当前位置:文档之家› 小学奥数—抽屉原理

小学奥数—抽屉原理

小学奥数—抽屉原理

小学奥数-抽屉原理(一)

先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。

抽屉原理 1 将多于n 件物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品不少于 2 件。

抽屉原理2将多于m K n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1 )件。

理解抽屉原理要注意几点:

(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,

但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a- n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1 )件。

例 1 五年级有47 名学生参加一次数学竞赛,成绩都是整数,满分是100 分。已知3 名学生的成绩在60 分以下,其余学生的成绩均在75?95分之间。问:至少有几名学生的成绩相同?

分析与解:关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75?95分之间,75?95共有21 个不同分数,将这21 个分数作为21 个抽屉,把47-3=44 (个)学生作为物品。

例2 夏令营组织2000 名营员活动,其中有爬山、参观博物馆和到

海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同?

分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。

例 3 把125 本书分给五(2)班学生,如果其中至少有 1 人分到至少4 本书,那么,这个班最多有多少人?

分析与解:这道题一下子不容易理解,我们将它变变形式。因为是把书分给学生,所以学生是抽屉,书是物品。本题可以变为:125 件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4 件物品,求最多有几个抽屉。这个问题的条件与结论与抽屉原理2 正好相反,所以反着用抽屉原理 2 即可。

例4五(1)班张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0 分。张老

师说:可以肯定全班同学中至少有6 名学生各题的得分都相同。那么,这个班最少有多少人?

分析与解:由“至少有6 名学生各题的得分都相同”看出,应该以各题得分情况为抽屉,学生为物品。

例3 与例4 尽管都是求学生人数,但因为问题不同,所以构造的抽屉也不同,例 3 中将学生作为抽屉,例4

中则将学生作为物品。可见利用抽屉原理解题,应根据问题灵活构造抽屉。一般地,当问最少有多少时,

应将X>〈作为物品,如例1 , 2 , 4 ;当问最多有多少,应将XX 作为抽屉,如例3。

例5 任意将若干个小朋友分为五组。证明:一定有这样的两组,两组中的男孩总数与女孩总数都是偶数。

分析与解:因为一组中的男孩人数与女孩人数的奇偶性只有下面四种情况:

(奇,奇),(奇,偶),(偶,奇),(偶,偶)。

练习

1. 某单位购进92 箱桔子,每箱至少110 个,至多138 个,现将桔子数相同的作为一组,箱子数最多的一组至少有几箱?

2. 幼儿园小朋友分200 块饼干,无论怎样分都有人至少分到8 块饼干,这群小朋友至多有多少名?

3. 有若干堆分币,每堆分币中没有币值相同的分币。任意挑选多少堆分币,才能保证一定有两堆分币的组成是相同的?

4. 图书馆有甲、乙、丙、丁四类图书,规定每个同学最多可以借两本不同类的图书,至少有多少个同学借书,才能保证有两个人所借的图书类别相同?

5. 我国人口已超过12 亿,如果人均寿命不超过75 岁,那么我国至少有两个人出生的时间相差不会超过

2 秒钟。这个结论是否正确?

6. 红光小学五(2 )班选两名班长。投票时,每个同学只能从4 名候选人中挑选2 名。这个班至少应有多

少个同学,才能保证有8 个或8 个以上的同学投了相同的 2 名候选人的票?

7. 把135 块饼干分给16 个小朋友,若每个小朋友至少要分到一块饼干,那么不管怎样分,一定会有两个小朋

友得到的饼干数目相同。为什么?

小学奥数-抽屉原理(二)

专题简析:

在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干

倍后,可用抽屉数除元素总数,写成下面的等式:

元素总数=商乂抽屉数+余数

如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例题1:

幼儿园里有120 个小朋友,各种玩具有364 件。把这些玩具分给小朋友,是否有人会得到 4 件或4 件以上的玩具?

把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=120X 3+4, 4V 120。根据抽屉原

理的第(2)条规则:如果把mxx X k (x>k> 1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习 1 :

1、一个幼儿园大班有40 个小朋友,班里有各种玩具125 件。把这些玩具分给小朋友,是否有人会得

到 4 件或4 件以上的玩具?

2、把16 枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6 枝。这是为什么?

3、把25 个球最多放在几个盒子里,才能至少有一个盒子里有7 个球?

例题2:

布袋里有4种不同颜色的球,每种都有10 个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?

把 4 种不同颜色看做 4 个抽屉,把布袋中的球看做元素。根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。即2 X 4+仁9 (个)球。列算

式为

(3—1)X 4+1=9(个)

练习2:

1、布袋里有组都多的5 种不同颜色的球。最少取出多少个球才能保证其中一定有 3 个颜色一样的球?

2、一个容器里放有10块红木块、10 块白木块、10 块蓝木块,它们的形状、大小都一样。当你被蒙上

眼睛去容器中取出木块时,为确保取出的木块中至少有4 块颜色相同,应至少取出多少块木块?

3、一副扑克牌共54 张,其中1—13 点各有4 张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有 4 张牌的点数相同?

例题3:

某班共有46 名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加

1 个、

2 个、

3 个或

4 个兴趣小组。问班级中至少有几名学生参加的项目完全相同?参加课外兴趣小组的学生共分四种情况,只参加一个组的有4 种类型,只参加两个小组的有 6 个类型,只参加三个组的有 4 种类型,参加四个组的有1 种类型。把4+6+4+1=15(种)类型看做1

5 个抽屉,把4

6 个学生放入这些抽屉,因为46=3 X 15+1,所以班级中至少有4名学生参加的项目完全相同。

练习3:

1、某班有37个学生,他们都订阅了《小主人报》、《少年文艺》、《小学生优秀作文》三种报刊中的一、二、三种。其中至少有几位同学订的报刊相同?

2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)

某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?

3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个,问:在

31 个搬运者中至少有几人搬

运的球完全相同?

例题4:

从1至30中,3的倍数有30 - 3=10个,不是3的倍数的数有30 —10=20个,至少要取出20+仁21个不同的数才能保证其中一定

有一个数是 3 的倍数。

练习4:

1、在1, 2, 3,……49, 50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?

2、从1 至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?

3、从1 至36中,最多可以取出几个数,使得这些数中没有两数的差是5的倍数?

例题5:

将400 张卡片分给若干名同学,每人都能分到,但都不能超过11 张,试证明:找少有七名同学得到的卡片的张数相同。

这题需要灵活运用抽屉原理。将分得1, 2, 3,……,11张可片看做11个抽屉,把同学人数看做元素,

如果每个抽屉都有一个元素,则需1+2+3+……+10+1仁66 (张)卡片。而400十66=6……4 (张),即每个周体都有 6 个元素,还余下4 张卡片没分掉。而这4 张卡片无论怎么分,都会使得某一个抽屉至少有7 个元素,所以至少有7 名同学得到的卡片的张数相同。

练习5:

1、把280个桃分给若干只猴子,每只猴子不超过10个。证明:无论怎样分,至少有6只猴子得到的桃一样多。

2、把61 颗棋子放在若干个格子里,每个格子最多可以放5 颗棋子。证明:至少有5 个格子中的棋子数目相同。

3、汽车8小时行了310千米,已知汽车第一小时行了25千米,最后一小时行了45千米。证明:一定存在连续

的两小时,在这两小时内汽车至少行了80千米。

习题

1.木箱里装有红色球3 个、黄色球5 个、蓝色球7 个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

2.一幅扑克牌有54 张,最少要抽取几张牌,方能保证其中至少有3 张牌有相同的点数?

3?有11名学生到老师家借书,老师的书房中有A、E、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同

4?有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜。试证明:一定有两个运动员积分相同。

5 .体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,

至多拿 2 个球,问至少有几名同学所拿的球种类是一致的?

6?某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知

参赛者中任何10人中必有男生,则参赛男生的人数为多少人?

7?有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。

&一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若

干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了

多少堆?

9.从1, 3, 5,……,99中,至少选出多少个数,其中必有两个数的和是

100 。

10.某旅游车上有47 名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。

11 .某个年级有202 人参加考试,满分为100 分,且得分都为整数,总得分为10101 分,则至少有多少人得分相同?

12. 2006 名营员去游览长城,颐和园,天坛。规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?

13.某校派出学生204人上山植树15301 株,其中最少一人植树50

株,最多一人植树100 株,则至少有多少人植树的株数相同?

小学奥数抽屉原理含答案

抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个; 或3个苹果放在某一个抽屉里?尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果?如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果?道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了?由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼 原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、,等 十二种生肖)相同?怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚?事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中 一定有两人所摸两张牌的花色情况是相同的? 例3从2、4、6、,、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34 例4

小学六年级奥数 抽屉原理(含答案)

抽屉原理 知识要点 1.抽屉原理的一般表述 (1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。 (2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为: 第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。 2.构造抽屉的方法 常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。 例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点, (13) 点牌各一张),洗好后背面朝上放。一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。 点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。 解(1)13×2+1=27(张) (2)9×4+1=37(张) 例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内? 点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。 解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。 (2)要保证有5人的属相相同的最少人数为4×12+1=49(人) 不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。 解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张) 例 4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同? 点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况: 解借球有6种情况,看做6个抽屉, 所以至少要来7名学生借球,才能保证。 例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小

小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原 理含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

抽屉原理 知识要点 1.抽屉原理的一般表述 (1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。 (2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为: 第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。 2.构造抽屉的方法 常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。 例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。 点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。 点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。 解(1)13×2+1=27(张) (2)9×4+1=37(张)

例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内 点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。 解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。 (2)要保证有5人的属相相同的最少人数为4×12+1=49(人) 不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。 例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同(2)四种花色都有 点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。 解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张) 例4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同 点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况: 解借球有6种情况,看做6个抽屉, 所以至少要来7名学生借球,才能保证。 例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小数的倍数

小学奥数抽屉原理

抽屉原理 知识框架 一、 知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、 抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、 抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 例题精讲 一、直接用公式进行解题 (1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【考点】抽屉原理 【难度】1星 【题型】解答 【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其

小学三年级奥数第39讲 抽屉原理附答案解析

第39讲抽屉原理 一、专题简析: 把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。把它进一步推广,就可以得到数学里重要的抽屉原理。 用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。 二、精讲精练 例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同? 练习一 1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?

2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同? 例2 :幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具? 练习二 1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果? 2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?

例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球? 练习三 1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果? 2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书? 例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?

小学奥数—抽屉原理

小学奥数-抽屉原理(一) 先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。 抽屉原理 1 将多于n 件物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品不少于 2 件。 抽屉原理2将多于m K n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1 )件。 理解抽屉原理要注意几点: (1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。 (2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。 (3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个, 但这里只需保证存在一个达到要求的抽屉就够了。 (4)将a件物品放入n个抽屉中,如果a- n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1 )件。 例 1 五年级有47 名学生参加一次数学竞赛,成绩都是整数,满分是100 分。已知3 名学生的成绩在60 分以下,其余学生的成绩均在75?95分之间。问:至少有几名学生的成绩相同? 分析与解:关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75?95分之间,75?95共有21 个不同分数,将这21 个分数作为21 个抽屉,把47-3=44 (个)学生作为物品。 例2 夏令营组织2000 名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。 例 3 把125 本书分给五(2)班学生,如果其中至少有 1 人分到至少4 本书,那么,这个班最多有多少人?

小学奥数--抽屉原理

小学奥数--抽屉原理 抽屉原理(一) 解题要点:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数( 如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。 同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。 以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。 抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 说明这个原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n 个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。 从最不利原则也可以说明抽屉原理1。为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。这就说明了抽屉原理1。 例1 某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友,

分析与解:1996年是闰年,这年应有366天。把366天看作366个抽屉,将367名小朋友看作367个物品。这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。因此至少有2名小朋友的生日相同。 例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。我们将余数的这三种情形看成是三个“抽屉”。一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。 将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。这两个数的差必能被3整除。 例3在任意的五个自然数中,是否其中必有三个数的和是3的倍数, 分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。 第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。 第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。因此这三个数之和能被3整除。 综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。 例4在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米, 分析与解:把长度10厘米的线段10等分,那么每段线段的长度是1厘米(见下图)。

小学抽屉原理公式

小学奥数抽屉原理公式及经典例题解答分析 第一抽屉原理 原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。 原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。 原理1 、2 、3都是第一抽屉原理的表述。 例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况: ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1 观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

第二抽屉原理 把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。 例: ①k=[n/m]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 理解知识点:[X]表示不超过X的最大整数。 例[4.351]=4;[0.321]=0;[2.9999]=2; 关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。 抽屉原理经典例题: 1、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有______人。 答案: 30-(10-1) =30-9, =21(人)。

小学奥数—抽屉原理

小学奥数—抽屉原理 小学奥数-抽屉原理(一) 先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。 抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。 理解抽屉原理要注意几点: (1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。 (2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。 (3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。 (4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b 是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。 例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 分析与解:关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到

海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。 例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人? 分析与解:这道题一下子不容易理解,我们将它变变形式。因为是把书分给学生,所以学生是抽屉,书是物 品。本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。 例4五(1)班张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。那么,这个班最少有多少人? 分析与解:由“至少有6名学生各题的得分都相同”看出,应该以各题得分情况为抽屉,学生为物品。 例3与例4尽管都是求学生人数,但因为问题不同,所以构造的抽屉也不同,例3中将学生作为抽屉,例4中则将学生作为物品。可见利用抽屉原理解题,应根据问题灵活构造抽屉。一般地,当问“最少有多少××”时,应将××作为物品,如例1,2,4;当问“最多有多少××时,应将××作为抽屉,如例3。 例5任意将若干个小朋友分为五组。证明:一定有这样的两组,两组中的男孩总数与女孩总数都是偶数。 分析与解:因为一组中的男孩人数与女孩人数的奇偶性只有下面四种情况: (奇,奇),(奇,偶),(偶,奇),(偶,偶)。 练习 1.某单位购进92箱桔子,每箱至少110个,至多138个,现将桔子数相同的作为一组,箱子数最多的一组至少有几箱?

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

小学奥数运算:抽屉原理讲解

小学奥数运算:抽屉原理讲解 小学奥数运算:抽屉原理讲解 (一)基本概念 (1)将多于n件物品任意放到n个抽屉里,那么中欧少有一个抽 屉中的物品件数不少于2个。 (2)将多于m*n件的物品任意放到n个抽屉中,那么至少有一个 抽屉中的物品的件数不少于m+1.抽屉原理解题的关键是营造“最不 利情况”。 (二)例题与解析 1、在一个口袋里有10个黑球,6个白球,4个红球,至少取出 几个球才能保证其中有白球?() A14B15C17D18 解析:最不利的情况是:前面取球的时候都没有白球。也就是将问题转化成为“至多取多少个球仍能满足其中没有白球”。很显然,前面至多可以取10个黑球+4个红球=14个球。然后第15个球就必 然能取到白球。 因此选B. 2、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?() A3B4C5D6 解析:营造最不利情况:前面取的珠子都没有相同颜色的。直到取到相同颜色的为止。 也就是把问题转化为:至多摸出几粒,仍能满足“至多1粒颜色相同”

不难看出,摸出红、黄、蓝、白珠子各一粒以后,再摸一粒,就有重色了。 因此,选C. 3、一个袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个,现在从袋中任意摸球出来,如果要使摸出的球中,至少有15个球的颜色相同,问至少要摸出几个球才能保证满足上述要求?() A78B77C75D68 解析:最不利条件:前面取的球都没有达到15个球颜色相同的`状况。 也就是:黄球,白球,黑球全部都取完了(这些同颜色的都在15个球以下,全部取完也不会有15个球颜色相同),一共是 12+10+10=32个球然后红球,绿球,蓝球各取14个。14*3=42个。依然没有15个球颜色相同。 然后再取任意一个球,就能达到至少有15个球的颜色相同了因此一共有32+42+1=75个球。选C 4、从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少有6张牌的花色相同。 A21B22C23D24 解析:最不利状况:各个花色都取了5张花色相同的牌,一共是5*4=20然后取了大、小王共2张牌然后任取一张,就可以保证至少有6张牌的花色相同了。 因此是20+2+1=23张牌。 5、现在有64个乒乓球,18个乒乓球盒,每个盒子最多可以放6个乒乓球(最少也要放1个乒乓球),至少有几个乒乓球盒子里的乒乓球数目相同。 A4B38C33D10

小学奥数之抽屉原理

小学奥数之抽屉原理 在小学奥数中,抽屉原理是一个非常重要的概念。它是数学中的一种 思维方法,能够帮助我们解决一些看似很难的问题。抽屉原理也被称为鸽 巢原理,它的具体含义是:如果有n+1个物体放进n个抽屉,那么必定有 一个抽屉里会放至少两个物体。 抽屉原理常常在解决一些排列组合和概率问题中应用。下面我们一起 来了解一下抽屉原理在小学奥数中的具体应用吧。 首先,我们来看一个经典的例子。假设有10个苹果放在9个抽屉里,那么根据抽屉原理,必定有一个抽屉里会放至少两个苹果。为什么会这样呢?我们可以这样来理解,假设每个抽屉最多只放一个苹果,那么最多只 能放9个苹果,而实际上有10个苹果,所以必定会有一个抽屉里放至少 两个苹果。 接下来,我们来看一个稍微复杂一些的例子。假设有5个红球和4个 蓝球,需要将它们放进4个抽屉里。根据抽屉原理,必定有一个抽屉里会 放至少两个球。为什么会这样呢?我们可以这样来理解,在最坏的情况下,每个抽屉最多只能放一个球,那么最多只能放4个球,而实际上有9个球,所以必定会有一个抽屉里放至少两个球。 抽屉原理的应用并不仅限于上面两个例子,它在解决一些看似很难的 问题时往往能起到关键的作用。比如,我们可以用抽屉原理解决下面的问题:假设有9个整数,它们的和是10,那么必定存在至少一对数的和是2、我们可以将这个问题转化成将9个整数放进8个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是2

除了上述的应用外,抽屉原理还可以帮助我们解决一些类似的问题。比如,假设有12个整数,它们的和是31,那么必定存在至少一对数的和是7、我们可以将这个问题转化成将12个整数放进11个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是7从以上的例子可以看出,抽屉原理在解决一些看似很难的问题时可以起到非常关键的作用。通过运用抽屉原理,我们能够将一个复杂的问题简化为一个更简单的问题,从而更好地解决问题。 总结起来,抽屉原理在小学奥数中的应用非常广泛。它可以帮助我们解决排列组合和概率问题,可以帮助我们找到一些隐藏的规律和规则。通过了解和运用抽屉原理,我们能够提高解决问题的能力,培养数学思维,让我们成为更好的数学家。希望同学们在学习中能够灵活运用抽屉原理,掌握其核心思想,在解决问题中取得更好的成绩。

小学奥数五年级抽屉原理练习题及答案【三篇】

小学奥数五年级抽屉原理练习题及答案【三篇】 【第一篇】 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。 因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。 2000÷6=333......2, 根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。 【第二篇】 把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人? 这道题一下子不容易理解,我们将它变变形式。因为是把书分给学生,所以学生是抽屉,书是物品。本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。 由125÷(4-1)=41......2知,125件物品放入41个抽屉,至少有一个抽屉有不少于4件物品。也就是说这个班最多有41人。 【第三篇】

从1,3,5,7,...,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。 首先要根据题意构造合适的抽屉。在这25个奇数中,两两之和是52的有12种搭配: {3,49},{5,47},{7,45},{9,43}, {11,41},{13,39},{15,37},{17,35}, {19,33},{21,31},{23,29},{25,27}。 将这12种搭配看成12个抽屉,每个抽屉中有两个数,还剩下一个数1,单独作为一个抽屉。这样就把25个奇数分别放在13个抽屉中了。因为一共有13个抽屉,所以任意取出14个数,无论怎样取,至少有一个抽屉被取出2个数,这两个数的和是52。所以本题的答案是取出14个数。

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有 1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.

不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。 2、例题讲解 例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。例4从1、2、3、4、…、

小学奥数—抽屉原理讲解

小学奥数—抽屉原理讲解

小学奥数-抽屉原理(一) 抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。 例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【分析与解答】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。44÷21= 2……2,根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 【分析与解答】本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。2000÷6=333……2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。 例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?

小学六年级奥数第29讲 抽屉原理(一)(含答案分析)

第29讲抽屉原理(一) 一、知识要点 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。 本周我们先来学习第(1)条原理及其应用。 二、精讲精练 【例题1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。 平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 练习1: 1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么? 2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3、15个小朋友中,至少有几个小朋友在同一个月出生?

【例题2】某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有: 买一本的:有语文、数学、外语3种。 买二本的:有语文和数学、语文和外语、数学和外语3种。 买三本的:有语文、数学和外语1种。 3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。 练习2: 1、某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个同学才能保证一定有两人所借的图书属于同一种? 3、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有两个同色的?

小学奥数—抽屉原理讲解

小学奥数-抽屉原理(一) 抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。 例1五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【分析与解答】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。44÷21= 2……2,根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 例2夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 【分析与解答】本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6

(个)抽屉。2000÷6=333……2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。 例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人? 【分析与解答】这道题一下子不容易理解,我们将它变变形式。因为是把书分给学生,所以学生是抽屉,书是物品。本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。由1255÷(4-1)=41……2知,125件物品放入41个抽屉,至少有一个抽屉有不少于4件物品。也就是说这个班最多有41人。 同学们想一想,如果有42个人,还能保证至少有一人分到至少4本书吗? 例4五(1)班张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。那么,这个班最少有多少人? 【分析与解答】由“至少有6名学生各题的得分都相同”看出,应该以各题得分情况为抽屉,学生为物品。如果用(a,b)表示各题的得分情况,其中a,b分别表示第一、二题的得分,那么有(2,2),(2,1),(2,0),(1,2),(1,1),(1,0),(0,2),(0,1),(0,0)9种情况,即有9个抽屉。 本题变为:已知9个抽屉中至少有一个抽屉至少有6件物品,求至少有多少件物品。反着用抽屉原理2,得到至少有9×(6-1)+1=46(人)。

(完整版)小学奥数-抽屉原理(教师版)

抽屉原理 站知识梳理〕 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。 如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分 给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的 “抽屉原理”。 抽屉原理1 :将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件, 或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。 说明抽屉原理1成立。 抽屉原理2:将多于mx n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。 假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过mx n件。这与多于mx n件物品的假设相矛盾。说明原 来的假设不成立。所以抽屉原理2成立。 运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运用 原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1的变形。 琳特色讲解 鼻 【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。 【例2】★某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽 屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少 要去7+1=8 (个)学生才能保证一定有两位同学买到相同的书。 买书的类型有: 买一本的:有语文、数学、外语3种。 买二本的:有语文和数学、语文和外语、数学和外语3种。 买三本的:有语文、数学和外语1种。 3+3+1=7 (种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。 【小试牛刀】某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书

相关主题
文本预览
相关文档 最新文档