当前位置:文档之家› 国内外常用除磷方法

国内外常用除磷方法

国内外常用除磷方法
国内外常用除磷方法

三、国内外常用除磷方法

1.化学沉淀法。该方法是通过投加化学沉淀剂与废水中的磷酸盐生成难溶沉淀物,可把磷分离出去,同时形成的絮凝体对磷也有吸附去除作用。常用的混凝沉淀剂有石灰、明矾、氯化铁、石灰与氯化铁的混合物等。为了降低废水的处理成本,提高处理效果,学者们在研制开发新型廉价高效化学沉淀剂方面做了大量工作。研究发现,原水含磷10mg/L时,投

加300mg/L的A1 2 (S0 4 ) 3 或90mg/L的FeCl 3 ,可除磷70%

左右,而在初沉时加入过量石灰,一般总磷可去除80%左右。他根据化学凝聚能增加可沉淀物质的沉降速度,投加新型净水剂碱式氯化铝,沉降效果达80%~85%,很好地解决了生产用水的磷污染。该方法具有简便易行,处理效果好的优点。但是长期的运行结果表明,化学沉淀剂的投加会引起废水pH值上升,在池子及水管中形成坚硬的垢片,还会产生一定量的污泥。

2.生物法。20世纪70年代美国的Spector发现,微生物在好氧状态下能摄取磷,而在有机物存在的厌氧状态下放出磷。含磷废水的生物处理方法便是在此基础上逐步形成和完善起来的。目前,国外常用的生物脱磷技术主要有3种:第一,向曝气贮水池中添加混凝剂脱磷;第二,利用土壤处理,正磷酸根离子会与土壤中的Fe和Al的氧化物反应或与粘土中的

OH - 或SiO 32- 进行置换,生成难溶性磷酸化合物;第三种方法是活性污泥法,

这是目前国内外应用最为广泛的一类生物脱磷技术。生物除磷法具有良好的处理效果,没有化学沉淀法污泥难处理的缺点,且不需投加沉淀剂。但要求管理较严格,成本较高。

3.离子交换法。该方法是利用强碱性阴离子交换树脂,与废水中的磷酸根阴离子进行交

换反应,将磷酸根阴离子置换到交换剂上予以除去的方法。离子交换树脂脱除PO 43- 户的交换容量比较稳定,其再生后交换容量也比较稳定。但离子交换树脂的价格较高,树

脂再生时需用酸、碱或食盐,运行费用较高

4.吸附法。20世纪80年代,多孔隙物质作为吸附剂和离子交换剂就已应用在水的净化和控制污染方面。黄巍等以粉煤灰作为吸附剂,对含磷50~120mg/L模拟废水脱磷的规律特征进行了研究。研究表明粉煤灰中含有较多的活性氧化铝和氧化硅等,具有相当强的吸附

作用,粉煤灰对无机磷酸根不是单纯吸附,其中CaO、FeO、A1 2 O 3 等可

以和磷酸根生成不溶或直溶性沉淀,因而在废水处理方面具有广阔的应用前景。吸附法由于占地面积小、工艺简单、操作方便、无二次污染,特别适用于低浓度废水的处理而倍受关注。在吸附法研究中,寻找新的吸附剂是开发新的除磷工艺的关键所在,因此自然界广泛存在的天然粘土矿物是人们研究的热点。

5.膜分离方法。液膜分离法是一种新型的、类似溶剂萃取的膜分离技术。液膜法通常是将按一定比例配制的有机溶剂(有机相)同膜内试剂混合制成乳液微滴,微滴表面形成一层极薄的(l~10μm)液膜,膜内为内相试剂。在混合柱内,将此表面积极大的乳液微滴与废水接触,水中待除的金属离子便通过选择性渗透、萃取、吸附等穿过液膜,进入内相试剂进行化学反应,废水中的金属离子因而得到分离去除。

四、结语

人与自然的和谐发展是21世界工业发展的主旋律,在发展工业的同时,尽量较少对环境的污染已经已经成为世界各个国家的共识。

参考文献:

[1]崔砺金,章苒.触目惊心与无可奈何——化工污染重灾区实录[J].记者观察,2003,(07).

[2]董慧,安俊菁.黄磷行业的清洁生产[J].云南环境科学,2005.

[3]马谦,杨星宇,徐浩.福泉地区磷化工对清水江的污染及其治理对策[J].贵州化工,2004,

城市污水处理厂化学除磷效果及运行成本研究

万方数据

万方数据

万方数据

万方数据

城市污水处理厂化学除磷效果及运行成本研究 作者:念东, 王佳伟, 刘立超, 周军, 甘一萍, 王洪臣, Nian Dong, Wang Jiawei, Liu Lichao, Zhou Jun, Gan Yiping, Wang Hongchen 作者单位:北京城市排水集团有限责任公司,北京,100022 刊名: 给水排水 英文刊名:WATER & WASTEWATER ENGINEERING 年,卷(期):2008,34(5) 被引用次数:11次 参考文献(3条) 1.邱维;张智城市污水化学除磷的探讨[期刊论文]-重庆环境科学 2002(02) 2.赵恩海;朱文亭我国污水处理的发展趋势[期刊论文]-城市环境与城市生态 2000(04) 3.Henze M;Harremoes P;国家城市给水排水工程技术研究中心污水生物处理与化学处理技术 1999 本文读者也读过(10条) 1.孔令勇.马小蕾废水化学除磷的基本原理与设计[会议论文]-2009 2.徐丰果.罗建中.凌定勋废水化学除磷的现状与进展[期刊论文]-工业水处理2003,23(5) 3.李炜炜.吴国防.丁云松.龙腾锐.LI Wei-wei.WU Guo-fang.DING Yun-song.LONG Teng-rui城市污水厂化学除磷投药点后移的生产性试验[期刊论文]-中国给水排水2010,26(10) 4.侯艳玲.刘艳臣.邱勇.何苗.施汉昌.Hou Yanling.Liu Yanchen.Qiu Yong.He Miao.Shi Hanchang化学除磷药剂中三价铁铝对生物系统污泥活性影响的研究[期刊论文]-给水排水2010,36(6) 5.唐建国.林洁梅化学除磷的设计计算[期刊论文]-给水排水2000,26(9) 6.张健.ZHANG Jian杭州七格污水处理厂化学除磷工艺探讨[期刊论文]-中国给水排水2010,26(21) 7.帖春英.TIE Chun-ying改良A2/O与化学除磷工艺用于城市污水处理[期刊论文]-中国给水排水2010,26(20) 8.吕亚云污水化学除磷处理技术[期刊论文]-河南化工2010,27(8) 9.潘理黎.王玲.郑海军.吕伯昇.徐伟勇.Pan Lili.Wang Ling.Zheng Haijun.Lu Bosheng.Xu Weiyong城镇污水处理厂尾水深度化学除磷试验研究[期刊论文]-水处理技术2011,37(6) 10.张亚勤污水处理厂达到一级A排放标准中的化学除磷[期刊论文]-中国市政工程2009(5) 引证文献(11条) 1.孙士权.杨静.毕立俊.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-工业水处理 2010(1) 2.贾会艳.杨云龙城市污水化学辅助除磷[期刊论文]-山西建筑 2009(14) 3.孙士权.刀钟颖.郭文文.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-环境工程学报2009(7) 4.解立国太原市北郊污水净化厂深度除磷研究[期刊论文]-科技情报开发与经济 2009(20) 5.戴斌低碳源情况下氧化沟工艺除磷的方式[期刊论文]-上海建设科技 2009(5) 6.陈晓安.严福平.李旭.桂丽娟连续流砂过滤器处理城市二级出水中试研究[期刊论文]-工业用水与废水 2011(1) 7.乔莹.栗建华污水处理厂节能降耗区域性评价管理研究[期刊论文]-长治学院学报 2010(5) 8.郑育毅低碳源城市污水化学除磷的研究[期刊论文]-工业水处理 2011(9) 9.刘传伟.孙书群城市污水污水处理厂氮磷去除的研究[期刊论文]-广州化工 2011(23) 10.杨凌波.葛勇涛.谢继荣.应启锋.曾思育.何苗基于节能降耗的污水处理厂绩效评估体系研究[期刊论文]-给水排水 2009(z1)

化学除磷理论及规范

化学除磷 6.7.1 污水经二级处理后,其出水总磷不能达到要求时,可采用化学除磷工艺处理。污水一级处理以及污泥处理过程中产生的液体有除磷要求时,也可采用化学除磷工艺。 化学除磷可采用生物反应池的前置投加、后置投加和同步投加,也可采用多点投加。 化学除磷设计中,药剂的种类、剂量和投加点宜根据试验资料确定。 化学除磷的药剂可采用铝盐、铁盐,也可采用石灰。用铝盐或铁盐作混凝剂时,宜投加离子型聚合电解质作为助凝剂。 采用铝盐或铁盐作混凝剂时,其投加混凝剂与污水中总磷的摩尔比宜为~3。化学除磷时应考虑产生的污泥量。 化学除磷时,对接触腐蚀性物质的设备和管道应采取防腐蚀措施。 条文说明: 化学除磷 关于化学除磷应用范围的规定。 《城镇污水处理厂污染物排放标准》(GB18918)规定总磷的排放标准:当达到一级A标准时,在2005年12月31日前建设的污水厂为1mg/l,2006年1月1日起建设的污水厂为l。一般城市污水经生物除磷后,较难达到后者的标准,故可辅以化学除磷,以满足出水水质的要求。 强化一级处理,可去除污水中绝大部分磷。上海白龙港城市污水厂试验表明,当FeCl3投加量为40~80mg/l,或Al2(SO4)3•18H2O投加量为60~80mg/l 时,进出水磷酸盐磷浓度分别为2~9mg/l和~l,去除率为60~95%。 污泥厌氧处理过程中的上清液、脱水机的过滤液和浓缩池上清液等,由于在厌氧条件下,有大量含磷物质释放到液体中,若回流入污水处理系统,将造成污水处理系统中磷的恶性循环,因此应先进行除磷,一般宜采用化学除磷。 关于药剂投加点的规定。 以生物反应池为界,在生物反应池前投加为前置投加,在生物反应池后投加为后置投加,投加在生物反应池内为同步投加,在生物反应池前后都投加为多点投加。

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

样品前处理的常用消解体系酸消解法

样品前处理的常用消解体系酸消解法 酸消解法 酸消解法包括敞口酸消解法和高压密闭酸消解法。敞口酸消解法是应用最普遍的一种样品分解方法。利用各种酸的化学能力,将待测的金属元素从样品中溶解出来转移到液体中。酸消解法常用的酸的种类和性质如下: (1)硝酸HN03(相对密度1.42, 70%水溶液,m/m ),沸点120℃ 在常压下的沸点为120℃,在0.5 MPa下,温度可达176℃,它的氧化电位显著增大,氧化性增强。能对无机物及有机物进行氧化作用。金属和合金可用硝酸氧化为相应的硝酸盐,这些硝酸盐通常易溶于水。部分金属元素,如Au, Pt, Nb, Ta, Zr不被溶解。AI和Cr不易被溶解。硝酸可溶解大部分的硫化物。 (2)盐酸HCl(相对密度1.19, 37%水溶液,m/m ),沸点110℃ 盐酸不属于氧化剂,通常不消解有机物。盐酸在高压与较高温度下,可与许多硅酸盐及一些难溶氧化物、硫酸盐、氟化物作用,生成可溶性盐。许多碳酸盐、氢氧化物、磷酸盐、硼酸盐和各种硫化物都能被盐酸溶解。 (3)高氯酸HC104(相对密度1.67, 72%水溶液,m/m ),沸点130℃ HC104是己知最强的无机酸之一。经常使用HCIO4来驱赶HCI, HN03和HF,而HC104本身也易于蒸发除去,除了一些碱金属(K, Rb, Cs)的高氧酸盐溶解度较小外,其他金属的高氯酸盐类都很稳定且易溶于水。用HC104分解的样品中,可能会有10%左右的Cr以CrOC13的形式挥发掉,V也可能会以VOCI3的形式挥发。HC104是一种强氧化剂,热的浓HC104氧化性极强,会和有机化合物发生强烈(爆炸)反应,而冷或稀的HC104则无此情况。因此,通常都与硝酸组合使用,或先加入硝酸反应一段时间后再加入高氯酸(HN03的用量大于HC104的4倍)。高氯酸大多在常压下的预处理时使用,较少用于密闭消解中,要慎重使用。在使用聚四氟乙烯(PTFE)烧杯分解样品时,选用HC104赶酸可避免过高温度导致PTFE材料的不稳定。使用高氯酸可以维持整个样品消解过程中的氧化环境,从而减少Hg以及能形成氢化物的元素如As,Se.Sb,Bi,Te的损失,保证有机成分完全氧化分解,避免较高的有机含量增大溶液粘度,从而影响样品引入期间的传输和雾化效率。 (4)氢氟酸HF(相对密度1.15, 48%水溶液,m/m ),沸点112℃ HF本身易挥发,处理样品时HF很少单独使用,常与HCI,HN03,HC104等酸同时使用。HF是唯一能与硅、二氧化硅及硅酸盐发生反应的酸,少量HF与其他酸结合使用,可有效地防止样品中待测元素形成硅酸盐。HF是一种弱酸,但由于它具有较强的络合性,所以可以与许多阳离子形成稳定的络合物,如生成H2SiF6,促使阳离子组分从硅酸盐晶格中释放出来,加热时H2SiF6分解成气态SiF4逸出,得到了不含硅的溶液。许多环境样品,如土壤、水系沉积物、河道底泥、污泥等,用HF分析样品可除去样品中大量的Si,有效地降低样品中的总溶解固体(TDS),但同时B,As,Sb和Ge等根据不同的价态也将不同程度挥发。氟和氟氧络合离子的生成有助于铌钽钨等化合物的分解,可防止它们在酸性溶液中因水解而生成沉淀,但另一些阳离子会与氟离子反应生成不易溶解的沉淀。比如,在同一条件下稀土元素、Th4+,U4+生成沉淀,而Ta,Nb,Ti等生成稳定络合物。生成的某些低含量氟化物可随氟化钙或氟化镧共同沉淀。HF容易分解碱金属、碱土金属和重金属的硅酸盐。硫化物含量高的样品很难被HF和HC104混合酸有效地溶解,最好先用王水溶解。测定样品中的B时,氢氟酸易与B生成挥发性的BF3,磷酸的加入可避兔这种挥发损失。许多元素「如As(111),Sn,Sb]的氟化物在赶酸时容易挥发损失,但挥发与否以及挥发程度取决于所用酸的种类。 必须注意的是,HF具腐蚀性,会腐蚀玻璃、硅酸盐,不能使用玻璃或石英容器,经典的是采用铂器皿,但铂器皿较贵,目前实验室最常用的是聚乙烯、聚丙烯, 聚碳酸酯、聚四氟乙烯(特氟隆)等塑料器皿。聚四氟乙烯是最合适的材料,它可以抗氧化剂,而且允许加热到240℃,但温度高于200℃容器易变形。另外,用HF处理过的样晶中因存在HF,会腐蚀仪器中的玻璃或石英进样系统和炬管等,因此这类样品在测试之前需先除掉HF,通常用HCIO4或H2SO4赶酸。 (5)过氧化氢H202(相对密度1.13, 30%水溶液,m/m),沸点107℃ 过氧化氢的氧化能力随介质的酸度增加而增加,H202分解产生的高能态活性氧对有机物质的破坏能力强,使用时通常先加HNO3预处理后再加入H202。组成H2O2的元素和水相同,以H2O2作为氧化剂不会向样品中引入额外的卤素元素,从而减少分析干扰。 (6)硫酸H2SO4(相对密度1.84, 98.3%水溶液,m/m ),沸点338℃ 硫酸是许多有机组织、无机氧化物及金属等的有效溶剂,它几乎可以破坏所有的有机物。但在密闭消解时要严格监控反应温度,因为浓H2SO4在达到沸点温度时可以熔化聚四氟乙烯容器,浓H2SO4的沸点是338℃,而聚四氟乙烯的使用温度不能超过240℃.所以,一般不单独用H2SO4,而是与HN03一起组合使用。由于H2SO4赶酸时间长、易引入硫元素的千扰,因此在环境监测中使用率不如上述几种强酸高。

污水处理中的化学除磷

污水处理中的化学除磷公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5

化学除磷简述

化学除磷简述 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

化学除磷简述 1引言 由于广泛使用含磷洗涤剂,我国城市污水中普遍含有一定量的磷,一般为5-10mg/L。磷是藻类繁殖所需各种成分中的限制性因素之一,水体中磷含量的高低与水体富营养化程度有密切的关系。同时,对于引发水体富营养化而言,磷的作用远大于氮的作用,水体中磷的浓度达到一定数值时就可以引起水体的富营养化。因此,在污水处理中进行除磷是必要的。我国《城镇污水处理常污染物排放标准》(GB18918-2002)中明确规定,自2006年1月1日起建设的污水处理厂总磷指标的一级A排放标准为L。 污水中的磷可以通过化学和生物两种方法去除。生物除磷是一种相对经济的除磷方法,但由于现阶段生物除磷工艺还无法保证出水总磷稳定达到L标准的要求,所以常需要采用或辅助以化学除磷措施。 2化学除磷原理 化学除磷主要是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂与污水中溶解性的盐类(如磷酸盐)反应生成颗粒状、非溶解性的物质。实际上投加化学药剂后,污水中进行的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非溶解状的固体物互相粘结成较大形状的絮凝体。 3化学除磷药剂 为了生成非溶解性的磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙。许多高价金属离子药剂投加到污水中后都会与污水中的溶解性

磷离子结合生成难溶解性的化合物,但出于经济原因考虑,用于磷沉析的金属盐药剂主要是Fe3+盐、Fe2+盐和Al3+盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 污水化学除磷中常用的药剂类型详见表1。 表1污水净化常用药剂 4化学除磷工艺 化学除磷工艺可按化学药剂的投加地点来分类,实际中常采用的有:前置除磷、同步除磷和后置除磷。 前置除磷 前置除磷工艺的特点是化学药剂投加在沉砂池中、初沉池的进水渠(管)中、或者文丘里渠(利用涡流)中。其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。相应产生的沉析产物(大块状的絮凝体)在初沉池中通过沉淀被分离。如果生物段采用的是生物滤池,则不允许使用铁盐药剂,以防止对填料产生危害(产生黄锈)。

污水处理生物除磷工艺.

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

化学除磷合集

化学除磷合集

絮凝剂对除磷的作用 关于化学除磷,我们日常使用的药剂主要是絮凝剂,如PAC,聚合铝铁,氯化铝,硫酸铝,硫酸亚铁等。对于化学除磷,过去大家并没有过多关注絮凝剂对生物处理系统的潜在作用问题,本次论坛答疑活动中,刘智晓博士结合自己的研究和实践提出,实际运营中要关注同步化学除磷的对生物处理系统的潜在负面作用,并由此引发了热烈争论。 ] 对此问题形成了两种截然不同的观点,有一种持正面观点的认为“絮凝剂尤其是铝盐对活性污泥中的微生物存在抑制作用” 。这种观点认为,只有当铝盐投加到一定浓度才会显示出抑制作用影响,即存在一个“阈值”,很多污水厂之所以没有观察到这种抑制作用,一部分原因是投加量较低,不足以显示出铝盐潜在的抑制作用;尽管有些厂看上去出水氨氮也能达标,硝化也很好,但是这并不意味着抑制作用不存在,只是因为通过其它的工艺调整措施,比如增加曝气能耗等方面掩盖或者弥补了絮凝剂的负面作用,但却在增加运行能耗等负面付出了代价等。 持“铝盐对活性污泥中的微生物存在抑制作用” 这种观点的网友,还列举了大量的国内外的研究报导予以佐证,包括清华大学环境

学院进行的“十一五”国家科技支撑计划项目的研究报导,以及国外的一些资料文献。根据清华大学的研究报导表明,化学除磷Fe3+、Al3+的投加对活性污泥影响存在抑制作用,其中Al3+强于Fe3+,当Al3+的投加量达到10-3mol/L时,会对生化单元内微生物的活性产生较为明显的抑制作用。 当然,还有一些网友认为“铝盐对活性污泥并不存在抑制作用”,并以北京排水集团的高碑店、小红门污水处理厂为例。这两个厂化学除磷投加的就是铝盐,网友表示,两年多的运行实践表明,不存在所谓抑制作用,铝盐的投加只是提高了污泥的沉降性能。 对于以上争论,刘博士总结,对于三级深度处理采用的后置化学除磷,是不存在抑制作用的,因为这部份化学污泥不再返回或滞留在生物系统。但是对于同步化学除磷,也就是絮凝剂投加在曝气池出水的情况,结果则有所不同。可以肯定的是,对于絮凝剂同步投加情况,化学药剂富集是对活性污泥系统存在潜在负面作用的。目前的研究及生产实践都已经证明了这一点,因此,我们需要引起重视。尤其是对于铝盐同步投加情况,絮凝剂只能随剩余污泥排出系统,持续性投加絮凝剂会逐渐富集在活性污泥系统,对活性污泥生物活性是存在潜在的抑制作用的。当然有个事实,就是需要达到一定浓度或者投加量才会表现出来这种抑制作用。国外也有文献报导,一定条件下,化学除磷药剂不但抑制硝化过程,甚至能引起生物除磷效率的降低。

污水处理中的化学除磷的工艺和方法

污水处理中的化学除磷的工艺和方法 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl 式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较 小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价 铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~5.5 式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品 应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3 式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。 沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH值范围为5.0~5.5,对于铝盐为6.0~7.0,因为在以上PH值范围内FePO4或AIPO4

化学除磷设计计算

化学除磷设计计算 (1)药剂投加点 化学除磷工艺可按化学药剂的投加地点来分类,实际中常采用的有:前置除磷、同步除磷和后置除磷。 前置除磷 前置除磷工艺的特点是化学药剂投加在沉砂池中、初沉池的进水渠(管)中、或者文丘里渠(利用涡流)中。其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。相应产生的沉析产物(大块状的絮凝体)在初沉池中通过沉淀被分离。如果生物段采用的是生物滤池,则不允许使用铁盐药剂,以防止对填料产生危害(产生黄锈)。 前置除磷工艺由于仅在现有工艺前端增加化学除磷措施,比较适合于现有污水处理厂的改建,通过这一工艺步骤不仅可以除磷,而且可以减少生物处理设施的负荷。常用的化学药剂主要是石灰和金属盐药剂。前置除磷后控制剩余磷酸盐的含量为,完全能满足后续生物处理对磷的需要。 同步除磷 同步除磷是目前使用最广泛的化学除磷工艺,在国外约占所有化学除磷工艺的50%。其工艺是将化学药剂投加在曝气池出水或二沉池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠(管)中。目前已确定对于活性污泥法工艺和生物转盘工艺可采用同步化学除磷方法,但对于生物滤池工艺能否将药剂投加在二次沉淀池进水中尚值得探讨。 后置除磷 后置除磷是将沉析、絮凝以及被絮凝物质的分离在一个与生物处理相分离的设施中进行,因此也叫二段法工艺。一般将化学药剂投加到二沉池后的一个混合池中,并在其后设置絮凝池和沉淀池(或气浮池)。 对于要求不严的受纳水体,在后置除磷工艺中可采用石灰乳液药剂,但必须 进行中和。 对出水pH值加以控制,如可采用CO 2 采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需要恒定供应空气因而运行费用较高。 后置除磷考虑利用滤池,也就是采用微过滤的方式。在二沉池出水管道加药,

化学除磷理论及规范

6.7化学除磷6. 7.12005年12月31日前建设的污水厂为1m g/l,2006年1月1日前言 在静止的或流动缓慢的水体中,如果磷的浓度过高,会造成水体的富营养化,其危害已众所周知,因而在污水处理中进行除磷是必要的。我国《污水综合排放标准》(8978—1996) 工艺 2 部分是有机化合磷,其以溶解和非溶解状态存在。稠环磷酸盐(如P 3O 10 5-)和有机化合磷(核 酸)一般在污水管网中和污水处理中就已经转化为正磷酸盐(PO 4 3-)。 3化学除磷的基础 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进

行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl 3+K 3 PO 4→ FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效 污水 和固一4 污水中 污水 、3。 Al3++3OH-→Al(OH) 3 ↓式4 Fe3++3OH-→Fe(OH) 3 式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

污水处理厂生物脱氮除磷工艺选择

龙源期刊网 https://www.doczj.com/doc/bf17051964.html, 污水处理厂生物脱氮除磷工艺选择 作者:赵宁宁 来源:《现代农业科技》2013年第21期 摘要为降低巢湖流域水體富营养化程度,对含山县污水处理厂提出脱氮除磷改进要求。 介绍了项目的概况和工艺要求,并对各种工艺方案的特点和可行性进行了分析与比较,最后选择A/A/O氧化沟工艺作为项目的污水处理工艺,以期为该项目提供技术参考。 关键词污水处理;生物脱氮除磷;工艺选择 中图分类号 X703.1 文献标识码 A 文章编号 1007-5739(2011)21-0296-01 随着工农业生产的发展及人口的增长,人类赖以生存的水资源正在遭到多种来源的污染。废水对水资源的污染已引起人们极大的关注,特别是作为生物体的重要营养元素的氮磷,随污水进入水体以后产生种种严重危害,而目前更普遍的是,氮磷等营养物质进入水体会引发水体富营养化。水体富营养化会造成藻类异常繁茂,水味变得腥臭难闻。一些藻类能够分泌和释放毒性物质,例如蓝藻门的不定腔球藻(Coclosphaerium)、铜锈微囊藻(Microcystics Aeruginosa)等能分泌藻青脘(Phycyan)这样的带有毒性的物质,这类物质被人蓄饮用后会引发消化道炎症。藻类死亡后腐烂分解,大量消耗溶解氧,严重时可使水体呈厌氧状态,致使鱼类等需氧水生生物难以生存,藻类的异常繁殖还给城市水厂的正常运行带来困难,提高制水成本,自来水带有异味,因此污废水中氮、磷的处理已成为当前废水处理中的热点。利用好氧和厌氧不同状况,在好氧条件下,由硝化菌作用变成硝酸盐氮,随后在缺氧条件下,由反硝化菌作用,使硝酸盐氮变成氮气逸出;生物除磷就是利用聚磷菌类的细菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态贮藏在体内,形成高磷污泥排出,达到除磷的效果。根据含山县污水处理厂的情况探讨该厂生物脱氮除磷的可行性。 1 项目概况 为减少巢湖流域水体的富营养化,对含山县污水处理厂提出脱氮除磷改进要求。该厂位于巢湖流域,设计污水的处理规模4万m3/d,工程原设计工艺常规活性污泥法能满足COD、BOD、SS的去除率,但对氮、磷的去除是有一定限度的,仅从剩余污泥中排除氮、磷,其去除率氮仅为10%~25%,磷仅为12%~19%,达不到脱氮除磷要求。因此,对含山县污水处理厂进行了污水脱氮除磷工艺改造是巢湖流域水环境治理的污水处理厂重要组成部分。污水处理脱氮除磷工程的建设将是减少巢湖流域水体富营养化的重要举措。 2 工艺要求 含山县污水处理厂进水水质BOD5 /COD=0.51、BOD5 /TN>3~5、BOD5/TP=60,可以采用生物法对污水进行脱氮除磷处理。为了减少污水处理厂常年运行的费用,有效地降低工程投

三种土壤样品消解处理方法的对比研究

目录 中文摘要 (2) 英文摘要 (3) 一、土壤污染 (5) (一)土壤污染概述 (5) (二)土壤污染的现状 (5) (三)土壤污染的危害 (5) (四)造成土壤污染的原因 (6) 二、土壤消解 (7) (一)研究进展 (8) (二)消解原理 (8) (三)实验仪器和药品 (10) (四)电热板消解法 (10) (五)全自动消解法 (11) (六)微波消解法 (12) (七)元素测定阶段 (12) 三、综述 (13) 参考文献 (15)

摘要 我国土壤污染的总体形势严峻,部分地区土壤污染严重,由土壤污染引发的农产品质量安全问题和群体性事件逐年增多。工业生产中矿山的开采冶炼、造纸、汽车尾气的排放,以及农业生产活动中含重金属污水灌溉农田、污泥的农业利用、肥料的土壤施用都给环境带来了污染。个别农药在其组成中含有Hg、As、Cu、Zn等金属。磷肥中含较多的重金属,使地球上的许多土壤被重金属污染。重金属元素不仅以单一元素污染土壤,同时多种重金属在土壤中共存时,它们之间还存在协同、拮抗作用,而且随着农药、化肥、污泥的大量施用,进一步加剧了土壤的复合污染。目前我国受Pb、Cu、Cd、As、Cr、Zn等重金对土壤污染和水污染的种类和数量随着工业的发展而越来越多,许多研究表明,重金属Cd2+可使高等植物的叶绿体含量明显降低,Cd2+,Pb2+和Zn2+等重金属离子对高等植物叶绿体的光合电子传递也有抑制作用,严重影响了农作物的生长,而且对土壤微生物活性和酶活性有一定质量影响。土壤重金属污染日益加重,己远远超过土壤的自净能力。因而,防治土壤重金属污染,保护有限的天然土壤资源,己成为突出的全球性问题。由于土壤类型种类的繁多,不同地区土壤差异很大,为了及时了解土壤中重金属的成分及含量,对土壤进行消解是测量土壤内重金属含量的常用方法之一。本文采用电热板消解,全自动消解和微波消解三种方式,分别选用常用的酸体系对三种类型的土壤进行消解,重点对铜(Cu)、锌(Zn)、铅(Pb)、镉(Cd)、铬(Cr)5种重金属元素进行分析。 关键词:土壤污染;土壤污染;土壤消解;电热板消解;全自动消解;微波消解

相关主题
文本预览
相关文档 最新文档