【高考理数】利用导数解决不等式问题(解析版)
- 格式:docx
- 大小:145.43 KB
- 文档页数:21
高考中利用导数证明不等式的一些策略1与lnx分开来考虑,即将f(x)分解为两个函数的和:f(x)=lnx+2ex-1.然后分别对这两个函数求导,得到f'(x)=1/x+2ex>0,说明f(x)在定义域上单调递增,且f(0)=1,因此f(x)>1成立。
评注:对于这种需要分离成两个函数的不等式,可以先观察不等式的特征,尝试将其分解为两个函数的和或差,然后分别对这些函数求导来证明不等式。
类型三、需要构造辅助函数的不等式1.利用辅助函数构造上下界例3(2016年全国卷1第23题改编)已知a,b,c>0,证明:(a+b+c)(1/a+1/b+1/c)≥9分析:将(a+b+c)(1/a+1/b+1/c)展开,得到a/b+b/a+a/c+c/a+b/c+c/b+3≥9.观察不等式中的每一项,可以发现这些项都可以表示为三个数的和,因此可以构造辅助函数f(x)=ln(x)+1/x-1,然后对f(x)求导,得到f'(x)=1/x^2-1,f'(x)>0当且仅当x1,因此f(x)在(0,1)和(1,∞)上分别是减函数和增函数。
接着,将a/b+b/a+a/c+c/a+b/c+c/b分别表示为f(ab)+f(ac)+f(bc)+3,然后应用均值不等式,得到f(ab)+f(ac)+f(bc)≥3f((abc)^(2/3))=3ln(abc)+3/(abc)^(2/3)-3.将此式代入原不等式中,得到3ln(abc)+3/(abc)^(2/3)≥6,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3.再次利用辅助函数,构造g(x)=lnx+(1/3)x^(-2/3)-2/3,对其求导得到g'(x)=1/x-(2/9)x^(-5/3),g'(x)>0当且仅当x9/4,因此g(x)在(0,9/4)和(9/4,∞)上分别是减函数和增函数。
由于a,b,c>0,因此abc>0,因此可将不等式中的abc替换为x,得到g(abc)≥0,即ln(abc)+(1/3)/(abc)^(2/3)-2/3≥0,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3,因此原不等式成立。
利用导数证明或解决不等式问题导数是微积分中的重要概念,在解决不等式问题中,导数可以发挥很大的作用。
下面我们将以一些具体的例子来说明如何利用导数证明或解决不等式问题。
例子1:证明不等式x^2≥0在实数域中恒成立。
解析:对于任意实数x,在实数域中,不管x取何值,其平方x^2都大于等于0。
我们可以通过导数来证明这个不等式。
对x^2进行求导,得到导函数2x。
我们知道,导数表示函数的变化率,对于x^2来说,导函数2x表示了函数的斜率,也就是说,无论x取何值,函数x^2的斜率总为正数或者0。
因为函数的斜率总是非负的,所以x^2≥0在实数域中恒成立。
例子2:求函数f(x)=x^3-3x^2+2x的极值点。
解析:要求函数f(x)的极值点,我们可以先求出函数的导数f'(x),然后将f'(x)=0进行求解。
导数为0的点即为极值点。
将f'(x)=3x^2-6x+2=0进行求解,可以得到x=1或者x=2。
接下来,我们可以求出函数在x=1和x=2处的函数值,并比较求出极值点。
f(1)=1^3-3*1^2+2*1=0f(2)=2^3-3*2^2+2*2=0对f(x)进行求导,得到导函数f'(x)=3x^2-6。
接下来,我们可以将x轴上的一些点带入函数f'(x)进行判断。
当x<−√2时,f'(x)>0;当−√2<x<√2时,f'(x)<0;当x>√2时,f'(x)>0。
由此可见,函数f(x)=x^3-6x在区间(−∞,−√2),(−√2,√2),(√2,+∞)上是单调的。
高考数学第一轮复习:《利用导数证明不等式》利用导数证明不等式是高考的热点问题,常作为解答题的一问出现,难度较大,解决此类问题一般是通过构造函数把不等式问题转化为求函数单调性或最值问题解决.构造法证明一元不等式问题已知f(x)=x ln x,g(x)=-x2+ax-3.(1)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(2)证明:对一切x∈(0,+∞),都有ln x>1e x-2e x成立.解:(1)∀x∈(0,+∞),有2x ln x≥-x2+ax-3,则a≤2ln x+x+3x,设h(x)=2ln x+x+3x(x>0),则h′(x)=(x+3)(x-1)x2,①当x∈(0,1)时,h′(x)<0,h(x)单调递减,②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,所以h(x)min=h(1)=4.因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4.(2)证明问题等价于证明x ln x>xe x-2e(x∈(0,+∞)).f(x)=x ln x(x∈(0,+∞))的最小值是-1 e ,当且仅当x=1e 时取到,设m(x)=xe x-2e(x∈(0,+∞)),则m′(x)=1-xe x,易知m(x)max=m(1)=-1e,当且仅当x=1时取到.从而对一切x∈(0,+∞),都有ln x>1e x -2e x成立.【反思归纳】利用导数法证明不等式f(x)>g(x)在区间D上恒成立的基本方法是构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0,若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min≥g(x)max;若f(x)与g(x)的最值不易求出,可对h(x)=f(x)-g(x)适当变形后进行转化.【即时训练】已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.解:(1)f(x)的定义域为(0,+∞).设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g′(1)=0,而g′(x)=a-1x,g′(1)=a-1,得a=1.若a=1,则g′(x)=1-1x.当0<x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增.所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)由(1)知f(x)=x2-x-x ln x,f′(x)=2x-2-ln x.设h(x)=2x-2-ln x,则h′(x)=2-1x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0.所以h (x )在⎝ ⎛⎭⎪⎫0,12单调递减,在⎝ ⎛⎭⎪⎫12,+∞单调递增. 又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在(0,12)有唯一零点x 0在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0;当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14.因为x =x 0是f (x )在(0,1)的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.不等式恒成立问题已知函数f (x )=m (x -1)e x +x 2(m ∈R ). (1)若m =-1,求函数f (x )的单调区间;(2)若对任意的x <0,不等式x 2+(m +2)x >f ′(x )恒成立,求m 的取值范围. 解:(1)当m =-1时,f (x )=(1-x )e x +x 2, 则f ′(x )=x (2-e x ), 由f ′(x )>0得,0<x <ln 2, 由f ′(x )<0得x <0或x >ln 2,故函数f (x )的单调递增区间为(0,ln 2),单调递减区间为(-∞,0),(ln 2,+∞). (2)依题意,f ′(x )=mx ⎝ ⎛⎭⎪⎫e x +2m <x 2+(m +2)x ,x <0,因为x <0,所以m e x -x -m >0, 令h (x )=m e x -x -m ,则h ′(x )=m e x -1, 当m ≤1时,h ′(x )≤e x -1<0,则h(x)在(-∞,0)上单调递减,所以h(x)>h(0)=0,符合题意;当m>1时,h(x)在(-∞,-ln m)上单调递减,在(-ln m,0)上单调递增,所以h(x)min=h(-ln m)<h(0)=0,不合题意.综上所述,m的取值范围为(-∞,1].【反思归纳】二元不等式问题有两种形式,一种形式是对于同一个函数的两个不同自变量而言,一种形式则是对不同函数的不同自变量而言.利用导数解决第一种形式的二元不等式的基本思想是把这个二元不等式转化为一元不等式,通过构造函数,然后按照导数研究一元不等式的方法解决.转化的基本思路有两个,一是根据函数的单调性把不等式转化为一个函数在指定的区间上是单调的,二是通过“齐次变换”把不等式转化为一元不等式,然后构造函数.对于第二种形式则是转化为不同函数的最值进行解答.提醒:在把不等式转换为一元不等式时要注意变换的等价性,以及变换后函数的定义域.【即时训练】函数f(x)=e x-x-1,g(x)=e x(ax+x cos x+1).(1)求函数f(x)的极值;(2)若a>-1,证明:当x∈(0,1)时,g(x)>1.解析:(1)函数f(x)=e x-x-1的定义域为(-∞,+∞),f′(x)=e x-1,由f′(x)>0得x>0,f′(x)<0得x<0,所以函数f(x)在(-∞,0)单调递减,在(0,+∞)上单调递增,所以函数f(x)只有极小值f(0)=0,(2)不等式g(x)>1等价于ax+x cos x+1>1e x,由(1)得:e x≥x+1,所以1e x <1x+1,x∈(0,1),所以(ax+x cos x+1)-1e x>(ax+x cos x+1)-1x+1=ax+x cos x+x x+1=x(a+cos x+1x+1).令h (x )=cos x +a +1x +1,则h ′(x )=-sin x -1(x +1)2,当x ∈(0,1)时,h ′(x )<0, 所以h (x )在(0,1)上为减函数,因此,h (x )>h (1)=a +12+cos 1,因为cos 1>cos π3=12,所以,当a >-1时,a +12+cos 1>0,所以h (x )>0,而x ∈(0,1),所以g (x )>1.赋值法证明正整数不等式问题已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意;②若a >0,由f ′(x )=1-a x =x -ax 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增.故x =a 是f (x )在(0,+∞)的唯一最小值点.由于f (1)=0,所以当且仅当a =1时,f (x )≥0.故a =1. (2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n 得ln(1+12n )<12n .从而 ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1. 故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e. 而(1+12)(1+122)(1+123)>2,所以m 的最小值为3.【反思归纳】利用导数研究的正整数不等式一般都与题目给出的函数不等式有关,如本例中给出的函数f(x)在a=12,x≥1时,有不等式12x-1x≥ln x,根据函数的定义域,这个不等式当然对一切大于等于1的数成立,这样根据所证不等式的特点,给定x以适当的数值即可证明正整数不等式.凡涉及从1到n的整数的不等式,而且不等式中含有ln n的问题,一般都是通过赋值使之产生ln n+1n,ln nn-1等使问题获得解决的,如证明12+23+…+nn+1<n+ln2-ln(n+2)时,就是通过变换nn+1=1-1n+1,进而通过不等式x>ln(1+x)(x>0),得1n>ln1+1n=ln(n+1)-ln n,累加后得出的.提醒:证明正整数不等式时,要把这些正整数放在正实数的范围内,通过构造正实数的不等式进行证明,而不能直接构造正整数的函数,因为这样的函数不是可导函数,使用导数就是错误的.【即时训练】已知函数f(x)=e x-ax-a(其中a∈R,e是自然对数的底数,e=2.718 28…).(1)当a=e时,求函数f(x)的极值;(2)当0≤a≤1时,求证f(x)≥0;(3)求证:对任意正整数n,都有1+121+122…1+12n<e.(1)解:当a=e时,f(x)=e x-e x-e,f′(x)=e x-e,当x<1时,f′(x)<0;当x>1时,f′(x)>0;所以函数f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,所以函数f(x)在x=1处取得极小值f(1)=-e,函数f(x)无极大值;(2)解:由f(x)=e x-ax-a,f′(x)=e x-a①当a=0时,f(x)=e x≥0恒成立,满足条件,②当0<a≤1时,由f′(x)=0,得x=ln a,则当x ∈(-∞,ln a )时,f ′(x )<0, 当x ∈(ln a ,+∞)时,f ′(x )>0, 所以函数f (x )在(-∞,ln a )上单调递减, 在(ln a ,+∞)上单调递增,所以函数f (x )在x =ln a 处取得极小值即为最小值, f (x )min =f (ln a )=e ln a -a ln a -a =-a ln a . 因为0<a ≤1,所以ln a ≤0, 所以-a ln a ≥0, 所以f (x )min ≥0,综上得,当0≤a ≤1时,f (x )≥0;(3)证明:由(2)知,当a =1时,f (x )≥0恒成立, 所以f (x )=e x -x -1≥0恒成立, 即e x ≥x +1,所以ln (x +1)≤x ,令x =12n (n ∈N +), 得ln 1+12n ≤12n ,所以ln 1+12+ln 1+122+…+ln 1+12n ≤12+122+…+12n =121-12n 1-12=1-12n<1,所以1+121+122…1+12n <e.课时作业1.已知函数f (x )=ln x 0若x 1>x 2>0,求证:f (x 1)-f (x 2)x 1-x 2>2x 2x 21+x 22.解:当x 1>x 2>0时,不等式f (x 1)-f (x 2)x 1-x 2>2x 2x 21+x 22等价于ln x 1x 2>2x 1x 2-2⎝ ⎛⎭⎪⎫x 1x 22+1,即ln x 1x 2>2⎝ ⎛⎭⎪⎫x 1x 2-1⎝ ⎛⎭⎪⎫x 1x 22+1.令x=x1x2(x>1),构造函数F(x)=ln x-2(x-1)1+x2(x>1),F′(x)=1x--2x2+4x+2(1+x2)2=x4+2x3-2x2-2x+1x(1+x2)2=(x2-1)(x2+2x-1)x(1+x2)2>0,所以F(x)在(1,+∞)上单调递增,F(x)>F(1)=0,即ln x>2(x-1)1+x2,所以原不等式成立.2.已知函数f(x)=mx-mx,g(x)=2ln x,(1)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根;(3)当x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.解析:(1)m=2时,f(x)=2x-2x,f′(x)=2+2x2,f′(1)=4,切点坐标为(1,0),∴切线方程为y=4x-4(2)m=1时,令h(x)=f(x)-g(x)=x-1x-2ln x,h′(x)=1+1x2-2x=(x-1)2x2≥0,∴h(x)在(0,+∞)上为增函数,又h(1)=0,所以f(x)=g(x)在(1,+∞)内无实数根.(3)mx-mx-2ln x<2恒成立,即m(x2-1)<2x+2x ln x恒成立.又x2-1>0,则当x∈(1,e]时,m<2x+2x ln xx2-1恒成立,令G(x)=2x+2x ln xx2-1,只需m小于G(x)的最小值.G′(x)=-2(x2ln x+ln x+2)(x2-1)2,∵1<x≤e,∴ln x>0,∴x∈(1,e]时,G′(x)<0,∴G (x )在(1,e]上单调递减,∴G (x )在(1,e]的最小值为G (e)=4ee 2-1, 则m 的取值范围是⎝ ⎛⎭⎪⎫-∞,4e e 2-1. 3.已知定义在正实数集上的函数f (x )=12x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y =f (x ),y =g (x )有公共点,且在该点处的切线相同.(1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).解:(1)设两曲线的公共点为(x 0,y 0),f ′(x )=x +2a , g ′(x )=3a 2x , 由题意知f (x 0)=g (x 0), f ′(x 0)=g ′(x 0),即⎩⎪⎨⎪⎧12x 20+2ax 0=3a 2ln x 0+b ,x 0+2a =3a 2x 0.由x 0+2a =3a 2x 0,得x 0=a 或x 0=-3a (舍去).即有b =12a 2+2a 2-3a 2ln a =52a 2-3a 2ln a . 令h (t )=52t 2-3t 2ln t (t >0). 则h ′(t )=2t (1-3ln t ), 于是当t (1-3ln t )>0, 即0<t <e 13时,h ′(t )>0;当t (1-3ln t )<0,即t >e 13时,h ′(t )<0.故h (t )在(0,e 13)上为增函数,在(e 13,+∞)上为减函数,于上h (t )在(0,+∞)上的最大值为h (e 13)=32e 23, 即b 的最大值为32e 23.(2)证明 设F (x )=f (x )-g (x )=12x 2+2ax -3a 2ln x -b (x >0), 则F ′(x )=x +2a -3a 2x =(x -a )(x +3a )x (x >0).故F (x )在(0,a )上为减函数,在(a ,+∞)上为增函数. 于是F (x )在(0,+∞)上的最小值是 F (a )=F (x 0)=f (x 0)-g (x 0)=0. 故当x >0时,有f (x )-g (x )≥0. 即当x >0时,f (x )≥g (x ).4.已知a 为实数,函数f (x )=a ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取得极值?证明你的结论;(2)设g (x )=(a -2)x ,若∃x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f (x 0)≤g (x 0)成立,求实数a 的取值范围.解:(1)函数f (x )定义域为(0,+∞), f ′(x )=ax +2x -4=2x 2-4x +a x.假设存在实数a ,使f (x )在x =1处取极值,则f ′(1)=0,∴a =2,此时,f ′(x )=2(x -1)2x ,当x >0时,f ′(x )≥0恒成立, ∴f (x )在(0,+∞)上单调递增, ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取得极值.(2)由f (x 0)≤g (x 0),得(x 0-ln x 0)a ≥x 20-2x 0,记F (x )=x -ln x (x >0),∴F ′(x )=x -1x (x >0),∴当0<x <1时,F ′(x )<0,F (x )单调递减; 当x >1时,F ′(x )>0,F (x )单调递增. ∴F (x )>F (1)=1>0,∴a ≥x 20-2x 0x 0-ln x 0,记G (x )=x 2-2x x -ln x, x ∈⎣⎢⎡⎦⎥⎤1e ,e , ∴G ′(x )=(2x -2)(x -ln x )-(x -2)(x -1)(x -ln x )2=(x -1)(x -2ln x +2)(x -ln x )2. ∵x ∈⎣⎢⎡⎦⎥⎤1e ,e , ∴2-2ln x =2(1-ln x )≥0,∴x -2ln x +2>0,∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G ′(x )<0,G (x )单调递减; x ∈(1,e)时,G ′(x )>0,G (x )单调递增, ∴G (x )min =G (1)=-1,∴a ≥G (x )min =-1.故实数a 的取值范围为[-1,+∞).。
1.已知函数f (x )=x 2-ax -a ln x (a ∈R ).(1)若函数f (x )在x =1处取得极值,求a 的值;(2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116.2.(优质试题·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ).(1)若函数y =h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.3.(优质试题·山西四校联考)已知f (x )=ln x -x +a +1.(1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围;(2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12成立.4.已知函数f (x )=(2-a )ln x +1x +2ax .(1)当a <0时,讨论f (x )的单调性;(2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.5.(优质试题·福州质检)设函数f (x )=e x -ax -1.(1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;(2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.答案精析1.(1)解 f ′(x )=2x -a -a x ,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1.(2)证明 由(1)知,f (x )=x 2-x -ln x ,令g (x )=f (x )-⎝ ⎛⎭⎪⎫-x 33+5x 22-4x +116 =x 33-3x 22+3x -ln x -116,由g ′(x )=x 2-3x +3-1x =x 3-1x -3(x -1)=(x -1)3x (x >0),可知g (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116成立.2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0),由h ′(x )=2x 2-ax +1x(x >0), 若h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1, 由h ′(1)=h ′⎝ ⎛⎭⎪⎫12=0,解得a =3, 而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x(x >0).由h ′(x )<0,解得x ∈⎝ ⎛⎭⎪⎫12,1, 即h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1, ∴a =3.(2)由题意知x 2-ax ≥ln x (x >0),∴a ≤x -ln x x (x >0).令φ(x )=x -ln x x (x >0),则φ′(x )=x 2+ln x -1x 2, ∵y =x 2+ln x -1在(0,+∞)上是增函数,且x =1时,y =0. ∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0,即φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数,∴φ(x )min =φ(1)=1,故a ≤1.即实数a 的取值范围为(-∞,1].3.(1)解 原题即为存在x >0,使得ln x -x +a +1≥0,∴a ≥-ln x +x -1,令g (x )=-ln x +x -1,则g ′(x )=-1x +1=x -1x .令g ′(x )=0,解得x =1.∵当0<x <1时,g ′(x )<0,g (x )为减函数,当x >1时,g ′(x )>0,g (x )为增函数,∴g (x )min =g (1)=0,a ≥g (1)=0.故a 的取值范围是[0,+∞).(2)证明 原不等式可化为12x 2+ax -x ln x -a -12>0(x >1,a ≥0).令G (x )=12x 2+ax -x ln x -a -12,则G (1)=0.由(1)可知x -ln x -1>0,则G ′(x )=x +a -ln x -1≥x -ln x -1>0,∴G (x )在(1,+∞)上单调递增,∴G (x )>G (1)=0成立,∴12x 2+ax -x ln x -a -12>0成立,即12x 2+ax -a >x ln x +12成立.4.解 (1)求导可得f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2, 令f ′(x )=0,得x 1=12,x 2=-1a ,当a =-2时,f ′(x )≤0,函数f (x )在定义域(0,+∞)内单调递减;当-2<a <0时,在区间(0,12),(-1a ,+∞)上f ′(x )<0,f (x )单调递减,在区间(12,-1a )上f ′(x )>0,f (x )单调递增;当a <-2时,在区间(0,-1a ),(12,+∞)上f ′(x )<0,f (x )单调递减,在区间(-1a ,12)上f ′(x )>0,f (x )单调递增.(2)由(1)知当a ∈(-3,-2)时,函数f (x )在区间[1,3]上单调递减,所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13+6a .问题等价于:对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a-(2-a )ln 3-13-6a 成立,即am >23-4a ,因为a <0,所以m <23a -4,因为a ∈(-3,-2),所以只需m ≤(23a -4)min ,所以实数m 的取值范围为(-∞,-133].5.证明 (1)由a >0及f ′(x )=e x -a 可得,函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1,则g ′(a )=-ln a ,故当a ∈(0,1)时,g ′(a )>0;当a ∈(1,+∞)时,g ′(a )<0,从而可知g (a )在(0,1)上单调递增,在(1,+∞)上单调递减,且g (1)=0,故g (a )≤0.(2)由(1)可知,当a =1时,总有f (x )=e x -x -1≥0,当且仅当x =0时等号成立,即当x >0时,总有e x >x +1. 于是,可得(x +1)n +1<(e x )n +1=e (n +1)x .令x +1=1n +1,即x =-n n +1,可得⎝ ⎛⎭⎪⎫1n +1n +1<e -n ; 令x +1=2n +1,即x =-n -1n +1,可得⎝ ⎛⎭⎪⎫2n +1n +1<e -(n -1); 令x +1=3n +1,即x =-n -2n +1,可得⎝ ⎛⎭⎪⎫3n +1n +1<e -(n -2); …令x +1=n n +1,即x =-1n +1,可得⎝ ⎛⎭⎪⎫n n +1n +1<e -1. 对以上各式求和可得:⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1=e -n (1-e n )1-e =e -n -11-e =1-e -n e -1<1e -1<1. 故对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.。
高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版以导数为工具,通过研究函数的单调性、极值和最值,求解不等式问题是高考的热点题型.1.函数不等式的类型与解法(1)∀x ∈D ,f (x )≤k ⇔f (x )max ≤k ;∃x ∈D ,f (x )≤k ⇔f (x )min ≤k .(2)∀x ∈D ,f (x )≤g (x )⇔[f (x )-g (x )]max ≤0;∃x ∈D ,f (x )≤g (x )⇔[f (x )-g (x )]min ≤0. 2.含两个未知数的不等式(函数)问题的常见题型及具体转化策略(1)∀x 1∈[a ,b ],x 2∈[c ,d ],f (x 1)>g (x 2)⇔f (x )在[a ,b ]上的最小值>g (x )在[c ,d ]上的最大值.(2)∃x 1∈[a ,b ],x 2∈[c ,d ],f (x 1)>g (x 2)⇔f (x )在[a ,b ]上的最大值>g (x )在[c ,d ]上的最小值.(3)∀x 1∈[a ,b ],∃x 2∈[c ,d ],f (x 1)>g (x 2)⇔f (x )在[a ,b ]上的最小值>g (x )在[c ,d ]上的最小值.(4)∃x 1∈[a ,b ],∀x 2∈[c ,d ],f (x 1)>g (x 2)⇔f (x )在[a ,b ]上的最大值>g (x )在[c ,d ]上的最大值.(5)∃x 1∈[a ,b ],x 2∈[c ,d ],f (x 1)=g (x 2)⇔f (x )在[a ,b ]上的值域与g (x )在[c ,d ]上的值域交集非空.(6)∀x 1∈[a ,b ],∃x 2∈[c ,d ],f (x 1)=g (x 2)⇔f (x )在[a ,b ]上的值域⊆g (x )在[c ,d ]上的值域.(7)∀x 2∈[c ,d ],∃x 1∈[a ,b ],f (x 1)=g (x 2)⇔f (x )在[a ,b]上的值域⊇g (x )在[c ,d ]上的值域.高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版 3.两个常用不等式 (1)ln x ≤x -1. (2)e x ≥x +1.例1 已知函数f (x )=e x -ax -ln x +ln (a +1)(a >0)(e 是自然对数的底数).(1)当a =1时,试判断f (x )在(1,+∞)上极值点的个数; (2)当a >1e -1时,求证:对任意x >1,f (x )>1a .学霸笔记证明不等式的常用方法(1)利用单调性:若f (x )在[a ,b ]上单调递增,则①∀x ∈[a ,b],有f (a )≤f (x )≤f (b );高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版 ②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).减函数有类似结论.(2)利用最值:若f (x )在区间D 有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ).(3)构造函数:常见的构造方法有:①作差构造法:证明不等式f (x )>g (x )(f (x )<g (x ))转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x );②适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥x +1,ln x <x <e x (x >0),xx +1≤ln (x +1)≤x (x >-1);③构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数.(4)拆分函数:若直接求导比较复杂或无从下手或无法转化为一个函数的最值问题,可将待证不等式进行变形,构造两个函数,转化为两个函数的最值问题(或找到可以传递的中间量),完成证明的目标.对于一些不等式可转化为f (x )≥g (x )的形式,证明f (x )min ≥g (x )max 即可,在转化中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.1.已知函数f (x )=ln x +ax ,其中a ∈R ,e 为自然对数的底数,e ≈2.718.(1)若函数f (x )在定义域上有两个零点,求实数a 的取值范围; (2)当a =1时,求证:f (x )<e xx +sin x .高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版例2 已知函数f (x )=x 2-m ln x ,其中m >0. (1)若m =2,求函数f (x )的极值;(2)设g (x )=xf (x )-1,若g (x )>0在(1,+∞)上恒成立,求实数m 的取值范围.学霸笔记由不等式恒成立求参数的取值范围问题的策略(1)求最值法,将恒成立问题转化为利用导数求函数的最值问题.(2)分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版1.已知函数f (x )=e x +m sin x -12x 2-1(m ∈R ).(1)当m =0时,讨论f (x )的单调性;(2)若不等式xf (x )≥0对x ∈ -π2,π2恒成立,求m 的取值范围.高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版例3 已知函数f (x )=x ln x -12mx 2-x (m ∈R ).(1)若直线y =x +b 与f (x )的图象相切,且切点的横坐标为1,求实数m 和b 的值; (2)若函数f (x )在(0,+∞)上存在两个极值点x 1,x 2,且x 1<x 2,证明:ln x 1+lnx 2>2.学霸笔记1.极值点偏移的含义对于函数y =f (x )在区间(a ,b )内只有一个极值点x 0,方程f (x )=0的解为x 1,x 2且a <x 1<x 2<b ,若x 1+x 22≠x 0,则称函数y =f (x )在区间(a ,b )上极值点偏移.2.极值点偏移问题的解法(1)(对称化构造法)构造辅助函数:对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-fx 20x ,通过研究F (x )的单调性获得不等式.(2)(比值代换法)通过代数变形将所证的双变量不等式通过代换t =x 1x 2化为单变量的函数不等式,利用函数单调性证明.高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版1.已知函数f (x )=2ln x -(a +1)x 2-2ax +1(a ∈R ). (1)求函数f (x )的单调区间; (2)若函数f (x )有两个零点x 1,x 2. (ⅰ)求实数a 的取值范围; (ⅱ)证明:x 1+x 2>21a +1.高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版1.已知函数f (x )=xe ax -e x .(1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围; (3)设n ∈N *,证明:112+1+122+2+…+1n 2+n>ln (n +1).高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版 2.已知函数f (x )=x (1-ln x ). (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b <e .高中数学 ︵ 利用导数研究不等式问题︶人 教 A 版 3.已知函数f (x )=e x -e -x -a sin x ,a >0,其中e 是自然对数的底数. (1)当x >0时,f (x )>0,求a 的取值范围;(2)当x >1时,求证:e x -e -x -x +1x2>sin x -sin (ln x ).第4讲 利用导数研究不等式问题「考情研析」以导数为工具,通过研究函数的单调性、极值和最值,求解不等式问题是高考的热点题型.1.函数不等式的类型与解法(1)∀x∈D,f(x)≤k⇔f(x)max≤k;∃x∈D,f(x)≤k⇔f(x)min≤k.(2)∀x∈D,f(x)≤g(x)⇔[f(x)-g(x)]max≤0;∃x∈D,f(x)≤g(x)⇔[f(x)-g(x)]min ≤0.2.含两个未知数的不等式(函数)问题的常见题型及具体转化策略(1)∀x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的最大值.(2)∃x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的最小值.(3)∀x1∈[a,b],∃x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的最小值.(4)∃x1∈[a,b],∀x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的最大值.(5)∃x1∈[a,b],x2∈[c,d],f(x1)=g(x2)⇔f(x)在[a,b]上的值域与g(x)在[c,d]上的值域交集非空.(6)∀x1∈[a,b],∃x2∈[c,d],f(x1)=g(x2)⇔f(x)在[a,b]上的值域⊆g(x)在[c,d]上的值域.(7)∀x2∈[c,d],∃x1∈[a,b],f(x1)=g(x2)⇔f(x)在[a,b]上的值域⊇g(x)在[c,d]上的值域.3.两个常用不等式(1)ln x ≤x -1. (2)e x ≥x +1.考向1 利用导数证明不等式例1 (2022·襄阳二模)已知函数f (x )=e x -ax -ln x +ln (a +1)(a >0)(e 是自然对数的底数).(1)当a =1时,试判断f (x )在(1,+∞)上极值点的个数; (2)当a >1e -1时,求证:对任意x >1,f (x )>1a .解 (1)当a =1时,f (x )=e x -1x -ln x +ln 2, 则f ′(x )=e x -1(x -1)x 2-1x (x -1)e x -1-x x -1x 2, 设φ(x )=e x -1-x x -1,则φ(x )=e x -1-1-1x -1在(1,+∞)上是增函数,当x →1+ 时,φ(x )→-∞,φ(2)=e -2>0, 所以存在x 0∈(1,2),使得φ(x 0)=0, 当x ∈(1,x 0)时,φ(x )<0,则f ′(x )<0,即f (x )在(1,x 0)上单调递减, 当x ∈(x 0,+∞)时,φ(x )>0,则f ′(x )>0,即f (x )在(x 0,+∞)上单调递增,所以f (x )在(1,+∞)上只有一个极值点,即唯一极小值点. (2)证明:由f ′(x )=e x -a (x -1)x 2-1x(x -1)e x -a-x x -1x 2, 设h (x )=e x -a -x x -1,则h (x )=e x -a -1-1x -1在(1,+∞)上是增函数, 当x →1+时,h (x )→-∞,因为a >1e -1,所以h (a +1)=e -1-1a >0,所以存在x 0∈(1,a +1),使得h (x 0)=e x 0-a -x 0x 0-1=0,当x ∈(1,x 0)时,h (x )<0,则f ′(x )<0, 即f (x )在(1,x 0)上单调递减,当x ∈(x 0,+∞)时,h (x )>0,则f ′(x )>0, 即f (x )在(x 0,+∞)上单调递增,故x =x 0是函数f (x )=e x -ax -ln x +ln (a +1)(a >0)的极小值点,也是最小值点, 则f (x )≥f (x 0)=e x 0-ax 0-ln x 0+ln (a +1),又因为e x 0-a =x 0x 0-1,所以f (x 0)=1x 0-1-ln x 0ln (a +1),即证对任意x ∈(1,a +1),1x -1-ln x +ln (a +1)>1a ,即证对任意x ∈(1,a +1),1x -1-ln x >1a -ln (a +1),设g (x )=1x -1-ln x ,则g (x )=1x -1-ln x 在(1,a +1)上单调递减, 因为x 0∈(1,a +1),所以g (x 0)>g (a +1), 1x 0-1-ln x 0>1a -ln (a +1), 故对任意x >1,f (x )>1a .证明不等式的常用方法(1)利用单调性:若f(x)在[a,b]上单调递增,则①∀x∈[a,b],有f(a)≤f(x)≤f(b);②∀x1,x2∈[a,b],且x1<x2,有f(x1)<f(x2).减函数有类似结论.(2)利用最值:若f(x)在区间D有最大值M(或最小值m),则∀x∈D,有f(x)≤M(或f(x)≥m).(3)构造函数:常见的构造方法有:①作差构造法:证明不等式f(x)>g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);②适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x≤x-1,e x≥x+1,ln x<x<e x(x>0),xx+1≤ln (x+1)≤x(x>-1);③构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数.(4)拆分函数:若直接求导比较复杂或无从下手或无法转化为一个函数的最值问题,可将待证不等式进行变形,构造两个函数,转化为两个函数的最值问题(或找到可以传递的中间量),完成证明的目标.对于一些不等式可转化为f(x)≥g(x)的形式,证明f(x)min≥g(x)max即可,在转化中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.(2022·重庆一模)已知函数f(x)=ln x+ax,其中a∈R,e为自然对数的底数,e≈2.718.(1)若函数f(x)在定义域上有两个零点,求实数a的取值范围;(2)当a=1时,求证:f(x)<e xx+sin x.解 (1)f(x)的定义域为(0,+∞),f′(x)=1x-ax2=x-ax2,当a≤0时,f′(x)>0恒成立,故f(x)在(0,+∞)上单调递增,故函数f(x)在定义域上不可能有两个零点;当a >0时,令f ′(x )>0得x >a ,令f ′(x )<0得0<x <a ,故f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,故f (x )在x =a 处取得极小值,也是最小值,f (x )min =f (a )=1+ln a ,要想函数f (x )在定义域上有两个零点,则1+ln a <0,解得0<a <1e ,又f (1)=a >0,当x →0+时,f (x )→+∞,由零点存在定理可知,在(0,a )与(a ,1)范围内各有一个零点.综上,实数a 的取值范围是0,1e . (2)证明:当a =1时,即证ln x +1x <e xx +sin x (x >0),由于sin x ∈[-1,1],故e x x +sin x ≥e x x -1,只需证ln x +1x <e xx -1,令h (x )=ln x +1x -e x x +1(x >0),则h ′(x )=1x -1x 2-e x (x -1)x 2=(x -1)(1-e x)x 2,因为x >0,所以1-e x <0,令h ′(x )>0得0<x <1,令h ′(x )<0得x >1,所以h (x )在x =1处取得极大值,也是最大值,h (x )max =h (1)=2-e<0,故h (x )<0在x ∈(0,+∞)上恒成立,结论得证.考向2 利用导数研究不等式恒成立问题例2 (2022·衡阳二模)已知函数f (x )=x 2-m ln x ,其中m >0. (1)若m =2,求函数f (x )的极值;(2)设g (x )=xf (x )-1,若g (x )>0在(1,+∞)上恒成立,求实数m 的取值范围. 解 (1)当m =2时,f (x )=x 2-2ln x (x >0),f ′(x )=2x -2x =2(x 2-1)x, 令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 故f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 故f (x )极小值=f (1)=1.(2)g (x )>0在(1,+∞)上恒成立,即x 2-m ln x -1x >0在(1,+∞)上恒成立,令G (x )=x 2-m ln x -1x ,x >1,则G ′(x )=2x -m x +1x 2=2x 3-mx +1x 2, 令H (x )=2x 3-mx +1,x >1, ∴H ′(x )=6x 2-m ,(ⅰ)若m ≤6,可知H ′(x )>0恒成立, ∴H (x )在(1,+∞)上单调递增, ∴H (x )>H (1)=3-m ,①当3-m ≥0,即0<m ≤3时,H (x )>0在(1,+∞)上恒成立,即G ′(x )>0在(1,+∞)上恒成立,∴G (x )>G (1)=0在(1,+∞)上恒成立, ∴0<m ≤3满足条件; ②当3-m <0,即3<m ≤6时, ∵H (1)=3-m <0,H (2)=17-2m >0, ∴存在唯一的x 0∈(1,2),使得H (x 0)=0, 当x ∈(1,x 0)时,H (x )<0,即G ′(x )<0, ∴G (x )在(1,x 0)上单调递减, ∴G (x )<G (1)=0,这与G (x )>0矛盾; (ⅱ)若m >6,由H ′(x )=0,可得x =-m6(舍去)或x =m 6,易知H (x )在1,m 6上单调递减, ∴H (x )<H (1)=3-m <0在1,m 6上恒成立, 即G ′(x )<0在1,m 6上恒成立, ∴G (x )在1,m 6上单调递减, ∴G (x )<G (1)=0在1,m 6上恒成立,这与G (x )>0矛盾.综上所述,实数m 的取值范围为(0,3].由不等式恒成立求参数的取值范围问题的策略(1)求最值法,将恒成立问题转化为利用导数求函数的最值问题.(2)分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2022·惠州一模)已知函数f (x )=e x +m sin x -12x 2-1(m ∈R ). (1)当m =0时,讨论f (x )的单调性;(2)若不等式xf (x )≥0对x ∈-π2,π2恒成立,求m 的取值范围.解 (1)当m =0时,f (x )=e x -12x 2-1, 则f ′(x )=e x -x ,令g (x )=f ′(x ),则g ′(x )=e x -1,当x <0时,g ′(x )<0;当x >0时,g ′(x )>0,所以函数g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, 所以f ′(x )=g (x )≥g (0)=1>0, 所以函数f (x )在R 上单调递增.(2)因为xf (x )≥0对x ∈-π2,π2恒成立,且f (0)=e 0-1=0,所以当x ∈0,π2时,有f (x )≥0;当x ∈-π2,0时,有f (x )≤0,由(1)知e x -x ≥1,所以f ′(x )=e x +m cos x -x ≥1+m cos x , 由x ∈-π2,π2,得cos x ∈[0,1],①当m ≥-1时,f ′(x )≥1+m cos x ≥1-cos x ≥0,所以函数f (x )在-π2,π2上单调递增,所以当x ∈ 0,π2时,f (x )≥f (0)=0;当x ∈-π2,0时,f (x )≤f (0)=0,所以当m ≥-1时,xf (x )≥0对x ∈-π2,π2恒成立.②当m <-1时,令h (x )=f ′(x ), 则h ′(x )=e x -m sin x -1,令m (x )=h ′(x ),则m ′(x )=e x -m cos x , 因为x ∈-π2,π2,有cos x ∈[0,1],所以m ′(x )=e x -m cos x ≥e x >0,所以函数h ′(x )在-π2,π2上单调递增,且有h ′(0)=e 0-1=0,所以当x ∈ -π2,0时,h ′(x )<0;当x ∈0,π2时,h ′(x )>0,所以函数f ′(x )在 -π2,0上单调递减,在0,π2上单调递增,因为f ′(0)=1+m <0,f ′-π2=e -π2+π2>0,所以存在x 0∈-π2,0,使得f ′(x 0)=0,且x ∈(x 0,0)时,f ′(x )<0,所以函数f (x )在(x 0,0)上单调递减,即f (x 0)>f (0)=0, 则有x 0f (x 0)<0与条件xf (x )≥0矛盾,即m <-1不符合题意. 综上,实数m 的取值范围是[-1,+∞).考向3 利用导数研究极值点偏移问题例3 (2022·辽南协作体二模)已知函数f (x )=x ln x -12mx 2-x (m ∈R ). (1)若直线y =x +b 与f (x )的图象相切,且切点的横坐标为1,求实数m 和b 的值;(2)若函数f (x )在(0,+∞)上存在两个极值点x 1,x 2,且x 1<x 2,证明:ln x 1+ln x 2>2.解 (1)由题意,切点坐标为1,-12m -1,f ′(x )=ln x -mx ,所以切线斜率为f ′(1)=-m =1,所以m =-1, 切线为y +12m +1=1·(x -1), 整理得y =x -32,所以b =-32. (2)证明:由(1)知f ′(x )=ln x -mx .由函数f (x )在(0,+∞)上存在两个极值点x 1,x 2,且x 1<x 2,知 ln x 1-mx 1=0,ln x 2-mx 2=0,则m =ln x 1+ln x 2x 1+x 2且m =ln x 1-ln x 2x 1-x 2,联立得ln x 1+ln x 2x 1+x 2=ln x 1-ln x 2x 1-x 2,即ln x 1+ln x 2=x 1+x 2x 1-x 2·ln x 1x 2= x 1x 2+1ln x 1x 2x 1x 2-1,设t =x 1x 2∈(0,1),则ln x 1+ln x 2=(t +1)ln t t -1,要证ln x 1+ln x 2>2,只需证(t +1)ln t t -1>2,只需证ln t <2(t -1)t +1,只需证ln t -2(t -1)t +1<0.构造函数g (t )=ln t 2(t -1)t +1,t ∈(0,1),则g ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0.故g (t )=ln t -2(t -1)t +1在t ∈(0,1)上单调递增,g (t )<g (1)=0,即g (t )=ln t2(t -1)t +1<0,所以ln x 1+ln x 2>2.1.极值点偏移的含义对于函数y =f (x )在区间(a ,b )内只有一个极值点x 0,方程f (x )=0的解为x 1,x 2且a <x 1<x 2<b ,若x 1+x 22≠x 0,则称函数y =f (x )在区间(a ,b )上极值点偏移.2.极值点偏移问题的解法(1)(对称化构造法)构造辅助函数:对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-fx 20x ,通过研究F (x )的单调性获得不等式.(2)(比值代换法)通过代数变形将所证的双变量不等式通过代换t =x 1x 2化为单变量的函数不等式,利用函数单调性证明.(2022·深圳一模)已知函数f (x )=2ln x -(a +1)x 2-2ax +1(a ∈R ). (1)求函数f (x )的单调区间; (2)若函数f (x )有两个零点x 1,x 2. (ⅰ)求实数a 的取值范围; (ⅱ)证明:x 1+x 2>21a +1. 解 (1)f ′(x )=-2(x +1)[(a +1)x -1]x, ①a ≤-1时,f ′(x )>0恒成立,故f (x )在(0,+∞)上单调递增, ②a >-1时,令f ′(x )>0,解得0<x <1a +1;令f ′(x )<0,解得x >1a +1, 故f (x )在 0,1a +1上单调递增,在1a +1,+∞上单调递减.(2)(ⅰ)由(1)知当a ≤-1时,f (x )在(0,+∞)上单调递增, 故函数f (x )不可能存在两个零点,当a >-1时,f (x )在 0,1a +1上单调递增,在1a +1,+∞上单调递减,且当x →0+时,f (x )→-∞,当x →+∞时,f (x )→-∞, 故仅需f1a +1>0,即2ln1a +1-(a +1)·1(a +1)2-2a ·1a +1+1>0, 化简得2ln (a +1)+aa +1<0,令g (x )=2ln (x +1)+xx +1(x >-1), g ′(x )=2x +1+1(x +1)2>0, ∴g (x )在(-1,+∞)上单调递增,又g (0)=0, 故不等式2ln (a +1)+aa +1<0的解集为(-1,0),因此,实数a 的取值范围是(-1,0). (ⅱ)证明:∵-1<a <0,∴1a +1>1,∴2a +1>21a +1, 故可先证明x 1+x 2>2a +1,则仅需证明x 1>2a +1-x 2,不妨设0<x 1<1a +1<x 2, 当x 2≥2a +1时,x 1+x 2>2a +1显然成立,当x 2<2a +1时,∵x 2>1a +1,∴2a +1-x 2∈0,1a +1,又x 1∈ 0,1a +1,且函数f (x )在0,1a +1上单调递增,于是只需证明f (x 1)>f2a +1-x 2,∵f (x 1)=f (x 2),∴即证明f (x 2)-f 2a +1-x 2 >0,构造函数F (x )=f (x )-f2a +1-x ,x ∈1a +1,+∞, F ′(x )=4(a +1)x2a +1-x -4(a +1),令h (x )=(a +1)x2a +1-x ,由-1<a <0得a +1>0, 可得h (x )的图象开口向下,∴当x =1a +1时,函数h (x )取得最大值,∴F ′(x )>4(a +1)1a +12-4(a +1)=0, 故F (x )在1a +1,+∞上单调递增,且F1a +1=0,故F (x )>0在 1a +1,+∞上恒成立,即证得x 1+x 2>2a +1>21a +1,原命题得证.1.(2022·新高考Ⅱ卷)已知函数f (x )=x e ax -e x . (1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围; (3)设n ∈N *,证明:112+1+122+2+…+1n 2+n>ln (n +1). 解 (1)当a =1时,f (x )=(x -1)e x ,则f ′(x )=x e x . 当x <0时,f ′(x )<0;当x >0时,f ′(x )>0.故f (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)f ′(x )=(1+ax )e ax -e x (x ∈(0,+∞)),①当a ≥1时,f ′(x )=(1+ax )e ax -e x >e ax -e x ≥e x -e x =0, ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=-1,与题意矛盾. ②当a ≤0时,f ′(x )≤e ax -e x ≤1-e x <0. ∴f (x )在(0,+∞)上单调递减, ∴f (x )<f (0)=-1,满足题意. ③当0<a ≤12时,f ′(x )≤1+x 2e x2-e x=e x 21+x 2-e x 2.设G (x )=1+x2-e x 2(x >0), 则G ′(x )=12-12e x 2<0,∴G (x )在(0,+∞)上单调递减, ∴G (x )<G (0)=0,∴f ′(x )≤e x 2G (x )<0,f (x )在(0,+∞)上单调递减, ∴f (x )<f (0)=-1,满足题意.④当12<a <1时,f ′(x )=e ax [1+ax -e (1-a )x ],令H (x )=1+ax -e (1-a )x , 则H ′(x )=a +(a -1)e (1-a )x ,易知H ′(x )为减函数, 又H ′(0)=2a -1>0,当x →+∞时,H ′(x )<0, ∴∃x 0∈(0,+∞),使H ′(x 0)=0,且当x ∈(0,x 0)时, H ′(x )>0,H (x )在(0,x 0)上单调递增,此时H (x )>0, ∴当x ∈(0,x 0)时,f ′(x )=e ax H (x )>0, f (x )在(0,x 0)上单调递增, ∴f (x )>f (0)=-1,与题意矛盾. 综上,a 的取值范围为-∞,12.(3)证明:取a =12,由(2)知∀x >0,总有x e 12x -e x +1<0成立, 令t =e 12x ,则t >1,t 2=e x ,x =2ln t ,故2t ln t <t 2-1,即2ln t <t -1t 对任意的t >1恒成立. ∴对任意的n ∈N *,有2ln n +1n < n +1n -n n +1, 整理得到ln (n +1)-ln n <1n 2+n, 112+1+122+2+…+1n 2+n>ln 2-ln 1+ln 3-ln 2+…+ln (n +1)-ln n =ln (n +1),故不等式成立.2.(2021·新高考Ⅰ卷)已知函数f (x )=x (1-ln x ). (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b <e. 解 (1)因为f (x )=x (1-ln x ),所以f (x )的定义域为(0,+∞),f ′(x )=1-ln x+x ·-1x =-ln x .当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)证明:由题意,a ,b 是两个不相等的正数,且b ln a -a ln b =a -b ,两边同时除以ab ,得ln a a -ln b b =1b -1a ,即ln a +1a =lnb +1b ,即f 1a =f 1b .令x 1=1a ,x 2=1b ,由(1)知f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,且当0<x <e 时,f (x )>0,当x >e 时,f (x )<0,不妨设x 1<x 2,则0<x 1<1<x 2<e. 要证2<1a +1b <e ,即证2<x 1+x 2<e. 先证x 1+x 2>2:要证x 1+x 2>2,即证x 2>2-x 1, 因为0<x 1<1<x 2<e ,所以x 2>2-x 1>1,又f (x )在(1,+∞)上单调递减,所以即证f (x 2)<f (2-x 1), 又f (x 1)=f (x 2),所以即证f (x 1)<f (2-x 1), 即证当x ∈(0,1)时,f (x )-f (2-x )<0. 构造函数F (x )=f (x )-f (2-x ),则F ′(x )=f ′(x )+f ′(2-x )=-ln x -ln (2-x )=-ln [x (2-x )], 当0<x <1时,0<x (2-x )<1,则-ln [x (2-x )]>0,即当0<x <1时,F ′(x )>0,所以F (x )在(0,1)上单调递增,所以当0<x <1时,F (x )<F (1)=0,所以当0<x <1时,f (x )-f (2-x )<0成立, 所以x 1+x 2>2成立.再证x 1+x 2<e :由(1)知,f (x )的极大值点为x =1,f (x )的极大值为f (1)=1, 过点(0,0),(1,1)的直线方程为y =x ,设f (x 1)=f (x 2)=m ,当x ∈(0,1)时,f (x )=x (1-ln x )>x , 直线y =x 与直线y =m 的交点坐标为(m ,m ),则x 1<m . 欲证x 1+x 2<e ,即证x 1+x 2<m +x 2=f (x 2)+x 2<e , 即证当1<x <e 时,f (x )+x <e.构造函数h (x )=f (x )+x ,则h ′(x )=1-ln x ,当1<x <e 时,h ′(x )>0,所以函数h (x )在(1,e)上单调递增,所以当1<x <e 时,h (x )<h (e)=f (e)+e =e ,即f (x )+x <e 成立,所以x 1+x 2<e 成立.综上可知,2<1a +1b <e 成立.3.已知函数f (x )=e x -e -x -a sin x ,a >0,其中e 是自然对数的底数. (1)当x >0时,f (x )>0,求a 的取值范围;(2)当x >1时,求证:e x-e -x-x +1x2>sin x -sin (ln x ). 解 (1)由题意可知f ′(x )=e x +e -x -a cos x ,①当0<a ≤2时,由-1≤cos x ≤1可知-2≤-a ≤a cos x ≤a ≤2, 又因为e x +e -x ≥2恒成立,所以f ′(x )=e x +e -x -a cos x ≥0恒成立, 所以y =f (x )在[0,+∞)上恒为增函数. 又f (0)=0,所以f (x )>0对x >0恒成立; ②当a >2时,由y =e x+e-x在 0,π2上恒为增函数,且y =a cos x 在0,π2上恒为减函数可知,f ′(x )在 0,π2上单调递增,又f ′(0)=2-a <0,f ′π2=e π2+e-π2错误!未定义书签。
利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+<分析:主要考查利用导数证明不等式的能力。
分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+=¢x x g ,设)2(2)()()(xa g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g xa g x g x F +-=+-=´+-=¢当a x <<0时0)(<¢x F ,当a x >时 0)(>¢x F , 即)(x F 在),0(a x Î上为减函数,在),(+¥Îa x 上为增函数上为增函数 ∴0)()(min==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+ba gb g a g设2ln )()2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x xa x x G +-=-+-=¢\当0>x 时,0)('<x G ,因此)(x G 在区间),0(+¥上为减函数;上为减函数; 因为0)(=a G ,又a b > ∴0)()(=<a G b G , 即 02ln )()2(2)()(<--+-+a x x a g x g a g故2ln )()2(2)()(a x xa g x g a g -<+-+ 综上可知,当综上可知,当b a <<0时,2ln )()2(2)()(0a b ba b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
2021届高考数学总复习第17讲:利用导数证明不等式考点1作差法构造函数证明不等式(1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可.(2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I).设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).[解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a=1,所以f′(x)=ln x+2.当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2,所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增,所以f(x)在x=e-2处取得极小值,符合题意,所以a=1.(2)证明:由(1)知a=1,所以f(x)=x+x ln x.令g(x)=f(x)-3(x-1),即g(x)=x ln x-2x+3(x>0).g′(x)=ln x-1,由g′(x)=0,得x=e.由g′(x)>0,得x>e;由g′(x)<0,得0<x<e.所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,所以g(x)在(1,+∞)上的最小值为g(e)=3-e>0.于是在(1,+∞)上,都有g(x)≥g(e)>0,所以f(x)>3(x-1).将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f(x)≤f(x)max或f(x)≥f(x)min直接证得不等式.(2019·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.[解](1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.考点2拆分法构造函数证明不等式若f(x)min>g(x)max,则f(x)>g(x),常借助此结论,将要证明的不等式拆、分成两个函数,然后比较它们的最值.设函数f(x)=ax2-(x+1)ln x,曲线y=f(x)在点(1,f(1))处切线的斜率为0.(1)求a的值;(2)求证:当0<x≤2时,f(x)>1 2x.[解](1)f′(x)=2ax-ln x-1-1 x,由题意,可得f′(1)=2a-2=0,所以a=1.(2)证明:由(1)得f(x)=x2-(x+1)ln x,要证当0<x≤2时,f(x)>12x,只需证当0<x≤2时,x-ln xx-ln x>12,即x-ln x>ln xx+12.令g(x)=x-ln x,h(x)=ln xx+12,令g′(x)=1-1x=0,得x=1,易知g(x)在(0,1)上单调递减,在(1,2]上单调递增,故当0<x≤2时,g(x)min=g(1)=1.因为h′(x)=1-ln xx2,当0<x≤2时,h′(x)>0,所以h(x)在(0,2]上单调递增,故当0<x≤2时,h(x)max=h(2)=1+ln 22<1,即h(x)max<g(x)min.故当0<x≤2时,h(x)<g(x),即当0<x≤2时,f(x)>1 2x.在证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,求证:xf(x)-e x+2e x≤0.[解](1)f′(x)=ex-a(x>0),①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;②若a>0,令f′(x)=0,得x=ea,则当0<x<ea时,f′(x)>0;当x>ea时,f′(x)<0,故f (x )在⎝ ⎛⎭⎪⎫0,e a 上单调递增,在⎝ ⎛⎭⎪⎫e a ,+∞上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e xx -2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.考点3 换元法构造函数证明不等式换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:联立消参 利用方程f (x 1)=f (x 2)消掉解析式中的参数a抓商构元 令c =x 1x 2,消掉变量x 1,x 2,构造关于c 的函数h (c ) 用导求解 利用导数求解函数h (c )的最小值,从而可证得结论已知函数f (x )=ln x -ax (x >0),a 为常数,若函数f (x )有两个零点x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2.[证明] 不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a , 欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,。
【⼲货】⾼中数学⽤导数证明不等式例题解析!导数的运算1、常见函数的导数公式:常数函数的导数:;幂函数的导数:;如下:;三⾓函数的导数:;对数函数的导数:指数函数的导数: 2、求导数的法则(1)和与差函数的导数:.由此得多项式函数导数(2)积的函数的导数:,特例[C·f(x)]'=Cf'(x)。
如:①已知函数的导数为,则_____(答:);②函数的导数为__________(答:);③若对任意,,则是______(答:)(3)商的函数的导数:例1、求下列导数(1)y =;(2)y =x · sin x · ln x;(3)y =;(4)y =.解:(1)∵y ==∴(2)y'=(x · sin x · ln x) '=(x · sin x) ' · ln x+(x · sin x )( ln x) '=[x'sinx+x(sinx) ']·lnx+(x · sin x )=[sinx+xcosx]lnx+sinx如遇求多个积的导数,可以逐层分组进⾏;求导数前的变形,⽬的在于简化运算;求导数后应对结果进⾏整理化简.(3)y'=(4)∵y ==∴y'=例2、求函数的导数① y=(2 x2-5 x +1)e x② y=解:① y'=(2 x2-5 x +1)′e x+(2 x2-5 x +1)(e x)′=(2x2-x-4)e x②∴y'例3、已知曲线C:y =3 x 4-2 x3-9 x2+4(1)求曲线C上横坐标为1的点的切线⽅程;(2)第(1)⼩题中切线与曲线C是否还有其他公共点?解:(1)把x =1代⼊C的⽅程,求得y =-4.∴切点为(1,-4).Y'=12 x3-6 x2-18 x,∴切线斜率为k =12-6-18=-12.∴切线⽅程为y +4=-12(x-1),即y=-12 x +8.由得3 x 4-2 x3 -9 x2+12 x -4=0(x -1) 2 (x +2) (3 x -2)=0x =1,-2,.代⼊y =3 x 4-2 x 3 -9 x 2 +4,求得y =-4,32,0,即公共点为(1,-4)(切点),(-2,32),(,0).除切点外,还有两个交点(-2,32)、(,0).直线和圆,直线和椭圆相切,可以⽤只有⼀个公共点来判定.⼀般曲线却要⽤割线的极限位置来定义切线.因此,曲线的切线可以和曲线有⾮切点的公共点.例4、曲线S:y =x3-6 x 2-x +6哪⼀点切线的斜率最⼩?设此点为P(x0,y0).证明:曲线S关于P中⼼对称.解:y'=3 x2-12 x -1当x ==2时,y′有最⼩值,故x 0=2,由P∈S知:y 0=23-6 · 22-2+6=-12即在P(2,-12)处切线斜率最⼩.设Q(x,y)∈S,即y =x3-6 x2-x +6则与Q关于P对称的点为R(4-x,-24-y),只需证R的坐标满⾜S的⽅程即可.(4-x)3-6(4-x)2-(4-x)+6=64-48 x +12 x 2 -x 3-6(16-8 x +x2)+x +2=-x 3 +6 x 2 +x -30=-x 3 +6 x2 +x -6-24=-y-24故R∈S,由Q点的任意性,S关于点P中⼼对称.求切点时,要将取最⼩值的x值代回原⽅程.例5、⼀质点的运动⽅程为s(t)=asint+bcost(a>0),若速度v(t)的最⼤值为,且对任意的t0∈R,在t =t0与t=-t0时速度相同,求a、b的值。
【专题训练】高考数学利用导数解关于不等式问题 知识梳理导数是新课标必修内容之一,导数在函数的性质的应用中以及函数的实际应用中都能起到无可替代的作用。
而不等到式恒成立问题是数学许多知识点的交汇处,是函数、方程、不等式与数列等一些列知识点的进一步强化。
在函数与不等式的综合题中,当函数取最大(或最小)值时不等式都成立,从而得出该不等式恒成立,因此我们可以把不等式的恒成立问题可转化为求函数的最值问题。
近几年在各地的高考试题中,在解答题中都涉及到不等式恒成立问题,而这类问题利用导数工具来解显示出它的简便性与灵活性。
因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法。
“恒成立”问题是数学中常见的问题,经常与参数的范围联系在一起,在高考中频频出现,是高考中的一个难点问题。
1、常用方法:(1)函数与方程方法。
利用不等式与函数和方程之间的联系,将问题转化成二次方程的根的情况的研究。
有些问题需要经过代换转化才是二次函数或二次方程。
注意代换后的自变量的范围变化。
(2)分离参数法。
将含参数的恒成立式子中的参数分离出来,化成形如:或或恒成立的形式。
则的范围是的值域。
恒成立;恒成立.(3)若已知恒成立,则可充分利用条件(赋值法等)。
)(x f a =)(x f a >)(x f a <()a f x =Ûa )(x f )(x f a <min ()a f x ?)(x f a >max ()a f x ?2、两函数在相应区间关于不等式常见方式及转化(1)对于,都有在恒成立.(2)任意,任意,有在恒成立.(3)任意,存在,有在恒成立.(4)存在,存在,有在恒成立.(5)存在,任意,有在恒成立.(6)任意,存在,有在内的值域在内的值域.(7)存在,任意,有在内的值域在内的值域.(8)存在,存在,有在内的值域与在内的值域有交集.(9)任意,任意,有在[,]x a b Î()()f x g x ³Û()()0f x g x -?[,]x a b Î1[,]x a b Î2[,]x m n Î12()()f x g x <Û1max 2min ()()f x g x <12[,],[,]x a b x m n 挝1[,]x a b Î2[,]x m n Î12()()f x g x <Û1max 2max ()()f x g x <12[,],[,]x a b x m n 挝1[,]x a b Î2[,]x m n Î12()()f x g x <Û1min 2max ()()f x g x <12[,],[,]x a b x m n 挝1[,]x a b Î2[,]x m n Î12()()f x g x <Û1min 2min ()()f x g x <12[,],[,]x a b x m n 挝1[,]x a b Î2[,]x m n Î12()()f x g x =Û1()f x 1[,]x a b Î2()g x Í2[,]x m n Î1[,]x a b Î2[,]x m n Î12()()f x g x =Û1()f x 1[,]x a b Î2()g x Ê2[,]x m n Î1[,]x a b Î2[,]x m n Î12()()f x g x =Û1()f x 1[,]x a b Î2()g x 2[,]x m n Î1[,]x a b Î2[,]x m n Î12()()f x g x =Û1()f x内的值域与在内的值域相同.典型例题考点一、利用函数的单调性求不等式中含参数的范围例1、对于总有 成立,则= 。
2020题型一 利用导数解决不等式的恒成立与能成立问题 【题型要点】已知不等式f (x ,λ)≥0(λ为实参数)对任意的x ∈D 恒成立,求参数λ的取值范围.利用导数解决这个问题的常用思想方法如下:(1)分离参数法:第一步,将原不等式f (x ,λ)≥0(x ∈D ,λ为实参数)分离,使不等式的一边是参数,另一边不含参数,即化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式;第二步,利用导数求出函数f 2(x )(x ∈D )的最大(小)值;第三步,解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min 从而求出参数λ的取值范围. (2)函数思想法:第一步,将不等式转化为某含参数的函数的最值问题; 第二步,利用导数求出该函数的极值(最值); 第三步,构建不等式求解.【例1】已知函数f (x )=x 4+ax 3+2x 2+b (x ∈R ),其中a ,b ∈R . (1)当a =-103时,讨论函数f (x )的单调性;(2)若函数f (x )仅在x =0处有极值,求a 的取值范围;(3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,1]上恒成立,求b 的取值范围. 【解】 (1)f ′(x )=4x 3+3ax 2+4x =x (4x 2+3ax +4). 当a =-103时,f ′(x )=x (4x 2-10x +4)=2x (2x -1)(x -2).令f ′(x )=0,解得x 1=0,x 2=12,x 3=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(0,12),(2,+∞)内是增函数,在(-∞,0),(12,2)内是减函数.(2)f ′(x )=x (4x 2+3ax +4),显然x =0不是方程4x 2+3ax +4=0的根. 为使f (x )仅在x =0处有极值,必须4x 2+3ax +4≥0成立,即有Δ=9a 2-64≤0. 解此不等式,得-83≤a ≤83.这时,f (0)=b 是唯一极值.因此满足条件的a 的取值范围是[-83,83]. (3)解:由条件a ∈[-2,2],可知Δ=9a 2-64<0,从而4x 2+3ax +4>0恒成立. 当x <0时,f ′(x )<0;当x >0时,f ′(x )>0.因此函数f (x )在[-1,1]上的最大值是f (1)与f (-1)两者中的较大者.为使对任意的a ∈[-2,2],不等式f (x )≤1在[-1,1]上恒成立,当且仅当⎩⎪⎨⎪⎧f (1)≤1f (-1)≤1,即⎩⎪⎨⎪⎧b ≤-2-a b ≤-2+a在a ∈[-2,2]上恒成立.所以b ≤-4,因此满足条件的b 的取值范围是(-∞,-4].题组训练一 利用导数解决不等式的恒成立与能成立问题 已知函数f (x )=e x -1+ax ,a ∈R . (1)讨论函数f (x )的单调区间;(2)若∈x ∈[1,+∞),f (x )+ln x ≥a +1恒成立,求a 的取值范围. 【解析】 (1)f ′(x )=e x -1+a ,(∈)当a ≥0时,f ′(x )>0,函数f (x )在R 上单调递增; (∈)当a <0时,令f ′(x )=0,则x =ln(-a )+1, 当f ′(x )>0,即x >ln(-a )+1时,函数f (x )单调递增; 当f ′(x )<0,即x <ln(-a )+1时,函数f (x )单调递减.综上,当a ≥0时,函数f (x )在R 上单调递增;当a <0时,函数f (x )的单调递增区间是(ln(-a )+1,+∞),单调递减区间是(-∞,ln(-a )+1).(2)令a =-1,由(1)可知,函数f (x )=e x -1-x 的最小值为f (1)=0,所以e x -1-x ≥0,即e x -1≥x .f (x )+ln x ≥a +1恒成立与f (x )+ln x -a -1≥0恒成立等价,令g (x )=f (x )+ln x -a -1,即g (x )=e x -1+a (x -1)+ln x -1(x ≥1),则g ′(x )=e x -1+1x +a ,∈当a ≥-2时,g ′(x )=e x -1+1x +a ≥x +1x+a ≥2x ·1x +a =a +2≥0(或令φ(x )=e x -1+1x, 则φ′(x )=e x -1-1x 2在[1,+∞)上递增,∈φ′(x )≥φ′(1)=0,∈φ(x )在[1,+∞)上递增,∈φ(x )≥φ(1)=2,∈g ′(x )≥0)∈g (x )在区间[1,+∞)上单调递增, ∈g (x )≥g (1)=0,∈f (x )+ln x ≥a +1恒成立, ∈当a <-2时,令h (x )=ex -1+1x +a ,则h ′(x )=e x -1-1x 2=x 2e x -1-1x 2, 当x ≥1时,h ′(x )≥0,函数h (x )单调递增. 又h (1)=2+a <0, h (1-a )=e 1-a -1+11-a +a ≥1-a +11-a +a =1+11-a>0,∈存在x 0∈(1,1-a ),使得h (x 0)=0,故当x ∈(1,x 0)时,h (x )<h (x 0)=0,即g ′(x )<0,故函数g (x )在(1,x 0)上单调递减;当x ∈(x 0,+∞)时,h (x )>h (x 0)=0,即g ′(x )>0,故函数g (x )在(x 0,+∞)上单调递增.∈g (x )min =g (x 0)<g (1)=0,即∈x ∈[1,+∞),f (x )+ln x ≥a +1不恒成立,综上所述,a的取值范围是[-2,+∞).题型二利用导数证明与函数有关的不等式【题型要点】用导数证明不等式的方法(1)利用单调性:若f(x)在[a,b]上是增函数,则∈∈x∈[a,b],则f(a)≤f(x)≤f(b);∈对∈x1,x2∈[a,b],且x1<x2,则f(x1)<f(x2).对于减函数有类似结论.(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则对∈x∈D,有f(x)≤M(或f(x)≥m).(3)证明f(x)<g(x),可构造函数F(x)=f(x)-g(x),证明F(x)<0.【例2】已知函数f(x)=(ln x-k-1)x(k∈R).(1)当x>1时,求f(x)的单调区间和极值;(2)若对于任意x∈[e,e2],都有f(x)<4ln x成立,求k的取值范围;(3)若x1≠x2,且f(x1)=f(x2),证明:x1x2<e2k.(1)【解析】f′(x)=1x·x+ln x-k-1=ln x-k,∈当k≤0时,因为x>1,所以f′(x)=ln x-k>0,函数f(x)的单调递增区间是(1,+∞),无单调递减区间,无极值;∈当k>0时,令ln x-k=0,解得x=e k,当1<x<e k时,f′(x)<0;当x>e k时,f′(x)>0.所以函数f(x)的单调递减区间是(1,e k),单调递增区间是(e k,+∞),在区间(1,+∞)上的极小值为f(e k)=(k-k-1)e k=-e k,无极大值.(2)【解析】由题意,f(x)-4ln x<0,即问题转化为(x-4)ln x-(k+1)x<0对于x∈[e,e2]恒成立.即k +1>(x -4)ln xx 对x ∈[e ,e 2]恒成立.令g (x )=(x -4)ln x x ,则g ′(x )=4ln x +x -4x 2,令t (x )=4ln x +x -4,x ∈[e ,e 2],则t ′(x )=4x +1>0,所以t (x )在区间[e ,e 2]上单调递增, 故t ()x min =t (e)=e -4+4=e>0,故g ′(x )>0, 所以g (x )在区间[e ,e 2]上单调递增, 函数g ()x max =g (e 2)=2-8e2.要使k +1>(x -4)ln xx 对于x ∈[e ,e 2]恒成立,只要k +1>g ()x max ,所以k +1>2-8e2,即实数k 的取值范围为⎪⎭⎫ ⎝⎛+∞-,812e (3)[证明] 因为f (x )=f (x 2),由(1)知,函数f (x )在区间(0,e k )上单调递减, 在区间(e k ,+∞)上单调递增,且f (e k +1)=0. 不妨设x 1<x 2,则0<x 1<e k <x 2<e k +1, 要证x 1x 2<e 2k ,只要证x 2<e 2k x 1,即证e k<x 2<e 2k x 1. 因为f (x )在区间(e k ,+∞)上单调递增,所以f (x 2)<f ⎪⎪⎭⎫⎝⎛12x e k .又f (x )=f (x 2),即证f (x 1)<f ⎪⎪⎭⎫⎝⎛12x e k ,构造函数h (x )=f (x )-f ⎪⎪⎭⎫⎝⎛12x e k=(ln x -k -1)x -⎪⎪⎭⎫ ⎝⎛--1ln 2k x e k e 2kx ,即h (x )=x ln x -(k +1)x +e 2k ⎪⎭⎫⎝⎛--x k xx 1ln ,x ∈(0,e k ).h ′(x )=ln x +1-(k +1)+e 2k ⎪⎭⎫⎝⎛-+-221ln 1x k x x =(ln x -k )(x 2-e 2k )x 2,因为x ∈(0,e k ),所以ln x -k <0,x 2<e 2k ,即h ′(x )>0,所以函数h (x )在区间(0,e k )上单调递增,故h (x )<h (e k ),而h (e k )=f (e k )-f ⎪⎪⎭⎫ ⎝⎛k k e e2=0,故h (x )<0,所以f (x 1)<f ⎪⎪⎭⎫ ⎝⎛12x e k ,即f (x 2)=f (x 1)<f ⎪⎪⎭⎫⎝⎛12x e k ,所以x 1x 2<e 2k 成立.题组训练二 利用导数证明与函数有关的不等式 已知函数f (x )=ln x +ax(a >0).(1)若函数f (x )有零点,求实数a 的取值范围; (2)证明:当a ≥2e时,f (x )>e -x .(1)【解】 方法一 函数f (x )=ln x +ax 的定义域为(0,+∞).由f (x )=ln x +a x ,得f ′(x )=1x -a x 2=x -ax2.因为a >0,则当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 当x =a 时,f (x )min =ln a +1. 当ln a +1≤0,即0<a ≤1e时,又f (1)=ln 1+a =a >0,则函数f (x )有零点.所以实数a 的取值范围为⎥⎦⎤⎝⎛e1,0方法二 函数f (x )=ln x +a x 的定义域为(0,+∞).由f (x )=ln x +ax =0,得a =-x ln x .令g (x )=-x ln x ,则g ′(x )=-(ln x +1).当x ∈⎪⎭⎫ ⎝⎛e 1,0时,g ′(x )>0;当x ∈⎪⎭⎫ ⎝⎛+∞,1e时,g ′(x )<0.所以函数g (x )在⎪⎭⎫ ⎝⎛e 1,0上单调递增,在⎪⎭⎫ ⎝⎛+∞,1e上单调递减.故当x =1e 时,函数g (x )取得最大值g ⎪⎭⎫⎝⎛e 1=-1e ln 1e =1e.因为函数f (x )=ln x +a x 有零点,则0<a ≤1e,所以实数a 的取值范围为⎥⎦⎤ ⎝⎛e1,0.(2)【证明】 要证明当a ≥2e 时,f (x )>e -x ,即证明当x >0,a ≥2e 时,ln x +a x >e -x ,即x ln x +a >x e -x .令h (x )=x ln x +a ,则h ′(x )=ln x +1. 当0<x <1e 时,h ′(x )<0;当x >1e时,h ′(x )>0.所以函数h (x )在⎪⎭⎫ ⎝⎛e 1,0上单调递减,在⎪⎭⎫ ⎝⎛+∞,1e上单调递增.当x =1e 时,h (x )min =-1e +a .于是,当a ≥2e 时,h (x )≥-1e +a ≥1e.∈令φ(x )=x e -x ,则φ′(x )=e -x -x e -x =e -x (1-x ). 当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0.所以函数φ(x )在()0,1上单调递增,在(1,+∞)上单调递减. 当x =1时,φ(x )max =φ(1)=1e .于是,当x >0时,φ(x )≤1e.∈显然,不等式∈∈中的等号不能同时成立. 故当a ≥2e时,f (x )>e -x .题型三 用赋值法证明与正整数有关的不等式 【题型要点】(1)利用导数研究的正整数不等式一般都与题目给出的函数不等式有关,如本例中给出的函数f (x )在a =12,x ≥1时,有不等式12⎪⎭⎫ ⎝⎛-x x 1≥ln x ,根据函数的定义域,这个不等式当然对一切大于等于1的数成立,这样根据所证不等式的特点,给定x 以适当的数值即可证明正整数不等式.凡涉及从1到n 的整数的不等式,而且不等式中含有ln n 的问题,一般都是通过赋值使之产生ln n +1n ,ln n n -1等使问题获得解决的,如证明12+23+…+nn +1<n +ln 2-ln(n +2)时,就是通过变换n n +1=1-1n +1,进而通过不等式x >ln(1+x )(x >0),得1n >ln ⎪⎭⎫ ⎝⎛+n 11=ln(n +1)-ln n .(2)证明正整数不等式时,要把这些正整数放在正实数的范围内,通过构造正实数的不等式进行证明,而不能直接构造正整数的函数,因为这样的函数不是可导函数,使用导数就是错误的.【例3】已知函数f (x )=ax +bx +c (a >0)的图象在点(1,f (1))处的切线方程为y =x -1.(1)用a 表示出b ,c ;(2)若f (x )≥ln x 在[1,+∞)上恒成立,求a 的取值范围; (3)证明:1+12+13+…+1n >ln(n +1)+n2(n +1)(n ≥1).【解析】 (1)f ′(x )=a -bx 2,则有⎩⎪⎨⎪⎧f (1)=a +b +c =0,f ′(1)=a -b =1,解得⎩⎪⎨⎪⎧b =a -1c =1-2a .(2)由(1)知f (x )=ax +a -1x+1-2a .令g (x )=f (x )-ln x =ax +a -1x +1-2a -ln x ,x ∈[1,+∞),则g (1)=0,g ′(x )=a -a -1x 2-1x=ax 2-x -(a -1)x 2=21)1(xa a x x a ⎪⎭⎫ ⎝⎛---(∈)当0<a <12时,1-a a>1.若1<x <1-aa ,则g ′(x )<0,g (x )是减函数,所以g (x )<g (1)=0,即f (x )<ln x 故f (x )≥ln x 在[1,+∞)上不恒成立. (∈)当a ≥12时,1-a a≤1,若x >1,则g ′(x )>0,g (x )是增函数,所以g (x )>g (1)=0,即f (x )>ln x , 故当x ≥1时,f (x )≥ln x .综上所述,所求a 的取值范围为⎪⎭⎫⎢⎣⎡+∞,21(3)证法一:由(2)知当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎪⎭⎫ ⎝⎛-x x 1≥ln x (x ≥1),且当x >1时,12⎪⎭⎫ ⎝⎛-x x 1>ln x .令x =k +1k ,且ln k +1k <12⎪⎭⎫⎝⎛+-+11k k k k =12⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+11111k k , 即ln(k +1)-ln k <12⎪⎭⎫ ⎝⎛++111k k ,k =1,2,3,…,n .将上述n 个不等式依次相加得ln(n +1)<12+⎪⎭⎫ ⎝⎛+⋅⋅⋅++n 13121+12(n +1),整理得1+12+13+…1n >ln(n +1)+n2(n +1).证法二:用数学归纳法证明.∈当n =1时,左边=1, 右边=ln 2+14<1,不等式成立.∈假设n =k 时,不等式成立,就是 1+12+13+…+1k >ln(k +1)+k 2(k +1). 那么1+12+13+…+1k +1k +1>ln(k +1)+k 2(k +1)+1k +1=ln(k +1)+k +22(k +1).由(2)知当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎪⎭⎫ ⎝⎛-x x 1≥ln x (x ≥1).令x =k +2k +1,得12⎪⎭⎫⎝⎛++-++2112k k k k ≥ln k +2k +1=ln(k +2)-ln(k +1). ∈ln(k +1)+k +22(k +1)≥ln(k +2)+k +12(k +2).∈1+12+13+…+1k +1k +1>ln(k +2)+k +12(k +2).这就是说,当n =k +1时,不等式也成立, 根据∈和∈,可知不等式对任何n ∈N *都成立. 题组训练三 用赋值法证明与正整数有关的不等式 设函数f (x )=e x -ax -1,对∈x ∈R ,f (x )≥0恒成立. (1)求a 的取值集合;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).【解析】 (1)f (x )=e x -ax -1,f ′(x )=e x -a ,∈当a ≤0时,f ′(x )>0,f (x )在x ∈R 上单调递增,又f (0)=0,所以当x ∈(-∞,0),f (x )<0,不合题意,舍去;∈当a >0时,x ∈(-∞,ln a ),f ′(x )<0,f (x )单调递减,x ∈(ln a ,+∞),f ′(x )>0,f (x )单调递增,f (x )min =f (ln a )=a -a ln a -1,则需a -a ln a -1≥0恒成立.令g (a )=a -a ln a -1,g ′(a )=-ln a ,当a ∈(0,1)时,g ′(a )>0,g (a )单调递增,当a ∈(1,+∞)时,g ′(a )<0,g (a )单调递减,而g (1)=0,所以a -a ln a -1≤0恒成立.所以a 的取值集合为{1}.(2)由(1)可得e x -x -1>0(x >0),x >ln(x +1)(x >0),令x =1n ,则1n >ln ⎪⎭⎫⎝⎛+11n =ln n +1n =ln(n +1)-ln n , 所以1+12+13+…+1n>(ln 2-ln 1)+(ln 3-ln 2)+…+(ln(n +1)-ln n )=ln(n +1)(n ∈N *).题型四 构造函数法在解题中的应用【例4】 已知函数f (x )=e x -3x +3a (e 为自然对数的底数,a ∈R ). (1)求f (x )的单调区间与极值;(2)求证:当a >ln 3e ,且x >0时,e x x >32x +1x -3a .【解析】 (1)由f (x )=e x -3x +3a ,知f ′(x )=e x -3. 令f ′(x )=0,得x =ln 3,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f f (x )在x =ln 3处取得极小值,极小值为f (ln 3)=3(1-ln 3+a ). (2)证明:待证不等式等价于e x >32x 2-3ax +1,设g (x )=e x -32x 2+3ax -1,于是g ′(x )=e x -3x +3a . 由(1)及a >ln 3e=ln 3-1知,g ′(x )的最小值为g ′(ln 3)=3(1-ln 3+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 3e =ln 3-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x>32x 2-3ax +1,故e x x >32x +1x-3a .题组训练四1.构造函数解不等式已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)【解析】 因为f (x +2)为偶函数,所以f (x +2)的图象关于x =0对称,所以f (x )的图象关于x =2对称.所以f (0)=f (4)=1.设g (x )=f (x )e x (x ∈R ),则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x .又f ′(x )<f (x ),所以g ′(x )<0(x ∈R ),所以函数g (x )在定义域上单调递减. 因为f (x )<e x ∈f (x )e x <1,而g (0)=f (0)e 0=1,所以f (x )<e x ∈g (x )<g (0),所以x >0.故选B. 【答案】 B2.构造函数证明不等式设函数f (x )=ax 2ln x +b (x -1)(x >0),曲线y =f (x )过点(e ,e 2-e +1),且在点(1,0)处的切线方程为y =0.(1)求a ,b 的值;(2)证明:当x ≥1时,f (x )≥(x -1)2;(3)若当x ≥1时,f (x )≥m (x -1)2恒成立,求实数m 的取值范围.【解】 (1)函数f (x )=ax 2ln x +b (x -1)(x >0),可得f ′(x )=2a ln x +ax +b ,因为f ′(1)=a +b =0,f (e)=a e 2+b (e -1)=a (e 2-e +1)=e 2-e +1,所以a =1,b =-1.(2)证明:f (x )=x 2ln x -x +1, 设g (x )=x 2ln x +x -x 2(x ≥1),g ′(x )=2x ln x -x +1,(g ′(x ))′=2ln x +1>0,所以g ′(x )在[0,+∞)上单调递增,所以g ′(x )≥g ′(1)=0,所以g (x )在[0,+∞)上单调递增, 所以g (x )≥g (1)=0,所以f (x )≥(x -1)2.(6分) (3)设h (x )=x 2ln x -x -m (x -1)2+1, h ′(x )=2x ln x +x -2m (x -1)-1,由(2)中知x 2ln x ≥(x -1)2+x -1=x (x -1), 所以x ln x ≥x -1,所以h ′(x )≥3(x -1)-2m (x -1), ∈当3-2m ≥0即m ≤32时,h ′(x )≥0,所以h (x )在[1,+∞)单调递增,所以h (x )≥h (1)=0,成立. ∈当3-2m <0即m >32时,h ′(x )=2x ln x +(1-2m )(x -1), (h ′(x ))′=2ln x +3-2m ,令(h ′(x ))′=0,得x 0=e 2m -32>1,当x ∈[1,x 0)时,h ′(x )<h ′(1)=0,所以h (x )在[1,x 0)上单调递减,所以h (x )<h (1)=0,不成立.综上,m ≤32.3.构造函数解决数列问题设函数f (x )=x 2-ln(x +1),证明:对任意的正整数n 不等式f (1)+f ⎪⎭⎫ ⎝⎛21+f ⎪⎭⎫ ⎝⎛31+…+f ⎪⎭⎫⎝⎛n 1<1+123+133+…+1n 3成立. 【证明】 从数列的角度考虑左边的通项为f ⎪⎭⎫⎝⎛n 1,右边的通项为1n 3,若能证明⎪⎭⎫ ⎝⎛n f 1<1n3,则不等式获证,为此构造函数F (x )=f (x )-x 3=x 2-ln(x +1)-x 3, 则F ′(x )=-3x 2+2x -1x +1=-3x 3+x 2-2x +1x +1=-3x 3+(x -1)2x +1,显然当x ∈[0,+∞)时,F ′(x )<0,所以函数F (x )在[0,+∞)上是单调减函数, 又F (0)=0,所以当x ∈[0,+∞)时,恒有F (x )<F (0)=0, 即x 2-ln(x +1)<x 3恒成立. 所以x ∈[0,+∞)时,f (x )<x 3, 取x =1k,则有f ⎪⎭⎫⎝⎛k 1<1k 3,所以f (1)<1,f ⎪⎭⎫ ⎝⎛21<123,…,f ⎪⎭⎫ ⎝⎛n 1<1n 3,于是对任意的正整数n ,不等式f (1)+f ⎪⎭⎫ ⎝⎛21+f ⎪⎭⎫⎝⎛31+…+f ⎪⎭⎫⎝⎛n 1<1+123+133+…+1n 3成立. 【专题训练】1.已知函数f (x )=ax 2+2x -ln(x +1)(a 为常数). (1)当a =-1时,求函数f (x )的单调区间;(2)当x ∈[0,+∞)时,不等式f (x )≤x 恒成立,求实数的取值范围.【解析】 (1)函数的定义域为(-1,+∞),当a =-1时,f (x )=-x 2+2x -ln(x +1), ∈f ′(x )=-2x +2-1x +1=1-2x 2x +1,由f ′(x )>0得,-22<x <22, 由f ′(x )<0得,-1<x <22或x >22, ∈函数f (x )的单调增区间为⎪⎪⎭⎫ ⎝⎛-22,22,单调减区间为⎪⎪⎭⎫ ⎝⎛--22,1和⎪⎪⎭⎫ ⎝⎛+∞,22(2)当x ∈[0,+∞)时,f (x )≤x 恒成立, 令g (x )=f (x )-x =ax 2+x -ln(x +1), 问题转换为x ∈[0,+∞)时,g (x )max ≤0. ∈g ′(x )=2ax +1-11+x =x [2ax +(2a +1)]x +1, ∈当a =0时,g ′(x )=xx +1≥0,∈g (x )在x ∈[0,+∞)上单调递增, 此时g (x )无最大值,故a =0不合题意.∈当a >0时,令g ′(x )=0解得,x 1=0,x 2=-(2a +1)2a<0,此时g (x )在x ∈[0,+∞)上单调递增,此时无最大值,故a >0不合题意. ∈当a <0时,令g ′(x )=0解得,x 1=0,x 2=-(2a +1)2a,当-12<a <0时,x 2=-(2a +1)2a>0,而g (x )在[0,x 2)上单调递增,在[x 2,+∞)上单调递减,∈g (x )max =g (x 2)=a -14a -ln ⎪⎭⎫⎝⎛-a 21 =a -14a+ln(-2a ),令φ(x )=x -14x +ln(-2x ),x ∈⎪⎭⎫⎝⎛-0,21,则φ′(x )=1+14x 2+1x =(2x +1)24x 2>0,∈φ(x )在x ∈⎪⎭⎫⎝⎛-0,21上单调递增, 又φ⎪⎭⎫⎝⎛-81e =-1e 8+e 34-3ln 2,当e≈2.71时,e 3≈19.9,∈φ(x )在x ∈⎪⎭⎫⎝⎛-0,21上小于或等于不恒成立, 即g (x )max ≤0不恒成立, 故-12<a <0不合题意.当a ≤-12时,x 2=-(2a +1)2a ≤0,而此时g (x )在x ∈[0,+∞)上单调递减, ∈g (x )max =g (0)=0,符合题意.综上可知,实数的取值范围是⎥⎦⎤ ⎝⎛-∞-21,2.已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0, f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-a x a x 22. ∈0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎪⎪⎭⎫⎝⎛+∞,2a 时,f ′(x )>0,f (x )单调递增, 当x ∈⎪⎪⎭⎫⎝⎛a 2,1时,f ′(x )<0,f (x )单调递减. ∈a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ∈a >2时,0<2a<1,当x ∈⎪⎪⎭⎫⎝⎛a 2,0或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎪⎪⎭⎫⎝⎛1,2a 时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎪⎪⎭⎫⎝⎛a 2,1内单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,2a 内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎪⎪⎭⎫⎝⎛a 2,0内单调递增, 在⎪⎪⎭⎫⎝⎛1,2a 内单调递减,在(1,+∞)内单调递增. (2)证明:由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎪⎭⎫ ⎝⎛+--322211x x x=x -ln x +3x +1x 2-2x3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号,又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∈x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.3.已知函数f (x )=x +a ln x (a ∈R ).(1)若曲线y =f (x )在点(1,f (1))处与直线y =3x -2相切,求a 的值;(2)若函数g (x )=f (x )-kx 2有两个零点x 1,x 2,试判断g ′⎪⎭⎫⎝⎛+221x x 的符号,并证明.【解析】 (1)f ′(x )=1+ax,又f ′(1)=3,所以a =2.(2)当a >0时,g ′⎪⎭⎫⎝⎛+221x x <0;当a <0时,g ′⎪⎭⎫⎝⎛+221x x >0,证明如下: 函数g (x )的定义域是(0,+∞).若a =0,则g (x )=f (x )-kx 2=x -kx 2. 令g (x )=0,则x -kx 2=0.又据题设分析知,k ≠0,所以x 1=0,x 2=1k.又g (x )有两个零点,且都大于0,所以a =0不成立.据题设知⎩⎪⎨⎪⎧g (x 1)=x 1+a ln x 1-kx 21=0,g (x 2)=x 2+a ln x 2-kx 22=0.不妨设x 1>x 2,x 1x 2=t ,t >1. 所以x 1-x 2+a (ln x 1-ln x 2)=k (x 1-x 2)(x 1+x 2).所以1+a (ln x 1-ln x 2)x 1-x 2=k (x 1+x 2).又g ′(x )=1+a x -2kx ,所以g ′⎪⎭⎫⎝⎛+221x x =1+2a x 1+x 2-k (x 1+x 2)=1+2a x 1+x 2-1-a (ln x 1-ln x 2)x 1-x 2=a ⎪⎪⎭⎫⎝⎛---+212121ln ln 2x x x x x x =a x 2⎪⎭⎫ ⎝⎛--+i t t t ln 12=a x 2·1t -1()⎥⎦⎤⎢⎣⎡-+-t t t ln 112 引入h (t )=2(t -1)t +1-ln t (t >1),21 则h ′(t )=4(t +1)2-1t =-(t -1)2t (t +1)2<0. 所以h (t )在(0,+∞)上单调递减. 而h (1)=0,所以当t >1时,h (t )<0.易知x 2>0,1t -1>0,所以当a >0时,g ′⎪⎭⎫ ⎝⎛+221x x <0; 当a <0时,g ′⎪⎭⎫⎝⎛+221x x >0.。
3.5 利用导数证明不等式【题型解读】【知识储备】1.导数证明不等式方法:(1)构造单函数求最值证明不等式; (2)构造双函数比较最值证明不等式; (3)参变分离转化为具体函数最值证明不等式; (4)不等式放缩证明不等式;(5)双变量不等式证明转化为单变量不等式证明。
2.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. (1)生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m my x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e1e xmm x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m=时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥. 设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n -=-,即11ln y x n n=-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln ex x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数. 生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.【题型精讲】【题型一 构造单函数证明不等式】方法技巧 构造单函数证明不等式待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证. 例1 (2022·山东济南历城二中高三月考)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 【解析】(1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x .当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减. (2)第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a +2≤0.由(1)知,当a <0时,f (x )max =f ⎝⎛⎭⎫-12a .即证ln ⎝⎛⎭⎫-12a +12a+1≤0 不妨设t =-12a >0,则证ln t -t +1≤0,令h (t )=ln t -t +1,求导得h ′(t )=1t -1.h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a -2.【题型精练】1.(2022·天津·崇化中学期末)已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x bx f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x=>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x=>-.综上所述,当0x >,且1x ≠时,()ln 1xf x x >-. 2. (2022·山东济南高三期末)设函数()f x alnx x=,a R ∈.(1)讨论函数()f x 的单调性;(2)当1a =且1x >时,证明:213()2x x f x -+>.【解析】解:(1)函数()f x alnx x=+,定义域为(0,)+∞,1()a x f x x x-'=,① 当a ≤0时,()0f x '<,则()f x 在(0,)+∞上单调递减; ②当0a >时,令()0f x '=,解得21x a =, 当21(0,)x a ∈时,()0f x '<, 当21(x a∈,)+∞时,()0f x '>, 所以()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . 综上所述,当a ≤0时,()f x 的单调递减区间为(0,)+∞; 当0a >时,()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . (2)证明:当1a =时,令21()3(1)2h x lnx x x x x =+-+->, 则2211(1)(1)()1x x x x xx x x x h x x x x xx xx x--+---'=--+==,因为1x >,则()0h x '<,所以()h x 在(1,)+∞上单调递减, 故()h x h <(1)102=-<,则21302lnx x x x +-+-<,故213()2x x f x -+>. 【题型二 构造双函数比较最值证明不等式】方法技巧 构造双函数比较最值证明不等式若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.例2(2022·山东青岛高三期末)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(I )求,;a b (II )证明:() 1.f x >【解析】(1)因为()1e f '=,()12f =,而()()12e e e ln x x a x bx bf x a x x-+-'=+,所以()()1e e 12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =.(2)由(1)知,()12e e ln x xf x x x -=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e ex x x x +>. 令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1e x >,由()0m x '<可得10ex <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =,则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞上递减,所以()()max11en x n ⎡⎤==⎣⎦. 两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln e e xx x x +>. 【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=a ln x +x . (1)讨论f (x )的单调性; (2)当a =1时,证明:xf (x )<e x .【解析】(1) f (x )的定义域为(0,+∞), f ′(x )=ax +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0; 若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. 综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. (2)当a =1时,要证xf (x )<e x , 即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x,则g ′(x )=1-ln xx 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以g (x )max =g (e)=1+1e ,令函数h (x )=e xx 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证.2. (2022·安徽省江淮名校期末)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞上单调递减. (2)因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e.设g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e.故不等式xf (x )-e x +2e x ≤0得证. 【题型三 放缩法证明不等式】方法技巧 放缩法证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号. 例3 (2022·河南高三期末)已知函数f (x )=a e x -1-ln x -1. (1)若a =1,求f (x )在(1,f (1))处的切线方程; (2)证明:当a ≥1时,f (x )≥0.【解析】(1)当a =1时,f (x )=e x -1-ln x -1(x >0), f ′(x )=e x -1-1x,k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0. (2)∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1. 方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x ,令h (x )=e x -1-1x ,∴h ′(x )=e x -1+1x 2>0,∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0. 方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0; 当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”), 由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”), ∴e x -1≥x ≥ln x +1, 即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0. 【题型精练】1.(2022·广东·高三期末)已知函数1()1x e f x lnx-=+.(1)求函数()f x 的单调区间; (2)解关于x 的不等式11()()2f x x x>+【解析】(1)函数1()1x e f x lnx -=+.定义域为:11(0,)(,)ee+∞. 121(1)()(1)x e lnx x f x lnx -+-'=+,f '(1)0=. 令1()1g x lnx x =+-,211()0g x x x'=+>, ∴函数()g x 在定义域上单调递增. ∴10x e <<,11x e<<.()0f x '<,函数()f x 单调递减.1x >时,()0f x '>,函数()f x 单调递增. (2)不等式11()()2f x x x>+,即111()12x e x lnx x ->++.10x e <<,()0f x <,舍去.当1x =时,不等式的左边=右边,舍去.1x e∴>,且1x ≠.①11x e <<时,由1x e x ->,要证不等式111()12x e x lnx x ->++.可以证明:11()12x x lnx x >++.等价于证明:22211x lnx x >++.令222()(1)1x F x lnx x =-++. 2222(1)()0(1)x F x x x --'=<+,∴函数()F x 在1(,1)e上单调递减,()F x F ∴>(1)0=. ②当1x >时,不等式⇔12211x e lnxx x -+>+. 令122()1x e h x x -=+,1()lnxu x x+=. 12222(1)()0(1)x e x h x x --'=>+,函数()h x 在(1,)+∞上单调递增, ()h x h ∴>(1)1=.由1lnx x <-,()1u x ∴<.∴不等式12211x e lnxx x-+>+成立. 综上可得:不等式11()()2f x x x >+的解集为:1(,1)(1,)e +∞.【题型四 双变量不等式证明】方法技巧 双变量不等式证明对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()222111a x ax f x x x x -+'=--+=-. ①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>2244a a a a x --+-<,由()0f x '<,可得240a a x --<<或24a a x +->,所以()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x =+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则2214x x a --,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()22111122122*********ln ln ln14124a a x x x x a x x a a x x x x a a x x x x x x a -----++-=--+=----,于是()()22212222124ln44222444a a a f x f x a a a a a a a x x a a a ---+-+-<-⇔-<-⇔----- 22222444ln 4ln 222a a a a a a ⎛-+--⇔-< ⎪⎝⎭.设242a t -=,则244a t +,构造函数())2ln1t t t tϕ=-+,0t >,则()22212111011t t t t t ϕ++'==->+++,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以1212121121212122211212ln ln ln ln 1ln ln ln x x x x x x xx x x x x x x x x x x x x --<⇔⇔->⇔>--令()120,1x t x =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=ln x -2(x -1)x +1,g (x )=x ln x -m (x 2-1)(m ∈R ). (1)若函数f (x ),g (x )在区间(0,1)上均单调且单调性相反,求实数m 的取值范围; (2)若0<a <b ,证明:ab <a -b ln a -ln b<a +b2.【解析】 (1)f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2>0,所以f (x )在(0,1)上单调递增.由已知f (x ),g (x )在(0,1)上均单调且单调性相反,得g (x )在(0,1)上单调递减. 所以g ′(x )=ln x +1-2mx ≤0在(0,1)上恒成立,即2m ≥ln x +1x,令φ(x )=ln x +1x (x ∈(0,1)),φ′(x )=-ln xx 2>0,所以φ(x )在(0,1)上单调递增,φ(x )<φ(1)=1,所以2m ≥1,即m ≥12.(2)由(1)f (x )=ln x -2(x -1)x +1在(0,1)上单调递增,f (x )=ln x -2(x -1)x +1<f (1)=0,即ln x <2(x -1)x +1,令x =a b ∈(0,1)得ln a b <2⎝⎛⎭⎫a b -1a b +1=2(a -b )a +b ,∵ln ab <0,∴a -b ln a -ln b<a +b 2.在(1)中,令m =12,由g (x )在(0,1)上均单调递减得g (x )>g (1)=0,所以x ln x -12(x 2-1)>0,即ln x >12⎝⎛⎭⎫x -1x , 取x =ab∈(0,1)得ln a b >12⎝⎛⎭⎫a b-b a ,即ln a -ln b >a -b ab, 由ln a -ln b <0得:ab <a -b ln a -ln b ,综上:ab <a -b ln a -ln b <a +b2.总结提升 两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2. (2022·全国高三课时练习)已知函数f (x )=ax 2-x -ln 1x.(1)若f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,求f (x )的图象在点(1,f (1))处的切线方程; (2)若函数f (x )在定义域内有两个极值点x 1,x 2,求证:f (x 1)+f (x 2)<2ln2-3.【解析】(1)∵f (x )=ax 2-x -ln 1x =ax 2-x +ln x ,x ∈(0,+∞),∴f ′(x )=2ax -1+1x ,∴k =f ′(1)=2a .∵f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,∴2a =2,即a =1. ∴f (1)=0,故切点坐标为(1,0).∴切线方程为y =2x -2. (2)∵f ′(x )=2ax -1+1x =2ax 2-x +1x,∴由题意知方程2ax 2-x +1=0在(0,+∞)上有两个不等实根x 1,x 2, ∴Δ=1-8a >0,x 1+x 2=12a >0,x 1x 2=12a >0,∴0<a <18.f (x 1)+f (x 2)=ax 21+ax 22-(x 1+x 2)+ln x 1+ln x 2=a (x 21+x 22)-(x 1+x 2)+ln(x 1x 2)=a [(x 1+x 2)2-2x 1x 2]-(x 1+x 2)+ln(x 1x 2)=ln 12a -14a-1,令t =12a ,g (t )=ln t -t 2-1,则t ∈(4,+∞),g ′(t )=1t -12=2-t 2t<0,∴g (t )在(4,+∞)上单调递减.∴g (t )<ln4-3=2ln2-3,即f (x 1)+f (x 2)<2ln2-3. 【题型五 数列不等式证明】例5 (2022·辽宁省实验中学分校高三期末)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞. ①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x -+'=,令()1ln 1k x x x=-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111lim lim 11ln x x x x x++→→-==,所以1a ≤. ③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x x x--→→-==,所以1a ≥. 综上所述,1a =. (2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122k k ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n+++=-<,所以2111111e222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3.【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数. (1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.【解析】(1)()11f x x '=+,所以()1xg x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a Fx g x x++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01xG x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增. 由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11axh x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞. (2)()()()1212231ng g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证. 法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11tF t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1.。
专题23 利用导数证明不等式一、多选题1.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( ) A .21a a < B .1n a > C .100100S < D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n n a a +->变形可得112n n a a ++>,再将112n na a ++>变形可判断结果. 【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=, 因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误; D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n na a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>, 所以112n n n a a a ++>,所以D 错误. 故选:AB.【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项:(1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 2.下列不等式正确的是( ) A .当x ∈R 时,1x e x ≥+ B .当0x >时,ln 1≤-x x C .当x ∈R 时,x e ex ≥ D .当x ∈R 时,sin x x ≥【答案】ABC 【分析】构建函数,利用导数研究其单调性和最值,可得出每个选项中的不等式正不正确. 【详解】对于A :设()1x f x e x =--,则()1xf x e =-',令()0f x '=,解得0x =,当(,0)x ∈-∞时函数单调递减,当(0,)x ∈+∞时,函数单调递增,所以函数在0x =时,函数取得最小值()(0)0min f x f ==,故当x ∈R 时,1x e x +,故A 正确;对于B :设()ln 1f x x x =-+,所以1(1)()1'--=-=x f x x x, 令()0f x '=,解得1x =,当(0,1)x ∈时,函数单调递增,当(1,)x ∈+∞时,函数单调递减, 所以在1x =时,max ()f x f =(1)0=,故当0x >时,1lnx x -恒成立,故B 正确;对于C :设()xf x e ex =-,所以()x f x e e '=-,令()0f x '=,解得1x =,当(,1)x ∈-∞时,函数单调递减,当(1,)x ∈+∞时,函数单调递增,所以当1x =时,min ()f x f =(1)0=,所以当x ∈R 时,x e ex ,故C 正确;对于D :设函数()sin f x x x =-,则()1cos 0f x x '=-,所以()f x 是定义在R 上单调递增的奇函数, 所以0x >时,sin x x 成立,0x <时,()0f x <,故D 错误. 故选:ABC3.已知定义在R 上的函数()f x 满足()()f x f x '>-,则下列式子成立的是( ) A .()()20192020f ef < B .()()20192020ef f >C .()f x 是R 上的增函数 D .0t >,则有()()t f x e f x t <+【答案】AD 【分析】由题意得()0x e f x '⎡⎤>⎣⎦,即()xe f x 为增函数,可得()()2019202020192020e f e f <,即可判断,A B ,举出反例可判断C ,根据单调性可判断D. 【详解】由()()f x f x '>-,得()()0xxe f x e f x '+>,即()0x e f x '⎡⎤>⎣⎦,所以函数()xe f x 为增函数,故()()2019202020192020ef e f <,所以()()20192020f ef <,故A 正确,B 不正确; 函数()xe f x 为增函数时,()f x 不一定为增函数,如122x x x e e ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭是增函数,但12x⎛⎫ ⎪⎝⎭是减函数,所以C 不正确;因为函数()xe f x 为增函数,所以0t >时,有()()xx te f x ef x t +<+,故有()()tf x e f x t <+成立,所以D 正确.故选:AD. 【点睛】本题主要考查了利用导数判断函数的单调性,构造函数()xe f x 是解题的关键,属于中档题.二、解答题4.已知函数()()ln 1f x x =+,()1axg x x =+,若()()()F x f x g x =-最小值为0. (1)求实数a 的值;(2)设n *∈N ,证明:()()()()12>g g g n f n n ++⋅⋅⋅++. 【答案】(1)1;(2)证明见解析. 【分析】(1)由()'0F x =,得1x a =-,讨论当0a ≤时,无最小值.当0a >时, ()()min 1ln 1F x F a a a =-=-+,由ln 10a a -+=可得答案得;(2)由(1)可知1a =,可得()111ln 1>231n n +++⋅⋅⋅++,由(1)可知111ln 1>111n n n n⎛⎫+= ⎪+⎝⎭+,即()1ln 1ln 1n n n +->+,进而可得结论.【详解】(1)由已知()()ln 11axF x x x =+-+,定义域为()1,-+∞. ()()()2211'111a x a F x x x x +-=-=+++. 由()'0F x =,得1x a =-.当0a ≤时,()1,∈-+∞x ,()'0F x >在()1,-+∞单调递增无最小值. 当0a >时,()1,a 1x ∈--,()'0F x <;()1,x a ∈-+∞,()'0F x >. 故()()min 1ln 1F x F a a a =-=-+, 令()()ln 1>0x x x x ϕ=-+,()()1'>0xx x xϕ-=. ()0,1∈x ,()'0x ϕ>;()1,∈+∞x ,()'0x ϕ<,()()max 10x ϕϕ==,所以由ln 10a a -+=,得1a =.(2)由(1)可知1a =,此时()()()()12>g g g n f n n ++⋅⋅⋅++ 等价于()111ln 1>231n n +++⋅⋅⋅++, 由(1)可知当0x >时,()ln 11xx x +>+. 故111ln 1>111n n n n⎛⎫+= ⎪+⎝⎭+,即()1ln 1ln 1n n n +->+. 所以()()()()111ln 1ln 2ln1ln 3ln 2ln 1ln >231n n n n +=-+-+⋅⋅⋅++-++⋅⋅⋅+⎡⎤⎣⎦+, 故()()()()12>g g g n f n n ++⋅⋅⋅++.【点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.5.已知函数()ln f x x =,()g x x m =-.(1)当0m =时,求函数()()f x yg x =的最大值;(2)设()()()h x f x g x =-,当12x x <,且()()120h x h x ==,求证:()12ln 0em x x m +-+>. 【答案】(1)1e;(2)证明见解析. 【分析】(1)当0m =时,()()ln f x x y g x x ==,21ln xy x -'=,由()()f x y g x =的单调性得出函数()()f x y g x =的最大值;(2)由函数()h x 的单调性结合零点个数得出1m ,结合分析法要证()12ln 0em x x m +-+>,只需证121m e x x em -<<<<,由函数()h x 在(),1m e -上存在唯一零点1x 证明11m e x -<<,由函数()h x 在()1,em 上存在唯一零点2x 证明21x em <<,从而得出()12ln 0em x x m +-+>.【详解】解1)当0m =时,()()ln f x x y g x x==,221ln 1ln x x x x y x x ⋅--'==. 当x e >时,0y '<;当0x e <<时,0y '>. ∴函数lny x=在()0,e 上单调递增,在(),e +∞上单调递减. ∴max1x e y y e===.(2)由题可知1x ,2x 是函数()ln h x x x m =-+的零点.()111x h x x x-=-=' 当1x >时,()0h x '<;当01x <<时,()0h x '>∴函数()h x 在0,1上单调递增,在1,上单调递减故函数()h x 要有两个零点,必有()110h m =-+>,即1m .要证()12ln 0em x x m +-+>,只需证21mx x em e --<-只需证121mex x em -<<<< ∴由于1m ,()0,1me-∈,()0m m h e m e m --=--+<,()110h m =-+>∴函数()h x 在(),1me -上存在唯一零点1x即11mex -<<. ∴由(1)知,ln 1x x e ≤,所以ln x x e≤,且当x e =时,取等号 ∴()()()ln 20emh em em em m em m m e e=-+<-+=-<∴函数()h x 在()1,em 上存在唯一零点2x 即21x em <<. ∴由∴∴可知∴成立,故()12ln 0em x x m +-+>. 【点睛】求解本题第(2)问的关键是根据题中条件将证明()12ln 0em x x m +-+>转化为证明121m e x x em -<<<<,然后利用零点存在定理即可求解.6.已知函数()()xf x xex =∈R ,其中e 为自然对数的底数.(1)当1x >时,证明:()()211ln 231f x x x x x --->-+; (2)设实数1x ,()212x x x ≠是函数()()()2112g x f x a x =-+的两个零点,求实数a 的取值范围. 【答案】(1)证明见解析;(2)(),0-∞. 【分析】(1)构造函数()()()11ln 21ln 2111x f x h x x x e x x x x --=+-+=+-+>-,证明最小值大0即可得解;(2)先求导()()2112xg x xe a x =-+可()()()()()111x x g x x e a x x e a '=+-+=+-,分0a =,0a <和0a >进行讨论即可得解. 【详解】 (1)设()()()11ln 21ln 2111x f x h x x x e x x x x --=+-+=+-+>-,∴()112x h x ex -'=+-,∴()121x h x e x-''=-, ∴1x >,∴11x e ->,2101x<<,∴()1210x h x e x-''=->,∴()h x '在()1,+∞上单调递增,又()10h '=,∴1x >时,()()10h x h ''>=,()1ln 21x h x e x x -=+-+在()1,+∞上单调递增,又()10h =,∴1x >时,()()10h x h >=,故当1x >时,()1ln 211f x x x x ->-+--,∴()()211ln 231f x x x x x --->-+. (2)∴()()2112xg x xe a x =-+, ∴()()()()()111xxg x x e a x x e a '=+-+=+-,当0a =时,易知函数()g x 只有一个零点,不符合题意. 当0a <时,在(),1-∞-上,()0g x '<,()g x 单调递减; 在()1,-+∞上,()0g x '>,()g x 单调递增; 又()110g e-=-<,()120g e a =->, 不妨取4b <-且()ln b a <-时,()()()2ln 2111120222a g b be a b a b b -⎛⎫>-+=-++> ⎪⎝⎭,[或者考虑:当x →-∞,()g x →+∞],所以函数()g x 有两个零点, ∴0a <符合题意,当0a >时,由()()()10xg x x e a '=+-=得1x =-或ln x a =.(∴)当ln 1a =-,即1a e=时,在(),-∞+∞上,()0g x '≥成立, 故()g x 在(),-∞+∞上单调递增,所以函数()g x 至多有一个零点,不符合题意. (∴)当ln 1a <-,即10a e<<时,在(),ln a -∞和()1,-+∞上, ()0g x '>,()g x 单调递增;在()ln ,1a -上,()0g x '<,()g x 单调递减; 又()110g e-=-<,且()()()2211ln ln ln 1ln 1022g a a a a a a a =-+=-+<,所以函数()g x 至多有一个零点()g x ,不符合题意. (∴)当ln 1a >-即1a e>时, 在(),1-∞-和()ln ,a +∞上()0g x '>,()g x 单调递增; 在()1,ln a -上()0g x '<,()g x 单调递减, 以()110g e-=-<,所以函数()g x 至多有一个零点,不符合题意. 综上所述,实数a 的取值范围是(),0-∞. 【点睛】本题考查了导数的应用,考查了利用导数研究函数的单调性,考查了构造法证明不等式以及分类讨论求参数范围,要求较高的计算能力,属于难题. 解决本类问题的方法有以下几点:(1)证明题常常利用构造法,通过构造函数来证明;(2)分类讨论解决含参问题,是导数压轴题常考题型,在讨论时重点是找到讨论点. 7.已知()x f x e =,当0x ≥时(2)1f x ax ≥+恒成立. (1)求实数a 的取值范围; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求证:223sin x x x xe -≤.【答案】(1)2a ≤;(2)证明见解析. 【分析】(1)移项构造函数,求导后分类讨论.(2)利用(1)的结论构造新函数,求导后构造新函数再求导寻找极值点即可. 【详解】(1)(2)1f x ax ≥+即210x e ax --≥恒成立, 令2()1(0)xh x eax x =--≥,则2()2x h x e a '=-当2a ≤时()0h x '≥,则()h x 在[)0,+∞是增函数,(0)0h =,()0h x ∴≥成立.当2a >时,0x ∃使()00h x '=()00,x x ∈,()0h x '<,()h x 为减函数,()0,x x ∈+∞,()0h x '>,()h x 为增函数.所以()0(0)0h x h <=不合题意. 所以2a ≤.(2)由(1)得当0,2x π⎡⎤∈⎢⎥⎣⎦时221x e x ≥+,所以要证223sin x x x xe -≤只要证23sin (21)x x x x -≤+ 即证:2sin 0x x x --≤,设2()sin h x x x x =--,0,2x π⎡⎤∈⎢⎥⎣⎦, ()21cos h x x x '=--,()2sin 0h x x ''=+>所以()h x '在0,2π⎡⎤⎢⎥⎣⎦是增函数, (0)2h '=-,102h ππ⎛⎫'=-> ⎪⎝⎭,所以存在00,2x π⎡⎤∈⎢⎥⎣⎦使()00h x '=.故[)00,x x ∈时,()0h x '<,则()h x 为减函数,0,2x x π⎛⎤∈ ⎥⎝⎦时()0h x '>则()h x 为增函数(0)0h =,2224144202h πππππ--⎛⎫=--=< ⎪⎝⎭,所以0,2x π⎡⎤∈⎢⎥⎣⎦时()0≤h x ,故命题成立.【点睛】此题为导数综合题,属于难题. 方法点睛:利用导数求参数范围方法:(1)变量分离,构造函数,转化为恒成立问题处理,求导数进步求新函数的最值. (2)移项后,构造函数,求导讨论函数的单调性及极值. 8.已知函数()ln xxf x e a=-. (1)当1a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若01a <<,求证:()2ln af x a+≥. 【答案】(1)()11y e x =-+;(2)证明见解析. 【分析】(1)首先求导得到()()10xf x e x x'=->,从而得到1k e =-,再利用点斜式求切线方程即可. (2)首先求导得到()111xx f x e xe ax x a ⎛⎫'=-=- ⎪⎝⎭,根据xy xe =在()0,∞+上单调递增,且()0,y ∈+∞,且11a>,得到存在唯一()00x ∈+∞,,使得0010x x e a -=,再根据函数()f x 的单调性得到()min f x ,利用基本不等式即可证明()2ln af x a+≥. 【详解】(1)当1a =时,()()()1ln 0xxf x e x f x e x x'=-⇒=->. ∴()11k f e '==-,又()1f e =,∴()f x 在点A 处的切线方程为()()11y e e x -=--,即()11y e x =-+. (2)()()()ln 1110xx x x f x e f x e xe x a ax x a ⎛⎫'=-⇒=-=-> ⎪⎝⎭, 易知xy xe =在()0,∞+上单调递增,且()0,y ∈+∞,又1011a a<<⇒>, ∴存在唯一()00x ∈+∞,,使得0010x x e a-=,即0001ln ln x e x x a ax =⇔=--.当00x x <<时,()0f x '<,()f x 为减函数;当0x x >时,()0f x '>,()f x 为增函数.∴()()00000min 00ln 1ln 11ln x x x a f x f x e x a a ax a a a x ⎛⎫==-=++=++ ⎪⎝⎭2l ln n 1a a a a ⎛⎫≥ = +⎪⎪⎝⎭. 当且仅当001x x =,即01x =时,等号成立. ∴当01a <<时,()2ln a f x a+≥. 【点睛】 关键点点睛:本题主要考查导数的综合应用,考查利用导数证明不等式,解题的关键为找到导函数的隐藏零点,属于中档题.9.已知函数21()ln 2f x a x ax =+. (1)若()f x 只有一个极值点,求a 的取值范围.(2)若函数2()()(0)g x f x x =>存在两个极值点12,x x ,记过点1122(,()),(,())P x g x Q x g x 的直线的斜率为k ,证明:1211k x x +>. 【答案】(1)0a <;(2)证明见解析.【分析】(1n =,则0n >.令22()2n an n a φ=-+,解不等式组0,(0)0,a φ<⎧⎨>⎩即得解;(2)只需证21121222112ln ()2x x x a x x x x x -+>-,设12(01)xt t x =<<,函数21()2ln m t a t t t =-+,证明121()0()2m t x x >>-即得证. 【详解】(1)解:222'()222a a ax a f x x x x=+-=,(0,)x ∈+∞n =,则0n >.令22()2n an n a φ=-+,要使函数()f x 只有一个极值点,则需满足0,(0)0,a φ<⎧⎨>⎩,即0a <; (2)证明:因为2221()()2ln 2g x f x a x ax x ==+-, 所以22222'()1a ax x a g x ax x x-+=+-=, 因为()g x 存在两个极值点,所以30,180,a a >⎧⎨->⎩即102a << 不妨假设120x x <<,则121x x a+= 要证1211k x x +>,即要证121212()()11g x g x x x x x -+>-, 只需证121212121221()()()()x x x x x x g x g x x x x x -+->=-, 只需证221112121212222111()[()2]2()222x x x x x x a x x a ln x x a ln x x x x -+-+=--+>-, 即证21121222112ln ()2x x x a x x x x x -+>- 设12(01)x t t x =<<,函数21()2ln m t a t t t =-+,22221'()t a t m t t -+=- 因为102a <<,故4440a -<,所以22210t a t -+>,即'()0m t <, 故()m t 在(0,1)上单调递减,则()(1)0m t m >= 又因为121()02x x -<,所以121()0()2m t x x >>-,即21121222112ln ()2x x x a x x x x x -+>-, 从而1211k x x +>得证. 【点睛】关键点点睛:解答本题的关键是通过分析得到只需证明21121222112ln ()2x x x a x x x x x -+>-.对于比较复杂的问题,我们可以通过分析把问题转化,再证明,提高解题效率.10.函数()()11x x f x x e k e =+⋅--. (1)当1k =时,求()f x 的单调区间;(2)当0x >,k 2≤时,证明:()0f x >.【答案】(1)单调递减区间为(),0-∞,单调递增区间为()0,∞+;(2)证明见解析.【分析】(1)由1k =得到()()11x x f x x e e =+⋅-- 求导由()0f x '>, ()0f x '<求解. (2)求导()()1xf x e x k '=⋅--⎡⎤⎣⎦,分1k ≤,12k <≤讨论求解. 【详解】(1)当1k =时,()()11x x f x x e e =+⋅-- ,. 所以()xf x x e '=⋅ 当()0f x '>时,0x >;当()0f x '<时,0x <.所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,∞+.(2)因为()()11x x f x x e k e =+⋅--, 所以()()1xf x e x k '=⋅--⎡⎤⎣⎦. ∴当1k ≤,0x >时,()0f x '>恒成立,所以()f x 单调递增,所以()()0f x f >,而()010f =>,所以()0f x >恒成立;∴12k <≤,0x >时,由()0f x '>可得1x k >-;由()0f x '<可得01x k <<-.所以()f x 在()0,1k -单调递减,在()1,k -+∞单调递增,所以()()1min 11k f x f k k e-=-=+-. 设()1112()x g x x e x -=+-<≤,则()110x g x e -'=-<,所以()g x 在(]1,2单调递减,故()()min 230g x g e ==->,所以()min 110k f x k e -=+->,从而()0f x >.综上,当0x >,k 2≤时,()0f x >.【点睛】方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.2、利用导数证明不等式常构造函数φ(x ),将不等式转化为φ(x )>0(或<0)的形式,然后研究φ(x )的单调性、最值,判定φ(x )与0的关系,从而证明不等式.11.已知函数2()2ln 2(1)f x mx x m x =-+-.(1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-. 【答案】(1)答案见解析;(2)证明见解析.【分析】(1)先求导,分为0m ≥,1m =-,1m <-和10m -<<四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;(2)等价于3226(1ln )23501x x x x x-+--<-,令()()3261ln 235h x x x x x =-+--,利用当2m =时的结论,根据导数判断()h x 与0的关系,即可证明.【详解】解:()f x 的定义域为(0,)+∞, 则22(1)1(1)(1)()22(1)22mx m x mx x f x mx m x x x+--+-'=-+-=⋅=⋅, 当0m 时,10mx +>,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当0m <时,令()0f x '=,解得1x =或1x m=-, 当1m =-时,2(1)()2?0x f x x -'=-恒成立,∴函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,101m <-<, 当1(0,)x m∈-或(1,)+∞时,()0f x '<,当1(x m ∈-,1)时,()0f x '>, ∴函数()f x 的单调递减区间为1(0,)m -或(1,)+∞,单调递增区间为1(m-,1), 当10m -<<,11m->, 当(0,1)x ∈或1(m -,)+∞时,()0f x '<,当1(1,)x m∈-时,()0f x '>, ∴函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m. 综上所述:当0m 时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1m =-时,函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,函数()f x 的单调递减区间为1(0,)m -,(1,)+∞,单调递增区间为1(m-,1), 当10m -<<时,函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m . (2) 证明:要证2286ln 3521x x x x x x ---<-,即证3226(1ln )23501x x x x x -+--<-, 令32()6(1ln )235h x x x x x =-+--,则22()66ln 6663(22ln 2)h x x x x x x x '=--+-=--,由(1),当2m =时,2()22ln 2f x x x x =--,可得()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞, 即()h x '的单调递减区间为(0,1),单调递增区间为(1,)+∞, ()h x h ∴''(1)0=,()h x ∴在(0,)+∞上单调递增, h (1)6(1ln1)2350=-+--=,∴当01x <<时,()0h x <,210x ->,当1x >时,()0h x >,210x -<,∴3226(1)23501x lnx x x x-+--<-, 即22863521x xlnx x x x---<-. 【点睛】含有参数的函数单调性讨论常见的形式:(1)对二次项系数的符号进行讨论;(2)导函数是否有零点进行讨论;(3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等.12.函数()2ln a x f x x x =-. (1)若12a =,求()f x 的单调性; (2)当0a >时,若函数()()2g x f x a =-有两个零点,求证:12a >. 【答案】(1)()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)证明见解析.【分析】(1)求导得()2221ln 1ln 1x x x f x x x--+'=-=,设()21ln x x x ϕ=-+,利用导数可得()x ϕ的单调性,并可得()x ϕ的零点,即可求出()f x 的单调性;(2)由函数()g x 有两个零点,所以()()22ln 20h x x a x ax x =-->,即()0h x =有两个不等实根,利用导数求得()h x 的单调性,结合题意可得2001x a x =+,求出0x 的范围,利用对勾函数的单调性即可证明. 【详解】(1)因为()ln x f x x x=-,(0x >), 所以()2221ln 1ln 1x x x f x x x--+'=-=. 设()21ln x x x ϕ=-+,则()120x x xϕ'=+>,所以()x ϕ在()0,∞+单调递增,又因为()10ϕ=,所以当()0,1x ∈时,()0x ϕ<,则()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0x ϕ>,则()0f x '>,()f x 单调递增.综上,()f x 在()0,1上单调递减,在()1,+∞上单调递增.(2)证明:因为函数()()2ln 20a x g x x a x x=-->有两个零点, 所以方程22ln 20x a x ax --=有两个不等实根.设()()22ln 20h x x a x ax x =-->,即()0h x =有两个不等实根, 则()()22222220a x ax a h x x a x x x--'=--=>. 设()()22220m x x ax a x =-->,则由0a >可知24160a a ∆=+>, 而()2222m x x ax a =--的对称轴方程为2a x =,且()020m a =-<, 所以存在()00x ∈+∞,使得()20002220m x x ax a =--=,即2001x a x =+, 且当()00,x x ∈时,()0m x <,则()0h x '<,所以()h x 单调递减;当()0,x x ∈+∞时,()0m x >,则()0h x '>,所以()h x 单调递增.因为()0h x =有两个不等实根,所以必有()00h x <,即20002ln 20x a x ax --<. 将2001x a x =+,代入整理可得0012ln 0x x --<. 设()()12ln 0m x x x x =-->,则易得()m x 在()0,∞+上单调递减,又()10m =,所以01x >, 结合对勾函数1y t t=+在()2,+∞单调递增可知200001112112x a x x x ==++->++, 即12a >成立,命题得证. 【点睛】解题的关键是利用导数判断函数的单调性,当导函数无法直接判断正负时,可构造新函数,并继续求导,即可求出导函数的单调性和极值,进而可得导函数的正负,即原函数的单调性,考查分析理解,化简求值的能力,属中档题.13.已知函数()21()x m x xf x e ++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤. 【答案】(1)答案不唯一见解析;(2)证明见解析.【分析】(1)对函数进行求导得(1)(1)()x x mx m f x e--'+=-,再对m 分三种情况讨论,即0m =,0m >,0m <三种情况; (2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,再利用函数的单调性,即可得证;【详解】 解析:(1)因为(1)(1)()x x mx m f x e--'+=-, ∴当0m =时,1()x x f x e-=-',当1x >时,()0f x '<,当1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减; ∴当0m >时,1(1)11(),11x m x x m f x e m'⎛⎫--+ ⎪⎝⎭=--<, 当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当1,1(1,)x m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭时,()0f x '<,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递增,在1,1,(1,)m ⎛⎫-∞-+∞ ⎪⎝⎭单调递减; ∴当0m <时,111m ->,当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1(,1)1,x m ⎛⎫∈-∞⋃-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递减,在1(,1),1,m ⎛⎫-∞-+∞ ⎪⎝⎭单调递增. (2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-, 而ln 1x x -≥,因此只需证明1()f x e≤, 当0m =时,()x x f x e =,由(1)知()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,所以max 1()(1)f x f e ==; 当0m <时,()211()x x m x xx f x e e e++=<≤, 故()ln ef x x x +≤. 【点睛】利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式.14.已知函数()()ln x f x xe a x x =-+.(1)当0a >时,求()f x 的最小值;(2)若对任意0x >恒有不等式()1f x ≥成立.∴求实数a 的值;∴证明:()22ln 2sin x x e x x x >++.【答案】(1)ln a a a -;(2)∴1;∴证明见解析.【分析】(1)求出函数()f x 的定义域,对函数求导,令0x xe a -=,构造()xg x xe =,利用导数研究函数的单调性与实根个数,进而得出()f x 的单调性和最值;(2)∴当0a ≤时,()f x 单调递增,()f x 值域为R ,不适合题意;当0a >时,构造()()ln 0a a a a a ϕ=->,求导得出函数的最大值,可得实数a 的值;∴由∴可知ln 1x xe x x --≥,因此只需证:22ln 2sin x x x x +>+,只需证2222sin x x x x +>-+,即222sin x x x -+>,按1x >和01x <≤分别证明即可.【详解】(1)法一:()f x 的定义域为()0,∞+,由题意()()()11x x a xe a f x x e x x x ⎛⎫-⎛⎫'=+-=+ ⎪ ⎪⎝⎭⎝⎭, 令0x xe a -=,得x a xe =,令()xg x xe =, ()()10x x x g x e xe x e '=+=+>,所以()g x 在()0,x ∈+∞上为增函数,且()00g =, 所以x a xe =有唯一实根,即()0f x '=有唯一实根,设为0x ,即00xa x e =,所以()f x 在()00,x 上为减函数,在()0,x +∞上为增函数, 所以()()()00000min ln ln x f x f x x e a x x a a a ==-+=-. 法二:()()()()ln ln ln 0xe x xf x x a x x e a x x x +=-+=-+>. 设ln t x x =+,则t R ∈.记()()t t e at t R ϕ=-∈.故()f x 最小值即为()t ϕ最小值. ()()0t t e a a ϕ'=->,当(),ln t a =-∞时,()0t ϕ'<,()t ϕ单调递减, 当()ln ,t a ∈+∞时,()0t ϕ'>,()t ϕ单调递增, 所以()()ln min ln ln ln a f x a e a a a a a ϕ==-=-, 所以()f x 的最小值为ln a a a -.(2)∴当0a ≤时,()f x 单调递增,()f x 值域为R ,不适合题意,当0a >时,由(1)可知()min ln f x a a a =-, 设()()ln 0a a a a a ϕ=->, 所以()ln a a ϕ'=-,当()0,1a ∈时,()0a ϕ'>,()a ϕ单调递增, 当()1,a ∈+∞时,()0a ϕ'<,()a ϕ单调递减, 所以()()max 11a ϕϕ==,即ln 1a a a -≤. 由已知,()1f x ≥恒成立,所以ln 1a a a -≥, 所以ln 1a a a -=, 所以1a =.∴由∴可知ln 1x xe x x --≥,因此只需证:22ln 2sin x x x x +>+,又因为ln 1≤-x x ,只需证2222sin x x x x +>-+,即222sin x x x -+>,当1x >时,2222sin x x x -+>≥结论成立,当(]0,1x ∈时,设()222sin g x x x x =-+-,()212cos g x x x '=--,当(]0,1x ∈时,()g x '显然单调递增.()()112cos10g x g ''≤=-<,故()g x 单调递减, ()()122sin10g x g ≥=->,即222sin x x x -+>. 综上结论成立. 【点睛】方法点睛:本题考查导数研究函数的最值,导数解决恒成立问题以及导数证明不等式,导数对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法, 一般通过变量分离,将不等式恒成立问题转化为求函数的最值问题:1.()f x m >恒成立min ()f x m ⇔>;2.()f x m <恒成立max ()f x m ⇔<.15.已知a >0,函数21()ln (1)2f x x x x a x =-+-.(1)若f (x )为减函数,求实数a 的取值范围;(2)当x >1时,求证:2e ()e 2aa f x <-.(e =2.718…) 【答案】(1)0<a ≤1;(2)证明见解析. 【分析】(1)根据题意可得在()0+∞,上,()0f x '≤恒成立,即ln 0x x a -+≤恒成立,设()ln g x x x a =-+,求导数分析()g x 的单调性,使得()max 0g x ≤,即可得结果;(2)当0<a ≤1时,可得()12f x <-,2e 1e 22a a ->-;当1a >时,先得()f x '在()1,+∞ 上单调递减,()10f '>,得出存在0x ,使得()01,x 上单调递增,在()0+x ∞,上单调递减,进而()20001()2f x f x x x ≤=-,结合函数21()2F x x x =-的单调性可得结果. 【详解】(1)解:由题意知f (x )的定义域为(0,+∞),f '(x )=ln x -x +a , 由f (x )为减函数可知f '(x )≤0恒成立. 设g (x )=ln x -x +a ,1'1()g x x=-, 令g '(x )=0得x =1,当x ∴(0,1)时,g '(x )>0,g (x )单调递增,即f '(x )单调递增; 当x ∴(1,+∞)时,g '(x )<0,g (x )单调递减,即f '(x )单调递减. 故f '(x )≤f '(1)=-1+a ≤0,因此0<a ≤1.(2)证明:由(1)知,当0<a ≤1时,f (x )为减函数,所以3()(1)2f x f a <=-,又0<a ≤1,3122a -≤-. 设2e e 2a a y =-,e a=t ,则22t y t =-,t ∴(1,e ]. 又22t y t =-在区间(1,e ]上单调递增,所以11122y >-=-,故231e ()(1)e 222a af x f a <=-≤-<-,所以当0<a ≤1时,2e ()e 2a a f x <-.当a >1时,由(1)知,当x ∴(1,+∞)时,f '(x )单调递减,且f '(1)=a -1>0. f '(e a )=2a -e a ,令h (x )=2x -e x ,h '(x )=2-e x ,当x >1时,h '(x )<0,h (x )单调递减,故h (a )=2a -e a <h (1)=2-e <0, 又e a >1,f '(x )在(1,+∞)上单调递减,故存在x 0∴(1,e a ),使得f '(x 0)=0,即f '(x 0)=ln x 0-x 0+a =0,即a =x 0-ln x 0, 因此有f (x )在(1,x 0)上单调递增,在(x 0,+∞)上单调递减, 故2000001()()ln (1)2f x f x x x x a x ≤=-+-,将a =x 0-ln x 0代入,得20001()2f x x x =-. 因为函数21()2F x x x =-在(1,+∞)上单调递增, 所以20e ()(e )e 2a aaF x F <=-,即20e ()e 2a a f x <-, 故20e ()()e 2aa f x f x ≤<-成立。
利用导数证明或解决不等式问题在数学中,不等式问题是一个重要且常见的问题类型。
不等式问题涉及到数学中的大小关系,通过比较不同数值的大小关系来判断不等式的成立或者不成立。
在解决不等式问题的过程中,利用导数进行证明和解决不等式问题是一种常见的方法。
导数是函数在某一点的变化率,它可以帮助我们很好地理解函数的性质,并且在解决不等式问题时起到了重要的作用。
本文将详细介绍如何利用导数证明或解决不等式问题。
让我们回顾一下导数的基本概念。
在数学中,导数衡量了函数在特定点的变化率。
对于函数y=f(x),它在点x处的导数记作f'(x),表示函数在点x处的斜率或者变化率。
导数可以被理解为函数曲线在某一点的切线的斜率,它告诉我们函数在这一点的变化方向和速度。
导数的正负号以及大小可以帮助我们判断函数在该点附近的增减性,从而帮助我们理解函数的性质。
在利用导数证明或解决不等式问题时,我们通常需要借助导数的性质和相关定理来进行推导和证明。
在一元函数的情况下,我们可以通过求导和导数的性质来分析函数的单调性、极值、凹凸性等,从而进一步解决不等式问题。
下面通过具体的例子来介绍如何利用导数证明或解决不等式问题。
例1:证明不等式x^2>0成立。
解:我们将函数y=x^2进行求导,得到y'=2x。
首先我们观察到当x=0时,有y=0,因此0为该函数的一个根。
对于x≠0的情况,函数的导数始终为正数,说明函数在整个实数域上是单调递增的,因此函数的值始终大于0。
我们通过导数的信息证明了不等式x^2>0成立。
解:首先我们将不等式2x^2-3x+1>0转化为函数f(x)=2x^2-3x+1>0,然后求出函数的导数f'(x)=4x-3。
我们找出函数f(x)的驻点,即f'(x)=0的点,求解方程4x-3=0得到x=3/4。
然后我们观察驻点处的导数的正负号,由于3/4是f'(x)的零点,所以我们取x=0和x=1来代入f'(x)进行验证。
第15讲-导数在不等式中的应用一、经典例题考点一 构造函数证明不等式 【例1】 已知函数f (x )=1-x -1ex,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e2.证明 (1)由题意得g ′(x )=x -1x(x >0),当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0, 即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1ex ,得f ′(x )=x -2ex, 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, 即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数, 所以f (x )≥f (2)=1-1e2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e2.规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ). 2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式 【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值; (2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e2x成立.(1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞). 当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2. 由f ′(x )=0,得x =1e2.当x ∈⎝⎛⎭⎪⎫0,1e2时,f ′(x )<0;当x >1e2时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1e2上单调递减,在⎝ ⎛⎭⎪⎫1e2,+∞上单调递增.因此f (x )在x =1e2处取得最小值,即f (x )min =f ⎝ ⎛⎭⎪⎫1e2=-1e2,但f (x )在(0,+∞)上无最大值.(2)证明 当x >0时,ln x +1>1ex +1-2e2x 等价于x (ln x +1)>x ex +1-2e2.由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e2,当且仅当x =1e2时取等号.设G (x )=x ex +1-2e2,x ∈(0,+∞),则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e2,当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e2x.规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题 角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin xx(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎪⎫0,π2上的单调性;(2)若f (x )<a 在区间⎝ ⎛⎭⎪⎫0,π2上恒成立,求实数a 的最小值.解 (1)f ′(x )=xcos x -sin xx2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎪⎫0,π2,则g ′(x )=-x sin x ,显然,当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减,且g (0)=0.从而g (x )在区间⎝ ⎛⎭⎪⎫0,π2上恒小于零,所以f ′(x )在区间⎝⎛⎭⎪⎫0,π2上恒小于零,所以函数f (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减.(2)不等式f (x )<a ,x ∈⎝⎛⎭⎪⎫0,π2恒成立,即sin x -ax <0恒成立.令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎪⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎪⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎪⎫0,π2上存在唯一解x 0,当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝ ⎛⎭⎪⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾. 故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ). (1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围. 解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞). (2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x2-2xx -ln x在区间[1,e]上有解. 令h (x )=x2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2.因为x ∈[1,e],所以x +2>2≥2ln x , 所以h ′(x )≥0,h (x )在[1,e]上单调递增, 所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,e(e -2)e -1.规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ; a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min . [方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则 (1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0; ∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0; ∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、 课时作业1.函数f (x )的定义域为,,对任意,,则的解集为( )A.B.C.D.【答案】C【解析】设,则,所以为减函数,又,所以根据单调性可知,即的解集是.2.下列三个数:,大小顺序正确的是()A.B.C.D.【答案】A【解析】构造函数,因为对一切恒成立,所以函数在上是减函数,从而有,即,故选A.3.设函数在R上存在导数,对任意的有,且在上. 若,则实数的范围是()A.B.C.D.【答案】A【解析】令,则,故为偶函数,在,上,,且,故在,上单调递增,根据偶函数的对称性可知,在上单调递减,由,可得,即,则,可转化为,解可得,,4.若关于x的不等式恒成立,则实数a的取值范围为()A.B.C.D.【答案】D【解析】因为关于x的不等式恒成立,所以恒成立,令,,当时,,当时,,所以当时,取得最大值2.又因为,所以故实数a的取值范围为.5.已知定义域为的函数满足(为函数的导函数),则不等式的解集为()A.B.C.D.【答案】D【解析】令,则,定义域为的函数满足,,函数在上单调递增,当时,由,知,当时,显然不等式成立.当时,则,所以,整理得,即,所以,,得,则;当时,则,所以,整理得,即,所以,,得,则.综上所述,原不等式的解集为.6.定义在上的函数,则满足的取值范围是()A.B.C.D.【答案】D【解析】因为为偶函数,且在上恒成立,所以在上单调递增,在上单调递减,且图象关轴对称,则由)得,解得;故选D.7.已知函数,若存在,使得,则实数的取值范围是()A.B.C.(﹣∞,3)D.【答案】B【解析】∵,,∴,∴,∵存在,使得,即∴,设,∴∴,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以∴,8.已知是可导的函数,且对于恒成立,则()A.,B.,C.,D.,【答案】D【解析】构造函数,则,所以,函数为上的减函数.对于A选项,,,则,,所以,,,A选项错误;对于B选项,,则,所以,,B选项错误;对于C选项,,则,所以,,C选项错误;对于D选项,,则,所以,,D选项正确.9.已知函数是定义在上的奇函数.当时,,则不等式的解集为()A.B.C.D.【答案】C【解析】令,,当,时,,,即函数单调递增.又,时,,是定义在,上的奇函数,是定义在,上的偶函数.不等式,即,即,,①,又,故②,由①②得不等式的解集是.10.关于函数,有下述四个结论:①是周期函数.②在上单调递增.③的值域为.④若函数有且仅有两个不同的零点,则.其中所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】C【解析】当时,,所以,令得:或,所以当时,,递增,当时,,递减,且,则的图象如图所示:由图可知:不是周期函数,故①错误;在上单调递增,故②正确;的值域为,故③错误;若函数有且仅有两个不同的零点,即函数与函数有两个交点,所以由图可知:,故④正确.综上,②④正确.11.已知函数,且,则实数的取值范围是()A.B.C.D.【答案】C【解析】构造函数,则函数的定义域为.当时,,,函数在区间上单调递增,则,所以,函数在区间上单调递减;当时,,则,所以,函数在区间上单调递减.,所以,函数在定义域上单调递减.由,得,即,所以,,解得.因此,实数的取值范围是.12.如果关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.【答案】D【解析】当时,不等式成立.当时,不等式在上恒成立等价于恒成立.令则.又,令,解得所以在上单调递增,在上单调递减, 单调递增.又因为.所以.所以.13.函数,若存在唯一整数使得,则的取值范围是().A.B.C.D.【答案】B【解析】,令,则,当;当,在单调递增,在单调递减,且,如图所示:恒过定点,且,,,,存在唯一整数使得,当时,存在唯一的整数使得命题成立,14.若对于任意的,都有,则的最大值为()A.B.C.1 D.【答案】C【解析】由已知有,两边同时除以,化简有,而,构造函数,令令,所以函数在上为增函数,在上为减函数,由对于恒成立,即在为增函数,则,故的最大值为1,选C. 15.已知为常数,函数有两个极值点,(),则()A.,B.,C.,D.,【答案】C【解析】因为,令,由题意可得有两个解,即函数有且只有两个零点,即在上的唯一极值不等于0,又由,①当时,单调递增,因此至多有一个零点,不符合题意;②当时,令,解得,因为,,函数单调递增;,,函数单调递减,所以是函数的极大值点,则,即,所以,所以,即,故当时,的两个根,且,又,所以,从而可知函数在区间上递减,在区间上递增,在区间上递减,所以,故选C.16.对于任意正实数,都有,则实数的取值范围为()A.B.C.D.【答案】A【解析】,则,设,,,则,,恒成立,导函数单调递减,故时,,函数单调递增;当时,,函数单调递减.故,故,故.17.(多选题)已知是可导的函数,且,对于恒成立,则下列不等关系正确的是()A.,B.,C.,D.,【答案】AC【解析】设,所以,因为,所以,所以在R上是减函数,所以,,,即,,,18.(多选题)若满足,对任意正实数,下面不等式恒成立的是()A.B.C.D.【答案】BD【解析】设,,因为,所以,在R上是增函数,因为是正实数,所以,所以,因为,大小不确定,故A错误,因为,所以,即,故B正确.因为,所以,因为,大小不确定.故C错误.,因为,所以,故D正确.19.(多选题)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是()A.B.C.D.【答案】BCD【解析】令函数,因为,,为奇函数,当时,,在上单调递减,在上单调递减.存在,得,,即,;,为函数的一个零点;当时,,函数在时单调递减,由选项知,取,又,要使在时有一个零点,只需使,解得,的取值范围为,20.定义在上的函数满足,,则不等式的解集为______.【答案】【解析】由,设,则.故函数在上单调递增,又,故的解集为,即的解集为.21.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)+xf'(x)>0,且f(3)=0,则不等式xf(x)>0的解集是_____.【答案】(﹣∞,﹣3)∪(3,+∞)【解析】令,当x>0时,∴x∈(0,+∞)上,函数单调递增.,∴.∵函数是定义在R上的奇函数,∴函数是定义在R上的偶函数.由,即,∴|x|>3,解得x>3,或x<﹣3.∴不等式的解集是.故答案为:.22.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,,则f(x)>2x+4的解集为____.【答案】(-1,+∞)【解析】构造函数F(x)=f(x)-2x,,所以即求F(x)>4=F(-1)的解集,而F(x)在R上是单调递增函数,所以x>-1,填.23.设函数,.(1)当时,判断函数的单调性;(2)当时,恒成立,求实数的取值范围.【解析】(1)当时,所以.令,,由,可得.当时,,单调递减,当时,,单调递增,当时,,即,,则在是增函数;(2)解:设,所以.令,则.①当时,,在上单调递增,.,在上单调递增,则,结论成立;②当时,由,可得,当时,,单调递减,又,时,恒成立,即.时,单调递减,此时,结论不成立.综上,即为所求.24.已知函数.(1)若函数在上恰有两个零点,求实数的取值范围.(2)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.【解析】(1)因为,∴函数,令,则,令得,,列表得:12单调递减极小值单调递增∴当时,的极小值为,又,.∵函数在上恰有两个零点,∴即,解得.(2),∴,令得,∵,是的极值点,∴,,∴,∵,∴解得:,.∴,.令,则,∴在上单调递减;∴当时,,根据恒成立,可得,∴的最大值为.25.已知函数,,曲线在点处的切线与轴垂直;(1)求的值;(2)求证:【解析】(1)曲线在点处的切线与轴垂直,该切线的斜率(2)由(1)可得只需证设令,得当时,,当时,即函数在上单调递减,在上单调递增。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。