- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是有 ∫u(x)·v'(x)dx=u(x)·v(x)-∫u'(x)·v(x)dx
或表示成 ∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x)
这一公式称为分部积分公式。
二、讲解例题
例1 求∫xexdx
解:令 u(x)=x,v'(x)=ex 则原式为∫u(x)·v'(x)dx的形式
∵(ex)'=ex ∴v(x)=ex,
⒄
dx ln x x2 a2 C
x2 a2
⒅
a2 x2 dx a2 arcsin x x a2 x2 C
2
a2
5.3 分部积分法 一、分部积分公式
考察函数乘积的求导法则: [u(x)·v(x)]'=u'(x)·v(x)+u(x)·v'(x)
两边积分得 u(x)·v(x)=∫u'(x)v(x)dx+∫u(x)v'(x)dx
由分部积分公式有 ∫xexdx=x·ex-∫exdx=xex-ex+C
例2 求∫xcos2xdx
解:令 u(x)=x,v'(x)=cos2x,则v(x)= 1 sin2x
于是∫xcos2xdx=
1
xsin2x-
1
2 ∫sin2xdx
=
1
2 xsin2x+
1
2 cos2x+C
2
4
有时,用分部积分法求不定积分需要连续使
x2 a2 C
以下结果可以作为公式使用: ⑿ ∫tanxdx=ln|secx|+C ⒀ ∫cotdx=-ln|cscx|+C ⒁ ∫secxdx=ln|secx+tanx|+C ⒂ ∫cscxdx=-ln|cscx+cotx|+C
⒃
dx x2 a2
1 ln 2a
xa xa
C
⑵ ∫xα dx= 1 x1 C (α ≠-1)
1
⑸ ∫exdx=ex+C
⑹ ∫sinxdx=-cosx+C ⑺ ∫cosxdx=sinx+C
⑻ ∫sec2xdx=tanx+C ⑼ ∫csc2xdx=-cotx+C
⑽
a2
1
x2
dx
arctan x a
C
⑾
1 dx arcsin x C
1 x3 x2 x C
3
再如
求
(x 1)( x2 3)
3x2
dx
解 :
(x 1)( x2 3)
3x2
dx
x3 x2 3x 3
3x2
dx
(1 x 1 1 1 )dx 1 x2 x ln | x | 1 C
3 3 x x2
所得结果仍为f(x) ⑵ ∫F'(x)dx=F(x)+C 该性质表明,如果函数F(x)先求导再求不定积分,
所得结果与F(x)相差一个常数C ⑶ ∫kf(x)dx=k∫f(x)dx (k为常数) 该性质表明,被积函数中不为零的常数因子可以
提到积分号的前面 ⑷ ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
用几次分部积分公式才可以求出结果。
例5:求∫x2e-2xdx
解:令u(x)=x2,v'(x)=e-2x,则v(x)= 1 e2x
2
于是
x2e2xdx 1 x2e2x 2x( 1 e2x )dx
2
2
1 x2e2x xe2xdx 1 x2e2x ( 1 xe2x 1 e2xdx)
x 1 1
元,令u
x
1
则原式=
u
1
1
dx,再反解x=u2+1,
得dx=2udu,代入
x
1 1
1
dx
2
u
u
1
du
2
(1
u
1 )du 1
2[u ln u 1] C 2 x 1 2ln | x 1 1| C
这就是第二换元积分法。
例 求 sin x x dx
所以 x2、x2+1、x2-1、x2+C (C为任意常数)
都是函数f(x)=2x的原函数。
[定理5.1] 设F(x)是函数f(x)在区间I上的一个原函数,
C是一个任意常数,那么, ⑴ F(x)+C也是f(x) 在该区间I上的原函数 ⑵ f(x)该在区间I上的全体原函数可以表示
为F(x)+C 证明:
求函数f(x)的不定积分就是求它的全体原函数, 因此,∫f(x)dx=F(x)+C
其中C是任意常数,叫做积分常数。
例2 求下列不定积分 ⑴ ∫x5dx ⑵ ∫sinxdx
解: ⑴∵ 1 x6是x5的一个原函数
6
∴ x5dx 1 x6 C 6
⑵∵-cosx是sinx的一个原函数
∴ sin xdx cosx C
解:设x asect,则dx asect tantdt, x2 a2 a tant
1 dx
x2 a2
a sect tan tdt a tan t
sectdt ln sect tan t C1
ln x a
x2 a2 a
C1 ln x
这种积分方法叫做凑微分法。
[讲解例题]
例2 求∫2sin2xdx
解:设u=2x,则du=2dx ∫2sin2xdx=∫sin2x·2dx=∫sinudu
=-cosu+C=-cos2x+C
注意:最后结果中不能有u,一定要还原成x。
例3
求
x (x2 1)4 dx
解:设u=x2+1,则du=2xdx
63
x
一、第一换元法(凑微分法)
如果被积函数的自变量与积分变量不相同, 就不能用直接积分法。
例如求∫cos2xdx,被积函数的自变量是2x, 积分变量是x。
这时,我们可以设被积函数的自变量为u, 如果能从被积式中分离出一个因子u’(x)来, 那么根据∫f(u)u'(x)dx=∫f(u)du=F(u)+C 就可以求出不定积分。
dx
(
1 )dx arccos x C 1 x2
两式都是本题的解
[注意] 不能认为 arcsinx=-arccosx,他们之间
的关系是 arcsinx=π /2-arccosx
四、 不定积分的性质 ⑴ [∫f(x)dx]'=f(x) 该性质表明,如果函数f(x)先求不定积分再求导,
a
1
a costdt
x
dx
a2 x2
a cost
dt t C arcsin a C
(2)如果被积函数含有 a2 x2 ,可以用x=atant换元。
例17 求
1 dx
a2 x2
解:设x a tant,则dx asec2 tdt, a2 x2 asect
dx
x4 1
1 x2
1
1 x2
dx
(x2 1)dx
1 1 x2
dx
1 x3 x arctanx C 3
例11 求∫3xexdx
解 : 3x exdx (3e)x dx (3e)x C 3x ex C
ln(3e)
1 ln 3
5.2 不定积分的计算 一、 直接积分法
对被积函数进行简单的恒等变形后直接用 不定积分的性质和基本积分公式即可求出不定 积分的方法称为直接积分法。
运用直接积分法可以求出一些简单函数的 不定积分。
例1 求 x 12 dx
解 : x 12 dx (x2 2x 1)dx x2dx 2 xdx dx
3
(x 1)2 d(x 1)
(x
1
1) 2
d(x
1)
2
(x
5
1) 2
2
(x
3
1) 2
C
5
3
例 求∫sin3xcosxdx
解:∫sin3xcosxdx=∫sin3xd(sinx)= 1 sin4x+C
4
二、第二换元积分法
例如,求
1 dx ,把其中最难处理的部分换
2
2
2
2
1 x2e2x 1 xe2x 1 e2x C
2
2
4
由此可见:作一次分部积分后,被积函数中幂函数的
次数可以降低一次。如果所得到的积分式还需要用分
例1 求下列函数的一个原函数:
⑴ f(x)=2x
⑵ f(x)=cosx
解:⑴∵(x2)'=2x
∴x2是函数2x的一个原函数
⑵∵(sinx)'=cosx
∴sinx是函数cosx的一个原函数
这里为什么要强调是一个原函数呢?因为一个函数
的原函数不是唯一的。
例如在上面的⑴中,还有(x2+1)'=2x,
(x2-1)'=2x
1 dx a2 x2
a sec2 tdt a sect
sectdt ln sect tan t C1
ln
a2 x2 a
x a
C1
ln
a2 x2 x C
(3)如果被 例18 求
积
函数含有
1 dx
x2
a
2
x2 a2
,可以用x=asect换元。
该性质表明,两个函数的和或差的不定积分等于 这两个函数的不定积分的和或差
五、 基本积分公式的应用
例7 求∫(9x2+8x)dx
解:∫(9x2+8x)dx=∫9x2dx+∫8xdx
=3∫3x2dx+4∫2xdx=3x3+4x2+C
例10
求
x4 1 x2 dx
解:
x4 1 x2
(x2
x 1) 4
dx
1 2
u 4 du
1 6
u 3
C
1 6(x2 1)3
C
例5 求 2xex2 dx
解:设u=x2,则du=2xdx
2xex2 dx ex2 2xdx eudu eu C ex2 C
例7 求 tan xdx
解
:
tan
xdx
sin x c os x
dx
设u=cosx,则du=-sinxdx
tan
xdx
c
1 os
x
(
sin
x)dx
1 u
du
ln | u | C ln | cosx | C
当计算熟练后,换元的过程可以省去不写。
例 求 x x 1dx
解: x x 1dx [(x 1) x 1 x 1]dx
二、 不定积分的几何意义
设F(x)是函数f(x)的一个原函数,则曲线y=F(x) 称为f(x)的一条积分曲线,曲线y=F(x)+C表示把曲 线y=F(x)上下平移所得到的曲线族。因此,不定积分 的几何意义是指由f(x)的全体积分曲线组成的积分曲 线族。 例4 求斜率为2x且经过点(1,0)的曲线。 解:设所求曲线为y=f(x),则f’(x)=2x,
⑴∵[F(X)+C]'=F'(x)+(C)'=f(x) ∴F(x)+C也是f(x)的原函数
⑵略
这说明函数f(x)如果有一个原函数F(x),那么它
就有无穷多个原函数,它们都可以表示为F(x)+C的
形式。
[定义5.2]
函数f(x)的全体原函数叫做函数f(x)的不定积分, 记作∫f(x)dx,
其中∫叫做积分号,f(x)叫做被积函数,x叫做积 分变量。
故y=x2+C, ∵曲线过点(1,0)∴以x=1、y=0代入得0=12+C, 解得C=-1, 因此,所求曲线为y=x2-1。
三、 基本积分公式
由于积分运算是求导运算的逆运算,所以由基本
求导公式反推,可得基本积分公式
⑴ ∫dx=x+C
⑶ ⑷
1 x
a
dx ln
xdx
|x
ax
|
C
C
ln a
第5章 不定积分
5.1 原函数与不定积分的概念
一、原函数与不定积分
通过对求导和微分的学习,我们可以从一个函数 y=f(x)出发,去求它的导数f'(x)
那么,我们能不能从一个函数的导数f’(x)出发, 反过来去求它是哪一个函数(原函数)的导数呢? [定义]
已知f(x)是定义在某区间上的一个函数,如果存 在函数F(x),使得在该区间上的任何一点x处都有 F'(x)=f(x),那么称函数F(x)为函数f(x)在该区 间上的一个原函数。
解 : 令 x t,则x t 2 , dx 2tdt
sin
x
x
dx
sin t
t
2tቤተ መጻሕፍቲ ባይዱt
2
sin
tdt
2 c
ost
C
2
cos
x C
(1)如果被积函数含有 a2 x2 ,可以用x=asint换元。
例16 求
1 dx
a2 x2
解:设x a sin t,则t arcsin x , dx a costdt, a2 x2 a cost
a2 x2
a
例5 求 1 dx
解 :
1
x2
dx
x 5
x 2dx
2
3
x2
C
x2 x
3
说明:冪函数的积分结果可以这样求,先将被积函数
的指数加1,再把指数的倒数放在前面做系数。
例6
求
1 dx
1 x2
解:
1 dx arcsin x C 1 x2
又
1 1 x2