质量问题,保证供电系统的正常工作。
除了以上应用,变电站光纤通信技术还具有增强信息安全、保障电网安全等多种功能。
相比于传统的电缆传输,光纤通信技术在稳定性、速度和安全等方面都更为优秀。
值得注意的是,在变电站光纤通信技术的应用中,还需考虑到一些实际问题。
比如,变电站中的狭窄空间和高温环境等问题,需要选择具有高温稳定性并能防火的光纤材料,确保光纤通信的正常运行。
同时还需考虑安全因素,如防雷,以确保供电系统的安全稳定运行。
总之,变电站光纤通信技术的应用,不仅可以大大提高供电系统的反应速度和工作效率,同时还能保障电网的安全,保证供电系统的正常工作。
电子科技大学硕士学位论文摘要近年由于新业务的不断出现,通信业务量的显著增长、科技的快速进步,促进了通信网络的快速发展。
发展最为显著的全光通信网、无线网、数据分组网虽然其在传输原理、承担业务、传输数据量上各不一样,但都离不开光纤骨干网。
光通信技术研究主要集中在光波复用和全光网络,而光放大技术、光交换器件、新型激光器等新技术为其快速发展提供了基础。
但要使光纤传输系统的的速率不断提高,光纤传输器件的结构更加合理,功能更加完善和强大,就必须注意光纤传输系统中的几个丰要因素:光纤损耗、光纤色散、光纤非线性效应。
基于光纤非线性效应的受激喇曼散射在光通信系统中发挥着重要的作用,合理利用能够制作出满意的光器件,不注意对它控制义会对光通信系统产生不利影响。
本文将主要探讨受激喇曼散射对光通信系统的影响。
第一章绪论中首先引出了受激喇曼散射效应,然后介绍了受馓喇曼散射在光纤通信中的应用:光纤喇曼激光器、光纤喇曼放火器、波长转换器。
接着介绍了受激喇曼散射效应导致的系统串扰。
最后介绍了光子自动化设计软件PTDS。
第二章对受激喇曼散射原理进行了详细分析,仔细讨论了两个重要指标:喇曼增益谱和喇曼闽值,并得到了相关公式。
第三章对喇曼放大器进行研究。
建立了喇曼放大器的功率和模场理论模型,探讨了其主要特性,包护增益、带宽、噪声以及大功率泵浦特性。
最后对光纤喇曼放大器在S波段的应用进行了研究,得出一些结果。
第四章内容主要集中在WDM系统中的喇曼串扰。
首先对WDM系统中每个信道的功率理论模型进行了探讨,得到了WDM系统中拙述喇曼串扰的公式,并使用最大受激喇曼散射串扰(MRC)和平均最大受激喇曼散射串扰(AMRC)对其进行量化,然后通过PTDS仿真软件搭建实验平台,对WDM系统中信道频率、入纤功率、光纤长度,光纤有效模场面积、光纤非线性系数、信逆数、信道比特率,以及信道不同波段组合的变化对喇曼串扰的影响进行了研究,得到~些有益结果并进行了分析。
光纤通信论文-数字光纤通信系统(采用四级记分成绩制)本科毕业论文,设计,题目: 数字光纤通信系统 (期中作业)学生姓名杨建杰学号 2012112147指导教师冯选旗院系物理学院专业光信息科学与技术年级 2012级教务处制目录摘要……………………………………………………………………….1 关键词……………………………………………………………………1 引言………………………………………………………………………1 1.数字光纤通信系统......... ............... .................................1 1.1数字光纤通信系统的概论...................................................1 1.1.1数字光纤通信系统的组成.................................................1 1.1.2数字光纤通信系统的含义................................................2 1.1.3数字光纤通信系统的特点.................................................2 1.2数字光纤通信系统的设计方法...............................................2 1.2.1数字光纤通信系统的构成.................................................2 1.2.2数字光纤通信系统的设计方案...........................................3 1.3数字光纤传输的优点..........................................................3 2.数字光纤传输系统的设计................................................4 2.1数字光纤传输的两种体制....................................................4 2.1.1准同步数字系列PDH.......................................................4 2.1.2准同步数字系列SDH.......................................................5 2.2整体设计........................................................................ 6 2.3光发射机.........................................................................6 2.4光接收机.........................................................................7 参考文献.. (8)摘要 :数字光纤通信是现代新兴的通信系统传输技术,相比于模拟光纤通信具有很多优势。
简谈光纤通信技术特点及发展趋势论文简谈光纤通信技术特点及发展趋势论文摘要:光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。
一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。
本文探讨了光纤通信技术的主要特征及发展趋势,和它以光纤链路为基础的现场测试。
关键词:光纤通信技术特点发展趋势光纤链路现场测试一、光纤通信技术光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。
可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。
光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。
实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。
二、光纤通信技术的特点2.1频带极宽,通信容量大。
光纤的传输带宽比铜线或电缆大得多。
对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。
因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。
2.2损耗低,中继距离长。
目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。
这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。
2.3抗电磁干扰能力强。
石英有很强的抗腐蚀性,而且绝缘性好。
而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。
这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。
本科学年论文 学 院 物理电子工程学院 专 业 电子科学与技术 年 级 10电科班 姓 名 谭清 论文(设计)题目 光纤通信光时分复用技术 指导教师 张新伟 职称 讲师
2014 年 1 月 10 日
学号: *********** 光纤通信光时分复用技术 学生姓名:谭清 学号:20105044014 学 院:物理电子工程学院 专业:电子科学与技术 指导教师:张新伟 职称:讲师 摘 要:光纤通信光时分复用技术是提高光纤通信容量的一个重要手段,还是全光
网络的一种重要技术方案。本文对光时分复用技术进行了介绍,并展望了其发展前景。 关键词:光纤通信 光时分复用 全光网络
Abstract:Optical fiber communication optical time division multiplexing technology is an important means to improve capacity of optical fiber communication, or the all optical network is an important technical solutions. In this paper, optical time division multiplexing technology are introduced, and its development prospect was put forward.
Keywords:fiber communication;optical time division multiplexing;all optical network 1引言 光纤通信已有30多年的发展史。在这30多年里,光纤通信技术得到了飞速的发展,但是光纤的巨大容量还远远没有被利用起来,理论上,光纤可以提供25000 GHz的带宽。传统的电的时分复用(TDM)技术目前在实验室可以达到40Gbit/s的水平,但是由于电子迁移速率的限制,采用这种方法进一步提高速率已经十分困难。目前有两种技术可以提高光纤的传输容量,一种是光波分复用(WDM)技术,一种是光时分复用(OTDM)技术,前者是通过增加单根光纤中传输的信道数来提高光纤的传输容量,后者是提高单信道的速率。目前采用WDM技术实现的最高速率已达2.6Tbit/S,而OTDM技术实现的单信道最高速率达640Gbit/s。 但是和WDM相比,OTDM技术还很不成熟,很多的器件尚处于实验室的研究阶段。OTDM之所以引起人们的很大兴趣,主要原因有两个:一是它可以克服WDM的一些固有的缺点,如:放大器级联产生的增益特性的不平坦。光纤非线性的限制等等;二是OTDM技术被认为是一个长远的网络技术,将来的网络必将是采用全光交换和全光路由选择的全光网络,(OTDM)的一些特点使它作为将来的全光网络技术方案更具吸引力。 WDM和OTDM并不是互不兼容相互对立的技术,它们可以共存于同一个网络中,因为单靠WDM或OTDM来提高光纤通信系统容量的能力是有限的。实际上,可以把多个OTDM信号进行波分复用,从而大大提高传输容量。 2光时分复用技术 光时分复用的原理和电时分复用相同,电时分复用由于受到电子速率极限的限制,速率不可能很高,于是人们自然想到了直接在光域上进行时分复用的方法。超短脉冲光源在时钟的控制下产生重复频率为时钟频率的超短光脉冲,该超短光脉冲经掺饵光纤放大器(EDFA)放大后分成N路,每路光脉冲由各支路信号单独调制,调制后的信号经过不同的时延后用合路器合并成一路高速OTDM信号,完成复用功能。假设支路信号的速率为B,则复用后的OTDM信号速率为N×B。OTDM信号经光纤传输到达接收端后首先进行时钟提取,提取的时钟作为控制信号送到解复用器解出各个支路信号,再对各个支路信号单独接收。 一个点对点的OTDM系统的关键技术主要包括:高重复频率的超短脉冲光源;复用解复用技术;时钟提取技术;高速信号传输技术。 2.1高重复频率的超短脉冲光源 除了通常对光信号源稳定性的要求外,超高速光时分复用系统对所用的光信号源还有特别的要求。它要求脉冲宽度至少小于1/3码元周期、而且脉冲没有啁啾。目前,用于OTDM系统的光源主要有四种:锁模光纤激光器、半导体锁模激光器、分布反馈半导体激光器/电吸收调制器组合光源和增益开关半导体激光器。 锁模光纤激光器可以产生重复频率达40GHz、脉冲宽度小于3ps的超短光脉冲,而且它还具有重复频率和波长可调两个优点,可用于超高速的OTDM系统。这种光源的谐振腔由光纤环组成,腔长很长,主动销模是靠一个光调制器来完成,当加在调制器上信号的频率为谐振腔基模频率的整数信时,就可达到锁模的效果。 半导体锁模激光器具有体积小、结构紧凑的特点,它是通过锁定基模的方法来达到锁模的效果,可以达到数十GHz的重复频率。采用外部控制措施,半导体锁模激光器可以产生脉宽在1ps以下的光脉冲。 分布反馈半导体激光器/电吸收调制器组合光源和增益开关半导体激光器比较简单、较容易实现,目前在速率相对较低的OTDM系统中应用比较广泛。 2.2复用解复用技术 传统的复用器由耦合器和光纤时延线组成。这种方法很简单,但很难保证产生的码元间隔精确相等,而且温度的改变将影响光纤时延线的长度,使得码元间隔随温度产生波动。目前较好的方法是采用全光调制和光时钟相结合的方案或采用集成的方法。 OTDM解复用器实质上是一个高速光开关,主要有两种类型:光电开关型解复用器和全光型解复用器。光电开关型解复用器速率较低,对于高速OTDM系统,一般采用全光解复用器。全光解复用器包括非线性光纤环镜型解复用器(NOLM)、半导体光放大器环镜型解复用器(SLALOM或TOAD)和半导体光放大器MaCh-Zhender干涉仪型解复用器(SOA-MZI),以及基于光纤或半导体光放大器中四波混频的解复用器。 NOLM解复用器是利用光纤中的交叉相位调制效应来完成解复用的功能,它具有结构简单,开关速度高的优点,目前在OTDM系统中得到了广泛的应用。半导体光放大器环镜型解复用器和半导体光放大器Mach-Zhender干涉仪型解复用器则是利用半导体光放大器中的交叉相位调制来实现解复用功能,由于半导体光放大器的非线性效应很大,所以需要的控制脉冲的能量小,而且结构比较紧凑。基于光纤或半导体光放大器中四波混频的解复用器则是利用了光纤或半导体光放大器中的四波混频效应,它的速率可以很高。 2.3时钟提取技术 OTDM的时钟提取技术大体上可以分为三种类型:电时钟提取、全光时钟提取和光电锁相环时钟提取。OTDM系统电时钟提取和电TDM中的时钟提取方法相同,它采用一个高Q值的滤波器直接提取时钟。这种方法比较简单,但是不适合用于高速OTDM系统中。 全光时钟提取技术主要包括光有源或无源窄带滤波器直接提取时钟技术和注入锁定时钟提取技术。采用光窄带滤波器提取的时钟质量不好,时间抖动较大。注入领定时钟提取技术适于提取位时钟,而不适于提取帧时钟。 光电锁相环时钟提取技术是一种比较好的时钟提取技术,它利用一个光比特相位比较器将本地产生的光时钟与人射光比特流锁定。这种技术既利用了光学信号处理的高速性能,又利用了传统的电子锁相环的频率和相位跟踪特性,因此在高速OTDM传输系统中应用非常广泛。 2.4高速信号传输技术 对于高速OTDM信号,光纤的色散是限制其传输距离的主要因素,在一个标准单模光纤上,如果不采用相应的补偿和控制措施,40Gbit/s的信号只能传输4km。目前, 主要有两种高速光信号传输技术:一是光孤子技术,另一个是色散补偿技术。 光孤子是具有特定形状和特定功率的光脉冲,在传输过程中,光纤色散产生的脉冲展宽效应和自相位调制产生的脉冲压缩效应正好完全抵消,从而可同时消除光纤色散和非线性的影响,脉冲可以传输很长距离而不会变形。而色散补偿主要是通过采用一段和光纤色散特性相反的色散介质来抵消色散的影响,或对信号进行相应的处理来消除或降低色散的影响。色散补偿技术主要有三种:色散补偿光纤、啁啾布喇格光纤光栅和中间光相位共轭补偿技术,目前的研究取得了很大的进展,有的已进入实用阶段。 随着速率的进一步提高,偏振模色散(PMD)和高阶色散对光纤传输系统的性能的影响越来越突出,要实现超高速OTDM信号的长距离传输,必须要对偏振模色散进行补偿。但是我们也应注意到,这些补偿方法不可能完全消除信号在传输过程中因色散、非线性、放大器噪声等因素产生的畸变,所以在长距离传输或大规模的全光网络中,必要时应对光脉冲进行全光再生。 3总结 从目前的研究情况看,OTDM存在三个研究发展方向:一个发展方向是研究更高速率的系统并和WDM相结合,目前OTDM的最高速率已达640 Gbit/S,OTDM和WDM相结合已实现了3Tbit/s的传输速率;第二个发展方向是OTDM实用化技术和比特间插的OTDM网络技术,欧洲一直在从事40Gbit/S的OTDM系统和网络方面的研究工作,其中一些关键器件已接近实用;第三个方向是OTDM全光分组网络,和电的分组交换网络将代替电的电路交换网络一样,光的分组交换网络将是全光网络的一个发展方向,主要是美国在这方面作了大量的研究,英国电信目前也在进行这方面的研究。
参考文献 [1] 李岩,基于同步时分复用技术的数字光纤传输系统.北京:中国研究生院硕士学位论文,2005. [2] 顾畹仪,李国瑞.光纤通信系统[M].北京:北京邮电大学出版社,1999. [3] 方强,梁猛.光纤通信[M].西安:西安电子科技大学出版社,2003. [4] 李海,宋元胜,吴玉蓉.光纤通信原理及应用[M].北京:中国水利水电出版社,2005. [5] 刘德明,孙军强,鲁平,严敏.光纤光学[M].北京:科学出版社,2008.