人教新课标版数学高二必修5作业设计第一章 复习课 解三角形
- 格式:doc
- 大小:247.00 KB
- 文档页数:6
第一章解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1C .2 6D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135° 答案 C解析 由a sin A =b sin B 得sin B =b sin Aa=2sin 60°3=22. ∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1×sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb=2×222=12. 又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A .证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A=右边.所以等式成立,即a -c cos Bb -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22,∴sin C =22. ∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,代入已知条件得 a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a2-b2)2=c4.∴a2-b2=±c2,即a2=b2+c2或b2=a2+c2.根据勾股定理知△ABC是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角,解三角形.(2)已知三边求三角形的任意一角.2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sinA +B2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0, ∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin (A -B )sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C . 解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21.∴ac=35,∵cosB =53,∴sinB = 54. ∴S △ABC = 21acsinB = 21×35×54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°.能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设BA ·BC =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B =sin B sin 2B =1sin B =477. (2)由BA · =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°. 由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin ∠ACBsin ∠ABC =50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BCsin ∠CAB=ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km.能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2×20t ×40·cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解如图所示,连结A1B2,由已知A2B2=102,A1A2=302×2060=102,∴A1A2=A2B2,又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形,∴A1B2=A1A2=10 2.由已知,A1B1=20,∠B1A1B2=105°-60°=45°,在△A1B2B1中,由余弦定理,B1B22=A1B21+A1B22-2A1B1·A1B2·cos 45°=202+(102)2-2×20×102×2 2=200.∴B1B2=10 2.因此,乙船速度的大小为10220×60=302(海里/小时).答乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,203 3 m 答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m). 3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin (45°-30°)=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC ,即AC sin (90°-α)=BCsin (α-β),∴AC =BC cos αsin (α-β)=h cos αsin (α-β). 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β).即山高CD 为h cos αsin βsin (α-β).12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3.能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =(BE -FC )2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解如图所示:∠CBD=30°,∠ADB=30°,∠ACB=45°∵AB=30,∴BC=30,BD=30tan 30°=30 3.在△BCD中,CD2=BC2+BD2-2BC·BD·cos 30°=900,∴CD=30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章解三角形复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0),∵⎩⎪⎨⎪⎧a +b >c a +c >b即⎩⎪⎨⎪⎧m (2k +1)>2mk3mk >m (k +1),∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin (α-β)B.a sin αsin βcos (α-β)C.a sin αcos βsin (α-β)D.a cos αcos βcos (α-β)答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin (α-β)=ADsin β.∴a sin (α-β)=h sin αsin β,∴h =a sin αsin βsin (α-β). 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ·AB ·sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos 60°=552+162-2×16×55×12=2 401.∴BC =49.6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc , sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A =____________.答案2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2解析 如图所示,BC sin 45°=ACsin 30°。
1.1.1 正弦定理(一)【学习要求】1.掌握正弦定理的内容. 2.了解正弦定理的证明方法. 3.能初步运用正弦定理解三角形.【学法指导】1.学习本节内容时,要善于运用平面几何知识以及平面向量知识证明正弦定理. 2.应熟练掌握利用正弦定理进行三角形中的边角关系的相互转化.【知识要点】1.在△ABC 中,A +B +C = ,A 2+B 2+C2= .2.在Rt △ABC 中,C =π2,则a c = ,bc= .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的 .已知三角形的几个元素求其他元素的过程叫做 .4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 ,这个比值是__________【问题探究】探究点一 正弦定理的提出和证明问题 在直角三角形和等边三角形中,容易验证a sin A =b sin B =csin C 成立,这一结论对更一般锐角三角形和钝角三角形还成立吗?探究1 在锐角△ABC 中,根据右图证明:a sin A =b sin B =csin C.探究2 在钝角△ABC 中(不妨设A 为钝角),根据右图证明:a sin A =b sin B =csin C.小结 综上可知,对于任意三角形,均有a sin A =b sin B =csin C ,此即正弦定理.探究点二 正弦定理的几何解释问题 如图所示,在Rt △ABC 中,斜边c 等于Rt △ABC 外接圆的直径2R ,故有a sin A =b sin B =csin C =2R ,这一关系对任意三角形也成立吗?探究1 如图所示,锐角三角形ABC 和它的外接圆O ,外接圆半径为R ,等式a sin A =b sin B =csin C =2R 成立吗?探究2 如图所示,钝角三角形ABC ,A 为钝角,圆O 是它的外接圆,半径为R ,等式a sin A =b sin B =csin C =2R 还成立吗?小结 综上所述,对于任意△ABC ,a sin A =b sin B =csin C=2R 恒成立.【典型例题】例1 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2跟踪训练1 在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于 ( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6例2 在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.小结 正弦定理的变形公式使三角形的边与边的关系和角与角的关系之间的相互转化的功能更加强大,更加灵活.跟踪训练2 在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=例3 在△ABC 中,已知a =22,A =30°,B =45°,解三角形.小结 已知两角与任一边,利用正弦定理解三角形,有以下两种情况:(1)若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,最后由正弦定理求第三边;(2)若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边. 跟踪训练3 在△ABC 中,a =5,B =45°,C =105°,解三角形.【当堂检测】1.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 所对的边,若∠A =105°,∠B =45°,b =22,则c 等于( ) A .1B .2C. 2D. 32.在△ABC 中,已知∠A =150°,a =3,则其外接圆的半径R 的值为 ( ) A .3 B. 3 C .2 D .不确定 3.在△ABC 中,sin A =sin C ,则△ABC 是 ( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形4.在△ABC 中,∠A =60°,a =43,b =42,则∠B 等于【课堂小结】1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.利用正弦定理可以实现三角形中边角关系的相互转化:一方面可以化边为角,转化为三角函数问题来解决;另一方面,也可以化角为边,转化为代数问题来解决.【课后作业】一、基础过关1.在△ABC 中,下列等式中总能成立的是( )A .a sin A =b sin BB .b sinC =c sin A C .ab sin C =bc sin BD .a sin C =c sin A2.在△ABC 中,若A =30°,B =60°,b =3,则a 等于( )A .3B .1C .2D .123.在△ABC中,sin 2A =sin 2B +sin 2C ,则△ABC为( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形4.在△ABC 中,若3a =2b sin A ,则B 为 ( )A .π3B .π6C .π3或23πD .π6或56π5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小 ( ) A .π2B .π3C .π4D .π66.在△ABC 中,已知a ∶b ∶c =3∶4∶5,则2sin A -sin Bsin C =________.7.在△ABC 中,若b =5,B =π4,sin A =13,则a =______.8.已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和B .二、能力提升9.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A .⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10) D .⎝⎛⎦⎤0,403 10.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.11.在△ABC 中,已知a 、b 、c 分别为内角A 、B 、C 的对边,若b =2a ,B =A +60°,求A 的值.12.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c ,求证:a 2sin 2B +b 2sin 2A =2ab sin C .三、探究与拓展13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,求角C 的大小.1.1.1 正弦定理(二)【学习要求】1.熟记正弦定理的有关变形公式.2.探究三角形面积公式的表现形式,能结合正弦定理解与面积有关的斜三角形问题. 3.能根据条件,判断三角形解的个数.【学法指导】1.已知两边及其中一边对角解三角形,其解不一定唯一,应注意运用大边对大角的理论判断解的情况. 2.判断三角形形状时,不要在等式两边轻易地除以含有边角的因式,造成漏解.【知识要点】1.正弦定理:a sin A =b sin B =csin C =2R 的常见变形:(1)sin A ∶sin B ∶sin C = ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C= ;(3)a = ,b = ,c = ; (4)sin A = ,sin B = ,sin C = .2.三角形面积公式:S = = =3.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( )A .A >B B .A <BC .A ≥B 4.在△ABC 中,a =10,b =8,C =30°,则△ABC 的面积S =【问题探究】探究点一 已知两边及其中一边的对角,判断三角形解的个数问题 我们应用正弦定理解三角形时,已知三角形的两边及其中一边的对角往往得出不同情形的解,有时一解,有时两解,有时又无解,这究竟是怎么回事?探究1 在△ABC 中,已知a ,b 和A ,若A 为直角,讨论三角形解的情况.(请完成下表)探究2 在△ABC 中,已知a ,b 和A ,若A为钝角,讨论三角形解的情况.(请完成下表)探究3 在△ABC 中,已知a ,b 和A ,若A 为锐角,讨论三角形解的情况.(请完成下表)探究点二 三角形的面积公式问题 我们已经知道S △ABC =12ah a =12bh b =12ch c (其中h a ,h b ,h c 分别为a ,b ,c 边上的高).学习了正弦定理后,你还能得到哪些计算三角形面积的公式?探究1 当△ABC 为锐角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .探究2 当△ABC 为钝角三角形时,证明:S △ABC =12ab sin C =12bc sin A =12ac sin B .【典型例题】例1 已知一三角形中a =23,b =6,A =30°,判断三角形是否有解,若有解,解该三角形.小结 已知三角形两边和其中一边的对角,解三角形时,首先求出另一边的对角的正弦值,根据该正弦值求角时,需对角的情况加以讨论.跟踪训练1在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于 ( )A .1B .2 C.3-1 D. 3例2 在△ABC 中,若∠A =120°,AB =5,BC =7,求△ABC 的面积. 小结 题目条件或结论中若涉及三角形的面积,要根据题意灵活选用三角形的面积公式. 跟踪训练2 在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =例3 在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.小结 条件是边角混合关系式,应用正弦定理化边为角,再由角的关系判断三角形的形状.跟踪训练3 已知方程x 2-(b cos A )x +a cos B =0的两根之积等于两根之和,且a 、b 为△ABC 的两边,A 、B 为两内角,试判断这个三角形的形状.【当堂检测】1.已知△ABC 的面积为3且b =2,c =2,则∠A 等于( )A .30°B .30°或150°C .60°D .60°或120° 2.在△ABC 中,AC =6,BC =2,B =60°,则C = 3.在△ABC 中,b =1,c =3,C =2π3,则a =4.不解三角形,判断下列三角形解的个数. (1)a =5,b =4,A =120°; (2)a =9,b =10,A =60°; (3)c =50,b =72,C =135°.【课堂小结】1.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,也可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.2.判断三角形的形状,最终目的是判断三角形是否是特殊三角形,当所给条件含有边和角时,应利用正弦定理将条件统一为“边”之间的关系式或“角”之间的关系式.【课后作业】一、基础过关1.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 2.在△ABC 中,A =60°,a =3,b =2,则B 等于( )A .45°或135°B .60°C .45°D .135° 3.下列判断中正确的是( )A .当a =4,b =5,A =30°时,三角形有一解B .当a =5,b =4,A =60°时,三角形有两解C .当a =3,b =2,B =120°时,三角形有一解D .当a =322,b =6,A =60°时,三角形有一解4.在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于( )A .3+1B .3-1C .3+2D .3-25.已知△ABC 中,AB =3,AC =1,且B =30°,则△ABC 的面积等于 ( ) A .32B .34C .32或 3D .34或326.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度为________. 7.在△ABC 中,已知23a sin B =3b ,且cos B =cos C ,试判断△ABC 的形状.8.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S . 二、能力提升9.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于 ( )A .2 3B .2 2C . 3D . 210.在△ABC 中,若acos A 2=b cos B 2=c cosC 2,则△ABC 的形状是________. 11.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =______,c =______.12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c =10,又知cos A cos B =b a =43,求a 、b 及△ABC 内切圆的半径.三、探究与拓展13.已知△ABC 的面积为1,tan B =12,tan C =-2,求△ABC 的各边长以及△ABC 外接圆的面积.1.1.2 余弦定理(一)【学习要求】1.理解余弦定理的证明.2.初步运用余弦定理及其变形形式解三角形【学法指导】1.教材给出了用向量法证明余弦定理的方法,体现了向量在解决三角形度量问题中的重要作用.2.利用向量作为工具推导余弦定理时,向量知识可能被遗忘,要注意复习,要准确运用向量的减法法则和向量夹角的概念.3.余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.【知识要点】1.余弦定理三角形中任何一边的 等于其他两边的 的和减去这两边与它们的 的余弦的积的 .即a 2=_________,b 2= ,c 2= .2.余弦定理的推论cos A = ;cos B = ;cos C = 3.在△ABC 中,(1)若a 2+b 2-c 2=0,则C = ; (2)若c 2=a 2+b 2-ab ,则C = ;(3)若c 2=a 2+b 2+2ab ,则C = .4.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( )A .3B .3C .5D .5【问题探究】我们知道已知两边和一边的对角,或者已知两角和一角的对边能用正弦定理解三角形,如果已知两边和夹角怎样解三角形求第三边和其他两角呢?或者已知三边怎么解三角形求三个角呢?这是余弦定理所能解决的问题,这一节我们就来学习余弦定理及其应用.探究点一 利用向量法证明余弦定理问题 如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.如何利用已知的两边和夹角计算出三角形的另一边呢?探究 如图所示,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →知c =a -b .根据这一关系,试用向量的数量积证明余弦定理.探究点二 利用坐标法证明余弦定理问题 我们可以把三角形放在平面直角坐标系中来研究,写出各个顶点的坐标,能否利用平面内两点间的距离公式来推导余弦定理?探究 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c,0),C (b cos A ,b sin A ),试根据两点间的距离公式证明余弦定理.【典型例题】例1 在△ABC 中,已知a =2,b =22,C =15°,求A .小结 解三角形主要是利用正弦定理和余弦定理,本例中的条件是已知两边及其夹角,而不是两边及一边的对角,所以本例的解法应先从余弦定理入手.跟踪训练1 在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c .例2 已知三角形ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角. 小结 已知三边求三角时,余弦值是正值时,角是锐角,余弦值是负值时,角是钝角. 跟踪训练2 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状.例3 在△ABC 中,a cos A =b cos B ,试确定△ABC 的形状.小结 边角混合关系式要根据正、余弦定理统一转化为角的关系式或边的关系式,本题可采用正弦定理转化为角的关系式或采用余弦定理转化为边的关系式.跟踪训练3 在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.【当堂检测】1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的另一边长为 ( )A .52B .213C .16D .4 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为 ( )A .π3B .π6C .π4D .π123.在△ABC 中,已知A =60°,最大边长和最小边长恰好是方程x 2-7x +11=0的两根,则第三边的长为______. 4.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.【课堂小结】1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.判断三角形的形状,当所给的条件是边角混合关系时,基本解题思想:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.【课后作业】一、基础过关1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( ) A .60°B .90°C .120°D .150°2.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30°B .60°C .90°D .120° 3.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A .14B .34C .24D .234.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且∠C =60°,则ab 的值为 ( ) A .43B .8-43C .1D .235.已知△ABC 的三边长分别是2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角的度数是________. 6.在△ABC 中,已知a =2,b =4,C =60°,则A =________.7.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1. (1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.b ac8.设2a +1,a ,a -1为钝角三角形的三边,求a 的取值范围.二、能力提升9.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎣⎡⎭⎫π6,πC .⎝⎛⎦⎤0,π3 D .⎣⎡⎭⎫π3,π 10.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度确定 11.如图,CD =16,AC =5,∠BDC =30°,∠BCA =120°,则AB =________.12.在△ABC 中,已知a -b =4,a +c =2b ,且最大角为120°,求三边长.三、探究与拓展13.△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →;(2)若c -b =1,求a 的值.1.1.2 余弦定理(二)【学习要求】1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形.3.能利用正、余弦定理解决三角形的有关问题.【学法指导】1.正、余弦定理都反映了任意三角形边角之间的具体关系,它们不是孤立的,而是相互密切联系的,处理三角形中的问题时,要注意两个定理的综合运用.2.已知三角形的两边和一边的对角解三角形时,一般用正弦定理求解,这时需讨论解的个数,也可用余弦定理求解,这时需转化成未知边的一元二次方程来求解.【知识要点】1.余弦定理及其变形形式:a 2= ⇔cos A = ;b 2= ⇔cos B = ;c 2= ⇔cos C = .2.正弦定理的公式表达形式:_____= = =2R (其中R 是△ABC 外接圆的半径).3.已知锐角三角形的三边长分别为2,3,x ,则x 的取值范围是 4.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为【问题探究】探究点一 已知两边及其中一边的对角,利用余弦定理解三角形问题 在△ABC 中,已知两边及其中一边的对角,解三角形.一般情况下,先利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论三角形解的个数.对于这一类问题能否利用余弦定理来解三角形? 探究 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若A =π3,a =3,b =1,则c 等于 ( )A .1B .2C .3-1D . 3 探究点二 利用正、余弦定理证明三角形中的恒等式 问题 如何利用正、余弦定理证明三角形中的恒等式?证明时可以考虑两种途径:一是把角的关系通过正、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是把边的关系转化为角的关系,一般是通过正弦定理.探究 在△ABC 中,有(1)a =b cos C +c cos B ;(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A ;这三个关系式也称为射影定理,请给出证明. 探究点三 利用正、余弦定理解决三角形的有关问题问题 利用正、余弦定理可以解决一些三角形问题:如面积、角、边等,你能根据已知条件选择合适的解决方法吗?探究 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C =p sin B (p ∈R),且ac =14b 2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.【典型例题】例1 在△ABC 中,a ,b ,c 分别为A ,B ,C 所对的三边,已知(a +b -c )(a -b +c )=bc ,求A .跟踪训练1 已知△ABC 的三边a 、b 、c ,且△ABC 的面积S =c 2-a 2-b 243,求C .例2 在△ABC 中,若B =30°,AB =23,AC =2,求△ABC 的面积.小结 本例是已知两边及其中一边的对角,解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.跟踪训练2 已知a ,b ,c 是△ABC 中A ,B ,C 的对边,S 是△ABC 的面积.若a =4,b =5,S =53,求c 的长度.例3 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2 B +C 2-cos 2A =72. (1)求A 的度数.(2)若a =3,b +c =3,求b 和c 的值.小结 本题解题关键是通过三角恒等变换借助于A +B +C =180°,求出A ,并利用余弦定理列出关于b 、c 的方程组.跟踪训练3 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积为4,求b 、c 的值.【当堂检测】1.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为 ( )A .135°B .45°C .60°D .120°2.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若c =2,b =2a ,且cos C =14,则a 等于 ( )A .2B .12C .1D .133.在△ABC 中,cos B =12,b 2-ac =0,则△ABC 的形状为 三角形.4.在△ABC 中,∠B =120°,AC =7,AB =5,则△ABC 的面积为 .【课堂小结】1.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.2.余弦定理为求三角形中的有关量(如面积、中线、外接圆等)提供了有力的工具,在一定意义上,比正弦定理应用更加广泛.3.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.【课后作业】1.在△ABC 中,若b 2=a 2+c 2+ac ,则B 等于( )A .60°B .45°或135°C .120°D .30° 2.若三条线段的长分别为5,6,7,则用这三条线段( )A .能组成直角三角形B .能组成锐角三角形C .能组成钝角三角形D .不能组成三角形 3.在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3,则cos C 的值为 ( )A .13B .-23C .14D .-144.在△ABC 中,已知b =3,c =33,A =30°,则角C 等于 ( )A .30°B .120°C .60°D .150°5.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是 ( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形6.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值为________. 7.已知△ABC 的内角B =60°,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B . (1)求B ;(2)若A =75°,b =2,求a ,c .二、能力提升9.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( )A .1<c <3B .2<c <3C .5<c <3D .22<c <3 10.在△ABC 中,AB =3,AC =2,BC =10,则AB →·CA →=________. 11.在△ABC 中,B =45°,AC =10,cos C =255.(1)求边BC 的长;(2)记AB 的中点为D ,求中线CD 的长.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 三、探究与拓展13.某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人能否做出这样的三角形?若能,是什么形状;若不能,请说明理由.习题课 正弦定理与余弦定理 【学习要求】1.进一步熟练掌握正、余弦定理在解决各类三角形中的应用.2.提高对正、余弦定理应用范围的认识.3.初步应用正、余弦定理解决一些和三角、向量有关的综合问题.【学法指导】解三角形的问题可以分为以下四类:(1)已知三角形的两边和其中一边的对角,解三角形.此种情况的基本解法是先由正弦定理求出另一条边所对的角,用三角形的内角和定理求出第三个角,再用正弦定理求出第三边,注意判断解的个数. (2)已知三角形的两角和任一边,解三角形.此种情况的基本解法是若所给边是已知角的对边时,可由正弦定理求另一边,再由三角形内角和定理求出第三个角,再由正弦定理求第三边.若所给边不是已知角的对边时,先由三角形内角和定理求第三个角,再由正弦定理求另外两边.(3)已知两边和它们的夹角,解三角形.此种情况的基本解法是先用余弦定理求第三边,再用正弦定理或余弦定理求另一角,最后用三角形内角和定理求第三个角.(4)已知三角形的三边,解三角形.此种情况的基本解法是先用余弦定理求出一个角,再用正弦定理或余弦定理求出另一个角,最后用三角形内角和定理,求出第三个角.要解三角形,必须已知三角形的一边的长.若已知条件中一条边的长也不给出,三角形可以是任意的,因此无法求解.【知识要点】1.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有 (1)A +B +C = ,A +B2= .(2)sin(A +B )= ,cos(A +B )= ,tan(A +B )= . (3)sinA +B 2= ,cos A +B2= 2.正弦定理及其变形 (1)a sin A =b sin B =csin C= .(2)a = ,b = ,c = . (3)sin A = ,sin B = ,sin C = . (4)sin A ∶sin B ∶sin C = .3.余弦定理及其推论 (1)a 2= . (2)cos A = .(3)在△ABC 中,c 2=a 2+b 2⇔C 为 ;c 2>a 2+b 2⇔C 为____;c 2<a 2+b 2⇔C 为 . 4.三角形常用面积公式(1)S = (h a 表示a 边上的高);(2)S = = = ; (3)S =12r (a +b +c )(r 为三角形内切圆半径).【基础自测】1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于 ( )A .30°B .60°C .120°D .150°2.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若c ·cos B =b ·cos C ,且cos A =23,则sin B 等于 ( )A .±66B .66C .±306 D .3063.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos B =14,sin C sin A =2,且S △ABC =154,则b 等于 ( )A .4B .3C .2D .14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,a =3,b =2,且1+2cos(B +C )=0,则BC 边上的高为 ( )A .3-1B .3+1C .3-12 D .3+12【题型解法】题型一 利用正、余弦定理证明三角恒等式例1 在△ABC 中,求证:tan A tan B =a 2+c 2-b 2b 2+c 2-a 2.小结 证明三角恒等式关键是消除等号两端三角函数式的差异.形式上一般有左⇒右;右⇒左或左⇒中⇐右三种.跟踪训练1 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,求证:cos B cos C =c -b cos Ab -c cos A .题型二 利用正、余弦定理判断三角形的形状例2 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.小结 本题中边的大小没有明确给出,而是通过一个关系式来确定的,可以考虑利用正弦定理将边的关系转化为角的关系,也可以利用余弦定理将边、角关系转化为边的关系来判断.跟踪训练2 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状. 题型三 利用正、余弦定理解关于三角形的综合问题例3 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos B =35,且AB →·BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C .小结 这是一道向量与正、余弦定理的综合题,解题的关键是化去向量的“伪装”,找到三角形的边角关系.跟踪训练3 在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA →·BC →=32,求a +c 的值.【当堂检测】1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 2.下列判断中正确的是 ( ) A .△ABC 中,a =7,b =14,A =30°,有两解 B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解 D .△ABC 中,b =9,c =10,B =60°,无解 3.在△ABC 中,求证:a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).4.如图所示,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ACD =1532.求AB 的长.【课堂小结】1.判断三角形的形状是看该三角形是否为某些特殊的三角形(如锐角、直角、钝角、等腰、等边三角形等).2.对于给出条件是边角关系混合在一起的问题,一般地,应运用正弦定理和余弦定理,要么把它统一为边的关系,要么把它统一为角的关系.再利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法等进行转化、化简,从而得出结论.3.解决正弦定理与余弦定理的综合应用问题,应注意根据具体情况引入未知数,运用方程思想来解决问题;平面向量与解三角形的交汇问题,应注意准确运用向量知识转化为解三角形问题,再利用正、余弦定理求解.【课后作业】一、基础过关1.在△ABC 中,若a =18,b =24,A =44°,则此三角形解的情况为( )A .无解B .两解C .一解D .解的个数不确定2.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,sin C 等于( )A .23913B .1313C .2393D .213133.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于 ( ) A . 6B .2C . 3D . 24.若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B 等于( )A .154B .34C .31516D .11165.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.7.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.8.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.二、能力提升9.在△ABC 中,若a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .60° 10.在△ABC 中,已知a 4+b 4+c 4=2c 2(a 2+b 2),则角C 为( )A .30°B .60°C .45°或135°D .120°11.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________.12.已知△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知m =(sin C ,sin B cos A ),n =(b,2c ),且m ·n =0.(1)求A 的大小;(2)若a =23,c =2,求△ABC 的面积S 的大小.三、探究与拓展13.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,求tan C tan A +tan Ctan B的值.1.2 应用举例(一)【学习要求】1.利用正、余弦定理解决生产实践中的有关距离的测量问题. 2.利用正、余弦定理解决生产实践中的有关高度的测量问题. 3.利用正、余弦定理解决生产实践中的有关角度的测量问题.【学法指导】1.在我们将所求距离或方向的问题转化为一个求三角形的边和角的问题时,我们选择的三角形往往条件不够,这时需要我们寻找其他的三角形作为我们解这个三角形的支持,为我们解这个三角形提供必要的条件.2.在测量某物体高度的问题中,很多被测量的物体是一个立体的图形,而在测量过程中,我们测量的角度也不一定在同一垂面内,因此还需要我们有一定的空间想象能力,关键是画出图形,把已知量和未知量归结到三角形中来求解.【知识要点】1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做.一般来说,基线越长,测量的精确度.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A点的方位角为α.3.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线方时叫仰角,目标视线在水平线方时叫俯角.(如图所示)4.如图,在河岸AC测量河的宽度BC,测量下列四组数据,较适宜的是()A.a,c,αB.b,c,αC.c,a,βD.b,α,β【问题探究】1.“遥不可及的月亮离我们地球究竟有多远呢?”.在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?2.现实生活中,人们经常遇到测量不可到达点之间的距离、底部不可到达建筑物的高度,以及在航海中航向的确定.这些问题究竟怎样解决?恰当利用我们所学过的正弦定理、余弦定理就可以解决上述问题,这节课我们就来探究上述问题.探究点一测量不可达距离的方法问题测量不可达距离有哪些基本类型?每种类型的解决方案是怎样的?探究表中是测量距离的基本类型及方案,请你根据所给图形,填写相应的结论:类别两点间不可达或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=AB=①AC=②BC=③AB=探究点二测量底部不可到达的建筑物的高度问题底部不可到达的高度测量有哪些基本类型?每种类型如何测量?探究下表是测量高度的基本类型及方案,请你根据所给图形,填写相应结论:类别点B与点C、D共线点B与点C、D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=AB=【典型例题】例1为了测量两山顶M、N间的距离,飞机沿水平方向在A、B两点进行测量,A、B、M、N在同一铅垂平面内.飞机已经测量的数据有A点到M、N点的俯角α1、β1;B点到M、N点的俯角α2、β2;A、B的距离d(如图所示).甲乙两位同学各自给出了计算MN的两种方案,请你补充完整.甲方案:第一步:计算AM.由正弦定理AM=;第二步:计算AN.由正弦定理AN=;第三步:计算MN.由余弦定理MN=.乙方案:第一步:计算BM.由正弦定理BM=;第二步:计算BN.由正弦定理BN=;第三步:计算MN.由余弦定理MN=.小结测量两个不可到达的点之间的距离问题.首先把求不可到达的两点A,B之间的距离转化为应用余弦定理求三角的边长问题,然后在相关三角形中计算其他边.跟踪训练1在相距2千米的A、B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A、C两点之间的距离为千米.例2如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知。
数学人教B 必修5第一章解三角形知识建构综合应用专题一判断三角形的形状正弦定理、余弦定理是反映三角形中边角关系的重要定理,是处理有关三角形问题的有力工具,要注意两定理的变形运用及实际应用.判断三角形的形状,其常用方法是:将已知式子都化为角的式子或边的式子再判断.通常利用正弦定理的变形如a =2R ·sin A 将边化角,b 2+c 2-a 2a 利用余弦定理的推论如cos A =把角的余弦化边,或利用sin A =把角的正弦化2bc 2R边,然后利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法进行转化、化简,从而得出结论.常见结论有:设a ,b ,c 是△ABC 的角∠A ,∠B ,∠C 的对边,①若a 2+b 2=c 2,则∠C =90°;②若a 2+b 2>c 2,则∠C <90°;③若a 2+b 2<c 2,则∠C >90°;π④若sin 2A =sin 2B ,则∠A =∠B 或∠A +∠B =.2应用1在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则该三角形是__________三角形.提示:考虑到已知条件是三个角正弦的比值,可用正弦定理得出三边的关系,再利用余弦定理判断最大角的大小即可.应用2在△ABC 中,若∠B =60°,2b =a +c ,试判断△ABC 的形状.提示:已知条件中等式只有边,故结合其特点,可选择利用正弦定理化边为角,再结合三角函数关系化简求解;本题也可利用∠B =60°这一条件,用余弦定理,找出边之间的关系来判断.专题二恒等式的证明证明有关三角形中边角关系的恒等式,若出现边角混合关系式,通常情况下,有两种方法:化边为角,将已知条件统一用角表示;化角为边,将已知条件用边表示,然后利用角的关系或边的关系进行求解,从而使问题得到解决.应用1在△ABC 中,求证:a 2+b 2sin 2A +sin 2B (1)2=;c sin 2C(2)a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).提示:本题(1)可从左边证到右边,利用正弦定理将边的关系转化为角的关系;本题(2)可从右边证到左边,利用余弦定理将角的关系转化为边的关系.应用2已知在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,△ABC 的面积为S .a 2+b 2+c 2求证:cot A +cot B +cot C =.4S提示:解本题的关键是化切为弦,再结合余弦定理变形.专题三三角形的面积问题求三角形面积与正弦定理、余弦定理、三角函数、函数的有关知识紧密地联系在一起,是高考中的常见题型.常用三角形面积公式:111(1)S △ABC =ah a =bh b =ch c .222111(2)S △ABC =ab sin C =bc sin A =ac sin B .222a +b +c (3)S =p (p -a )(p -b )(p -c )(其中p =).2应用在△ABC 中,sin A +cos A =2,AC =2,AB =3,求tan A 的值和△ABC 的面积.2提示:由已知可把角A 算出来,再求tan A ,并求出sin A ,直接代入面积公式即可求面积.专题四正、余弦定理的综合应用以三角形为载体,以正、余弦定理为工具,以三角恒等变换为手段来考查解三角形问题是近几年高考中一类热点题型.在具体解题中,除了熟练使用正弦、余弦定理这个工具外,也要根据条件,合理选用三角函数公式,达到简化解题的目的.cos C 2a -c 应用1在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且=.cos B b(1)求cos B 的值;(2)若b =7,a +c =4,求△ABC 的面积.提示:(1)先利用正弦定理化简,再用三角变换整理即得.(2)利用余弦定理及面积公式,再注意整体求ac 的技巧.应用2在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .(1)确定角C 的大小;33(2)若c =7,且△ABC 的面积为,求a +b 的值.2提示:(1)利用正弦定理将边转化为角即可;(2)利用余弦定理和面积公式列出关于a ,b 的方程求解,注意整体技巧.专题五正、余弦定理在实际问题中的应用解决有关三角形的应用问题时,首先要认真分析题意,找出各量之间的关系,根据题意画出示意图,将要求的问题抽象为三角形模型,然后利用正弦定理、余弦定理求解,最后将结果还原为实际问题,这一程序可用框图表示为:实际问题――→解三角形问题――→三角形问题的解――→实际问题的解概括演算应用1如图所示,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧抽象推理还原远处一山顶D 在西偏北15°的方向上,行驶5 km 后到达B 处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD .提示:要测出高CD ,只要测出高所在的直角三角形的另一条直角边或斜边的长即可.根据已知条件,可以计算出BC 的长.应用2如图,某巡逻艇在A 处发现北偏东45°相距9海里的C 处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才能追赶上该走私船?提示:在求解三角形中,可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.真题放送1.(2011·天津高考)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为().A .3366B .C .D .36362.(2011·福建高考)若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于__________.→→3.(2011·上海高考)在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB ·AD=______.4.(2011·湖南高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;π(2)求3sin A -cos(B +)的最大值,并求取得最大值时角A ,B 的大小.45.(2011·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b1=2,cos C =.4(1)求△ABC 的周长;(2)求cos(A -C )的值.6.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .b (1)求;a(2)若c 2=b 2+3a 2,求∠B .7.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C1=p sin B (p ∈R ),且ac =b 2.45(1)当p =,b =1时,求a ,c 的值;4(2)若角B 为锐角,求p 的取值范围.答案:综合应用专题一应用1:钝角∵sin A ∶sin B ∶sin C =2∶3∶4,根据正弦定理,得a ∶b ∶c =2∶3∶4.设a =2m ,b =3m ,c =4m (m >0),∵c >b >a ,∴∠C >∠B >∠A .a 2+b 2-c 24m 2+9m 2-16m 21∴cos C ===-<0.2ab 42×2m ×3m∴∠C 是钝角.∴△ABC 是钝角三角形.应用2:解:解法一:由正弦定理,得2sin B =sin A +sin C .∵∠B =60°,∴∠A +∠C =120°.∴∠A =120°-∠C ,代入上式,得2sin 60°=sin (120°-C )+sin C ,31展开,整理得sin C +cos C =1.22∴sin(C +30°)=1.∴∠C +30°=90°.∴∠C =60°.故∠A =60°.∴△ABC 为等边三角形.解法二:由余弦定理,得b 2=a 2+c 2-2ac cos B .a +c ∵∠B =60°,b =,2a +c 2∴()=a 2+c 2-2ac cos 60°.2整理,得(a -c )2=0,∴a =c .从而a =b =c .∴△ABC 为等边三角形.专题二a b c 应用1:证明:(1)由正弦定理,设===k ,sin A sin B sin Ck 2sin 2A +k 2sin 2B sin 2A +sin 2B 显然k ≠0,所以,左边===右边,即原等式成立.k 2sin 2C sin 2Cb 2+c 2-a 2c 2+a 2-b 2a 2+b 2-c 2(2)根据余弦定理,右边=2(bc ·+ca ·+ab ·)=(b 2+c 2-a 2)2bc 2ca 2ab222222222+(c +a -b )+(a +b -c )=a +b +c =左边,即原等式成立.222b 2+c 2-a 2cos A b +c -a 应用2:证明:由余弦定理,得cos A =,所以cot A ===2bc sin A 2bc sin Ab 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2,同理可得cot B =,cot C =,所以cot A +cot B +cot C =4S 4S 4Sb 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2a 2+b 2+c 2++=.4S 4S 4S 4S专题三2应用:解:∵sin A +cos A =2cos (A -45°)=,21∴cos (A -45°)=.2又∵0°<∠A <180°,∴∠A =105°.tan 45°+tan 60°∴tan A =tan (45°+60°)==-2-3,1-tan 45°tan 60°2+6sin A =sin (45°+60°)=sin 45°cos 60°+cos 45°sin 60°=.4又∵AC =2,AB =3,2+6311∴S △ABC =AC ·AB ·sin A =×2×3×=(2+6).2244专题四cos C 2a -c 2sin A -sin C 应用1:解:(1)由==,得cos B b sin Bcos C ·sin B =2sin A ·cos B -cos B ·sin C .∴2sin A ·cos B =sin B ·cos C +cos B ·sin C=sin (B +C )=sin (π-A )=sin A .1∵sin A ≠0,∴cos B =.2(2)∵b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =7,又a +c =4,∴(a +c )2-3ac =7.∴ac =3.11333∴S △ABC =ac sin B =×3×=.2224应用2:解:(1)由3a =2c sin A 及正弦定理,得a 2sin A sin A ==.c sin C 33∵sin A ≠0,∴sin C =.2∵△ABC 是锐角三角形,π∴∠C =.3π(2)∵c =7,∠C =.由面积公式,得31π33ab sin =,∴ab =6.①232π由余弦定理,得c 2=a 2+b 2-2ab cos =7,即a 2+b 2-ab =7.②3由①②,得(a +b )2=25,故a +b =5.专题五应用1:解:在△ABC 中,∠BAC =15°,∠ACB =25°-15°=10°.根据正弦定理,AB sin ∠BAC 5sin 15°得BC ==≈7.452 4(km),sin 10°sin ∠ACBCD =BC tan ∠DBC =BC ×tan 8°≈1.047 (km).答:山的高度约为1.047 km.应用2:解:设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB =10x ,AB =14x ,AC =9,∠ACB =75°+45°=120°,222∴(14x )=9+(10x )-2×9×10x cos 120°,2化简,得32x -30x -27=0.39解得x =或x =-(舍去).216∴BC =10x =15,AB =14x =21.BC sin 120°15353又∵sin ∠BAC ==×=,AB 21214∴∠BAC =38°13′或∠BAC =141°47′(钝角不合题意,舍去).∴38°13′+45°=83°13′.答:巡逻艇应该沿北偏东83°13′方向去追,经过1.5小时才能追赶上该走私船.真题放送31.D 设BD =a ,则BC =2a ,AB =AD =a .2在△ABD 中,由余弦定理,得33(a )2+(a )2-a 222222AB +AD -BD 1cos A ===.2AB ·AD 3332×a ·a 2222又∵∠A 为△ABC 的内角,∴sin A =.3BC AB 在△ABC 中,由正弦定理,得=.sin A sin C3a 222AB 6∴sin C =·sin A =·=.BC 2a 361132.2在△ABC 中,由面积公式得S =BC ·CA ·sin C =×2·AC ·sin60°=AC =3,∴AC 2221=2.再由余弦定理,得AB 2=BC 2+AC 2-2·AC ·BC ·cos C =22+22-2×2×2×=4.∴AB =2.23.15如图,在△ABD 中,由余弦定理得2AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=9+1-2×3×cos 60°=7,∴AD =7,AB 2+AD 2-BD 29+7-15∴cos ∠BAD ===.2AB ·AD 2×3×727515于是,AB ·AD =|AB ||AD |cos ∠BAD =3×7×=.2724.解:(1)因为c sin A =a cos C ,由正弦定理,得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0.从而sin C =cos C .π又cos C ≠0,所以tan C =1,则∠C =.43π(2)由(1)知,B =-A .于是4π3sin A -cos(B +)4=3sin A -cos(π-A )=3sin A +cos Aπ=2sin(A +).63πππ11π因为0<A <,所以<A +<.46612ππππ从而当A +=,即A =时,2sin(A +)取最大值2.6236ππ5π综上所述,3sin A -cos(B +)的最大值为2,此时∠A =,∠B =.431215.解:(1)∵c 2=a 2+b 2-2ab cos C =1+4-4×=4,4∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.1(2)∵cos C =,4115∴sin C =1-cos 2C =1-()2=.44154a sin C 15∴sin A ===.c 28∵a <c ,∴∠A <∠C .故∠A 为锐角.1527)=.88∴cos(A -C )=cos A cos C +sin A sin C71151511=×+×=.8484166.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .b 故sin B =2sin A ,所以= 2.a(2)由余弦定理和c 2=b 2+3a 2,(1+3)a 得cos B =.2c由(1)知b 2=2a 2,故c 2=(2+3)a 2.12可得cos 2B =,又cos B >0,故cos B =,22所以∠B =45°.5a +c =,47.解:(1)由题设和正弦定理,得1ac =,4∴cos A =1-sin 2A =1-(⎧⎨⎩1a =1,⎧⎧⎪⎪a =4,解得⎨1或⎨c =,⎪⎪⎩4⎩c =1.11(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-b 2-b 2cos B ,2231即p2=+cos B,223因为0<cos B<1,得p2∈(,2).2由题设知p>0,所以6<p< 2. 2。
1.2应用举例第1课时距离问题课时过关·能力提升基础巩固1已知A,B两地相距10 km,B,C两地相距20 km,且∠ABC=120°,则A,C两地相距().A.10 kmB.10√3 kmC.10√5 kmD.10√7 km答案:D2如图,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为().A.a kmB.√3a kmC.√2a kmD.2a km解析:由题意知,在△ABC中,AC=BC=a km,∠ACB=120°,则AB2=AC2+BC2-2AC·BC·cos∠ACB=a2+a2-2a2cos120°=3a2,故AB=√3a km.答案:B3如图,B,C两点在河的两岸,在河岸AC测量BC的距离有下列四组数据,较适宜测量的数据是().A.γ,c,αB.b,c,αC.c,α,βD.b,α,γ答案:D4在△ABC中,B=70°,C=36°,a=4,则c等于().A.4sin36°sin70°B.4sin70°sin36°C.4sin36°sin74°D.4sin74°sin36°答案:C5在△ABC中,已知a=4,b=6,C=120°,则sin A的值为().A.√5719B.√217C.√338D.−√5719解析:c2=a2+b2-2ab cos C=42+62-2×4×6×cos120°=76,则c=2√19.由asinA =csinC,得sin A=asinCc=√5719.答案:A6某人向正东方向走了x km后向右转了150°,然后沿新方向走了3 km,结果离出发点恰好为√3 km,那么x的值为().A.√3B.2√3C.2√3或√3D.3解析:如图,若设出发点为A,则有AC2=AB2+BC2-2AB·BC·cos∠ABC,则(√3)2=x2+9−2x×3cos30°,解得x=2√3或x=√3.答案:C7如图,为了测量河的宽度,在一岸边选定两点A,B,分别在A,B点望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度CD为.解析:tan30°=CDAD ,tan75°=CDDB,又AD+DB=AB=120m,∴AD tan30°=(120-AD)tan75°.∴AD=60√3m.故CD=60m.答案:60 m8一艘船在海上由西向东航行,在A处望见灯塔C在船的东北方向,半小时后在B处望见灯塔C 在船的北偏东30°方向,航速为30海里/时,当船到达D处时望见灯塔C在船的西北方向,求A,D两点间的距离.解如图,在△ABC中,A=45°,∠ABC=120°,AB=15,∠ACB=15°,由正弦定理,得ACsin120°=15sin15°,∴AC=3√2+√62×15.∴AD=√2AC=15(3+√3)(海里).答:A,D两点间的距离是15(3+√3)海里.9海上某货轮在A处看灯塔B在货轮北偏东75°,距离为12√6 n mile;在A处看灯塔C,在货轮的北偏西30°,距离为8√3 n mile;货轮向正北由A处航行到D处时看灯塔B在北偏东120°,求:(1)A处与D处之间的距离;(2)灯塔C与D处之间的距离.解由题意,画出示意图.(1)在△ABD中,由已知得∠ADB=60°,B=45°,AB=12√6nmile.由正弦定理得AD=ABsin60°sin45°=24(nmile).(2)在△ADC中,由余弦定理得CD2=AD2+AC2-2AD·AC cos30°=242+(8√3)2−2×24×8√3×√32=192,故CD=8√3(n mile).答:A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为8√3nmile.能力提升1在△ABC中,已知B=60°,最大边与最小边的比为√3+12,则三角形的最大角为().A.60°B.75°C.90°D.115°解析:设最大边为a,最小边为c,则最大角为A,最小角为C,且sinAsinC=sin(120°-C)sinC=√3+12,整理得tan C=1.又0°<C<120°,∴C=45°.∴A=180°-(B+C)=180°-(60°+45°)=75°.答案:B2如图,某炮兵阵地位于A点,两个观察所分别位于C,D两点.已知△ACD为等边三角形,且DC=√3 km,当目标出现在B点时,测得∠CDB=45°,∠BCD=75°,则炮兵阵地与目标的距离约是().A.1.1 kmB.2.2 kmC.2.9 kmD.3.5 km解析:∠CBD=180°-∠BCD-∠CDB=60°.在△BCD 中,由正弦定理,得BD =CDsin75°sin60°=√6+√22.在△ABD 中,∠ADB=45°+60°=105°. 由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos105°=3+(√6+√2)24+2×√3×√6+√22×√6-√24=5+2√3.则AB =√5+2√3≈2.9(km).故炮兵阵地与目标的距离约是2.9km. 答案:C3已知A 船在灯塔C 北偏东80°,且A 到C 的距离为2 km,B 船在灯塔C 北偏西40°,A ,B 两船的距离为3 km,则B 到C 的距离为 .解析:如图所示,在△ABC 中,∠ACB=40°+80°=120°,AB=3km,AC=2km.设BC=a km.由余弦定理,得cos ∠ACB =BC 2+AC 2-AB 22BC ·AC, 即cos120°=a 2+4-94a, 解得a =√6−1或a=−√6−1(舍去),即B 到C 的距离为(√6−1)km. 答案:(√6−1)km★4某观测站C 在A 城的南偏西20°的方向,由A 城出发有一条公路,公路走向是南偏东40°,在公路上测得距离C 31 km 的B 处有一人正沿公路向A 城走去,走了20 km 后到达D 处,此时C ,D 之间相距21 km,问此人还要走多远才能到达A 城?解如图,∠CAB=60°,BD=20,CB=31,CD=21.在△BCD 中,由余弦定理,得cos ∠BDC =BD 2+CD 2-CB 22BD ·CD=202+212-3122×20×21=−17,则sin ∠BDC =4√37.在△ACD 中,∠ACD=∠BDC-∠CAD=∠BDC-60°.由正弦定理,可得AD =CDsin∠ACDsin60°. ∵sin ∠ACD=sin(∠BDC-60°)=sin ∠BDC cos60°-cos ∠BDC sin60°=5√314, ∴AD =21×5√314√32=15(km).答:此人还要走15km 才能到达A 城.★5如图,一人在C 地看到建筑物A 在正北方向,另一建筑物B 在北偏西45°方向,此人向北偏西75°方向前进√30 km 到达D,看到A 在他的北偏东45°方向,B 在他的北偏东75°方向,试求这两座建筑物之间的距离.解由题意得,DC=√30,∠ADB=∠BCD=30°=∠BDC,∠DBC=120°,∠ADC=60°,∠DAC=45°.在△BDC中,由正弦定理可得,BC=DCsin∠BDCsin∠DBC =√30sin30°sin120°=√10.在△ADC中,由正弦定理可得,AC=DCsin∠ADCsin∠DAC =√30sin60°sin45°=3√5.在△ABC中,由余弦定理可得AB2=AC2+BC2-2AC·BC cos∠ACB=(3√5)2+(√10)2−2×3√5×√10×cos45°=25,解得AB=5.答:这两座建筑物之间的距离为5km.。
A BCj图1-2图1-1新课标理念下高中数学必修5第一章 解三角形教法学法的探究交流本章概述:本章是在学习三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们解决一些与测量和几何计算有关的实际问题。
本章的主要内容是两个重要定理,即正弦定理和余弦定理以及这两个定理在解斜三角形中的应用。
教材地位:本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的。
正、余弦定理是我们学习有关三角形知识的继续和发展,它们进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求解三解形的重要工具。
本章内容与三角形定性研究的结论相联系,与三角函数相联系,同时也体现了向量及其运算的应用。
高考中常与三角函数和向量知识联系起来考查,是高考的一个热点内容。
课标要求:1、理解并掌握正弦定理和余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
学法指导:1、重视数学思想方法的运用。
解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题时,要注意函数与方程思想的运用。
2、加强新旧知识的联系。
本章知识与初中学习的三角形的边、角关系有着密切联系。
同时,要注意与三角函数、平面向量等知识的联系,将新知识融入已有的知识体系,从而提高综合运用知识的能力。
3、提高数学建模能力。
利用解三角形解决相关的实际问题,根据题意,找出量与量之间的关系,作出示意图,将实际问题抽象成解三角形模型。
学科实践:本章知识在现实生活中有着广泛的应用,如天文测量、航海测量、地理测量以及日常生活中的距离、高度、角度的测量等,解三角形的理论被用于解决许多测量问题。
因此,通过本章的学习,能提高学生解决关于测量和几何计算的实际问题的能力和数学建模能力。
知识点1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin == 正弦定理给出了任意三角形中,三条边及其对应角的正弦值之间的对应关系。
专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。
复习课 解三角形
课时目标 1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问
题. 2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的
实际问题.
一、选择题
1.在△ABC中,A=60°,a=43,b=42,则B等于( )
A.45°或135° B.135°
C.45° D.以上答案都不对
2.在△ABC中,已知cos Acos B>sin Asin B,则△ABC是( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等腰三角形
3.已知△ABC中,sin A∶sin B∶sin C=k∶(k+1)∶2k,则k的取值范围是( )
A.(2,+∞) B.(-∞,0)
C.-12,0 D.12,+∞
4.如图所示,D、C、B三点在地面同一直线上,DC=a,从C、D两点测得A点的仰
角分别是β、α(β<α).则A点离地面的高AB等于( )
A.asin αsin βsinα-β B.asin αsin βcosα-β
C.asin αcos βsinα-β D.acos αcos βcosα-β
5.在△ABC中,A=60°,AC=16,面积为2203,那么BC的长度为( )
A.25 B.51 C.493 D.49
6.在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=3bc,sin C=23sin
B,则A等于( )
A.30° B.60°
C.120° D.150°
二、填空题
7.三角形两条边长分别为3 cm,5 cm,其夹角的余弦值是方程5x2-7x-6=0的根,则
此三角形的面积是________cm2.
8.在△ABC中,A=60°,b=1,S△ABC=3,则asin A=__________.
9.在△ABC中,a=x,b=2,B=45°,若三角形有两解,则x的取值范围是
______________.
10.一艘船以20 km/h的速度向正北航行,船在A处看见灯塔B在船的东北方向,1 h
后船在C处看见灯塔B在船的北偏东75°的方向上,这时船与灯塔的距离BC等于
________km.
三、解答题
11.在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sin A=2sin Bcos C,试确定△ABC
的形状.
12.在△ABC中,若已知三边为连续正整数,最大角为钝角.
(1)求最大角的余弦值;
(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积.
能力提升
13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos 2C=-14.
(1)求sin C的值;
(2)当a=2,2sin A=sin C时,求b及c的长.
14.如图所示,已知在四边形ABCD中,AD⊥CD,AD=10,AB=14,∠BDA=60°,
∠BCD=135°,求BC的长.
1.在解三角形时,常常将正弦定理、余弦定理结合在一起用,要注意恰当的选取定理,
简化运算过程.
2.应用正、余弦定理解应用题时,要注意先画出平面几何图形或立体图形,再转
化为解三角形问题求解,即先建立数学模型,再求解.
复习课 解三角形
答案
作业设计
1.C
2.C
3.D
4.A
5.D
6.A
7.6
解析 由5x2-7x-6=0,解得x1=-35,x2=2.
∵x2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,
得sin θ=45,∴S=12×3×5×45=6 (cm2).
8.2393.
解析 由S=12bcsin A=12×1×c×32=3,∴c=4.
∴a=b2+c2-2bccos A=12+42-2×1×4cos 60°=13.
∴asin A=13sin 60°=2393.
9.(2,22)
解析 因为三角形有两解,所以asin B10.202
解析 如图所示,BCsin 45°=ACsin 30°
∴BC=ACsin 30°×sin 45°=2012×22=202 (km).
11.解 由(a+b+c)(b+c-a)=3bc,
得b2+2bc+c2-a2=3bc,
即a2=b2+c2-bc,∴cos A=b2+c2-a22bc=bc2bc=12,
∴A=π3.
又sin A=2sin Bcos C.
∴a=2b·a2+b2-c22ab=a2+b2-c2a,
∴b2=c2,b=c,∴△ABC为等边三角形.
12.解 (1)设这三个数为n,n+1,n+2,最大角为θ,
则cos θ=n2+n+12-n+222·n·n+1<0,
化简得:n2-2n-3<0-1
∴n=2.
∴cos θ=4+9-162×2×3=-14.
(2)设此平行四边形的一边长为a,则夹θ角的另一边长为4-a,平行四边形的面积为:
S=a(4-a)·sin θ=154(4a-a2)=
15
4
≤15.
当且仅当a=2时,Smax=15. ∴sin C=104. 得cos C=±64. ∴ b=6,c=4或 b=26,c=4. 在△BCD中,由正弦定理BCsin∠CDB=BDsin∠BCD, ∴BC=16sin 30°sin 135°=82.
13.解 (1)∵cos 2C=1-2sin2C=-14,0
(2)当a=2,2sin A=sin C时,
由正弦定理asin A=csin C,
得c=4.
由cos 2C=2cos2C-1=-14及0
由余弦定理c2=a2+b2-2abcos C,
得b2±6b-12=0(b>0),
解得b=6或26,
14.解 设BD=x,在△ABD中,由余弦定理有
AB2=AD2+BD2-2AD·BD·cos∠ADB,
即142=x2+102-20xcos 60°,
∴x2-10x-96=0,
∴x=16(x=-6舍去),
即BD=16.