当前位置:文档之家› 化工原理课程设计 -蒸发

化工原理课程设计 -蒸发

化工原理课程设计 -蒸发
化工原理课程设计 -蒸发

CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY

化工原理课程设计B

题目:KNO3水溶液三效并流加料蒸发装置的设计

学生姓名: 周文奕 学 号: 201538090108 班 级: 生物1501 专 业: 生物工程

指导教师:

方芳

2017年6月

课程设计成绩评定表课程设计评分(按下表要求评定)

评分项目设计说明

书质量

(50分)图纸质量

(30分)

任务完成

情况(10)

学习态度

(10分)

合计(100

分)

得分

指导教师评语

指导教师签名:

年月日

教研室主任审核意见

教研主任签名:

年月日

化工原理设计B任务书化学与生物工程学院生物工程专业 15-01 班题目:KNO3水溶液三效并流加料蒸发装置的设计任务起止日期:2017年6月26日~2017年6月30日学生姓名张钰义学号201538090120 指导老师方芳

教研室主任年月日审查

院长年月日批准

化工原理课程设计任务

1.设计题目: KNO3水溶液三效并流加料蒸发装置的设计

2.设计任务及操作条件:

(1)处理能力a

KNO水溶液

.74

t/

10

92

3

(2)设备形式中央循环管式蒸发器

(3)操作条件

KNO水溶液的原料液的质量分数为0.15,完成液质量分数为0.45,3

原料液温度为80℃,恒压比热容为3.5kJ/(kg·℃)。

②加热蒸汽压力为400kPa(绝压),冷凝器压力为20kPa(绝压)。

③各效蒸发器的总传热系数为:

K=2000W/(2m·℃),2K=1000W/(2m·℃),3K=500W/(2m·℃)。

1

④各效加热蒸汽的冷凝液均在饱和温度下排出。假设各效传热面积相等,并忽略溶液的浓缩热和蒸发器的热损失,不考虑液柱静压和流动阻力对沸点的影响。

⑤每年按照300天计,每天24小时连续运行。

⑥厂址:天津地区

3.设计内容

⑴设计方案简介,对确定的工艺流程及蒸发器形式进行简要论述。

⑵蒸发器的工艺计算确定蒸发器的传热面积。

⑶蒸发器的主要结构尺寸设计

⑷主要辅助设备选型,包括气液分离器和蒸汽冷凝器等。

⑸绘制

KNO水溶液三效并流加料蒸发装置的流程图及蒸发器设备工艺简3

⑹对本设计进行评述。

KNO3水溶液三效并流加料蒸发装置的设计

摘要

蒸发器可广泛用于医药、食品、化工、轻工等行业的水溶液或有机溶媒溶液的蒸发,特别适用于热敏性物料(例如中药生产的水、醇提取液等)。同时,蒸发操作也可对溶剂进行回收。

随着工业蒸发技术的发展,蒸发器的结果和型式也不断的改进。目前,蒸发器大概分为两类:一类是循环型,包括中央循环管式、悬筐式、外热式、列文式及强制循环式等;另一类是单程型,包括升膜式、降膜式、升—降膜式等。这些蒸发器型式的选择,要多个方面综合得出。

现在化工生产实践中,为了节约能源、提高经济效益,很多厂家采用的蒸发设备是多效蒸发。因为这样可以降低蒸气的消耗量,从而提高蒸发装置的各项热损失。多效蒸发流程可分为:并流流程、逆流流程、平流流程以及错流流程。在选择型式时应考虑料液的性质、工程技术要求、公用系统的情况等。

关键词:化工设备;三效蒸发装置;

KNO溶液;并流

3

目录

一绪论 (1)

二设计任务 (2)

2.1设计任务 (2)

2.2操作条件 (2)

三设计条件及设计方案说明 (2)

四物性数据及相关计算 (3)

4.1估计各效蒸发量和完成液浓度 (3)

4.2估计各效蒸发溶液的沸点和有效总温度差 (4)

4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (5)

4.4蒸发器传热面积的估算 (7)

4.5有效温度的再分配 (7)

4.6重复上述计算步骤 (8)

4.7计算结果列表 (11)

五主体设备计算和说明 (11)

5.1加热管的选择和管数的初步估计 (11)

5.2循环管的选择 (11)

5.3加热管的直径以及加热管数目的确定 (12)

5.4分离室直径和高度的确定 (13)

5.5接管尺寸的确定 (14)

六附属设备的选择 (16)

6.1气液分离器 (16)

6.2蒸汽冷凝器 (16)

七三效蒸发器主要结构尺寸和计算结果 (18)

7.1蒸发器的主要结构尺寸的确定 (18)

7.2气液分离器结构尺寸的确定 (18)

7.3 蒸汽冷凝器主要结构的确定 (19)

八设计心得 (20)

九参考文献 (20)

十附录 (21)

附录A:并流加料三效蒸发器的物料衡算和热量衡算示意图 (21)

附录B:并流加料蒸发流程 (22)

一、绪论

蒸发是使含有不挥发溶质的溶液沸腾汽化并移出蒸气,从而使溶液中溶质浓度提高的单元操作。蒸发有它独特的特点:从传热方面看,原料液和加热蒸气均为相变过程,属于恒温传热;从溶液特点分析,有的溶液有晶体析出、易结垢、易生泡沫、高温下易分解或聚合、粘度高,腐蚀性强;从传热温差上看,因溶液蒸气压降低,沸点增高,故传热温度小于蒸发纯水的温度差;从泡沫夹带情况看,二次蒸气夹带泡沫。需用辅助仪器除去;从能源利用上分析,可以对二次蒸气重复利用……这就要求我们从五个方面考虑蒸发器的设计。

降膜式蒸发器在降膜蒸发器中,液体和蒸汽向下并流流动。料液经预热器预热至沸腾温度,经顶部的液体分布装置形成均匀的液膜进入加热管,并在管内部分蒸发。

二次蒸汽与浓缩液在管内并流而下.料液在蒸发器中的停留时间短,能适应热敏性溶液的蒸发.另外,降膜蒸发还适用于高粘度溶液,粘度范围在0.05-0.4Pas。降膜蒸发器极易使管内的泡沫破裂,故亦适用于易发泡物料的蒸发。由于降膜蒸发器是液膜传热,所以其传热系数高于其他形式的蒸发器;此外,降膜蒸发没有液柱静压力,传热温差显著高于其他形式的蒸发器。故可取的良好的传热效果,一次性投入最小,是业主优先选择的蒸发器形式。强制循环蒸发器这种蒸发器利用外加动力(循环泵)将循环管下降的溶液和部分原料液送到加热室。大大加快了循环速度。循环速度的大小可通过调节泵的流量来控制。一般循环速度在2.5m/s 以上。当循环液体流过热交换器时被加热,然后在分离器中压力降低时部分蒸发,从而将液体冷却至对应该压力下的沸点温度,特别适用于易结晶物料。自然循环蒸发器在自然循环蒸发器中,料液在加热器中受热蒸发,产生的二次蒸汽经顶部进入分离室,将液体分离后排出。分离出的液体通过循环管流回蒸发器,并在热虹吸的作用下进入加热器受热蒸发。这样就形成了一个闭路循环。加热器和分离器之间的温差愈大,产生的蒸汽气泡愈多。这样可以强化热虹吸的

作用和增加流动速度,从而获得较好的传热效果。自然循环蒸发器不需要循环泵,运行费用较低。

二、设计任务及操作条件

2.1 设计任务

(1)处理能力 a t /1092.74 3KNO 水溶液 (2)设备形式 中央循环管式蒸发器

2.2 操作条件

① 3KNO 水溶液的原料液的质量分数为0.15,完成液质量分数为0.45,原料液温度为80℃,恒压比热容为3.5kJ/(kg ·℃)。

②加热蒸汽压力为400kPa (绝压),冷凝器压力为20kPa (绝压)。 ③

蒸发器的

总传热

系数为:

1K =2000W/(2

m ·℃),2K =1000W/(2

m ·℃),3K =500W/(2

m ·℃)。

④各效加热蒸汽的冷凝液均在饱和温度下排出。假设各效传热面积相等,并忽略溶液的浓缩热和蒸发器的热损失,不考虑液柱静压和流动阻力对沸点的影响。 ⑤每年按照300天计,每天24小时连续运行。 ⑥厂址:天津地区

三、设计条件及设计方案说明

本次设计要求采用中央循环管式蒸发器,在工业上被称为标准蒸发器。其特点是结构紧凑、制造方便、操作可靠等。它的加热室由一垂直的加热管束构成,在管束中央有一根直径较大的管子,为中央循环管。

在蒸发操作中,为保证传热的正常进行,根据经验,每一效的温差不能小于5~7。通常,对于沸点升高较大的电解质溶液,应采取2~3效。由于本次设计任

务是处理KNO3溶液。这种溶液是一种沸点升高较大的电解质,故选用三效蒸发器。另外,由于KNO3溶液是一种粘度不大的料液,故多效蒸发流程采用并流操作。

多效蒸发器工艺设计的主要依据是物料衡算、热量衡算及传热速率方程。计算的主要项目有:加热蒸气的消耗量,各效溶剂蒸发量以及各效的传热面积等。多效蒸发器的计算一般采用迭代计算法。

四、物性数据及相关计算

4.1 估计各效蒸发量和完成液浓度

年产量:79200吨 ,且每年按照300天计算,每天24小时。 进料流量:

F=79200t/a=79200×1000/(300×24)=11000kg/h (4-1) 总蒸发量:

W =F (1-30x x )=11000(1-45.015

.0)=7333.33kg/h (4-2)

因并流加料,蒸发中无额外蒸汽引出,可设 W1:W2:W3=1:1.1:1.2

W=W1+W2+W3=3.3W (4-3)

W1=3.333

.7333= 2222.22 kg/h

W2=1.1 W1 = 2444.44 kg/h

W3=1.2W1= 2666.66kg/h

X1=10W F Fx -=22.2222-1100015

.011000?=0.188

X2=

2

10

W W F Fx --=44.244422.22221100015

.011000--?=0.261

X3==0.45

4.2 估计各效蒸发溶液的沸点和有效总温度差

设各效间压力降相等,则总压力差为

∑=-='-=kPa 38020400P P ΔP K

1 (4-4) 各效间的平均压力差为 kPa 126.673

ΔP ΔP i ==

由各效的压力差可求得各效蒸发室的压力,即

kPa 20P P 146.66kPa 126.672400Pi 2P P 273.33kPa

126.67400ΔP P P K 3

12i 11='='=?-=?-='=-=-='

由各效的二次蒸气压力,从手册中可查得相应的二次蒸气的温度和气化潜热列于下表中。

表4.1 二次蒸气的温度和气化潜热 效数

Ⅰ Ⅱ Ⅲ 二次蒸气压力

273.33

146.66

20

二次蒸气温度

(即下一效加热蒸汽的温度)

131.20

111.32

60.1

二次蒸气的气化潜热

(即下一效加热蒸汽的气化潜热)

2177

2229

2355

蒸发操作常常在加压或减压下进行,从手册中很难直接查到非常压下的溶液沸点。所以用以下方法估算:

a f ?'=?'

(4-5)

—常压下(101.3kPa )由于溶质引起的沸点升高,即溶液的沸点-水的沸点 常压下水的沸点为100℃

表4-1 常压下不同质量分数的KNO 沸点如下表

质量分数kg/l 18.8% 26.1% 45% 沸点℃

101.5

102.3

104.2

经查表400 kPa 下饱和蒸汽温度为143.4℃,气化潜热为2138.5

82.12177

)27320.131(0162.02

1=?'+=?'=?'a a f ℃

47.22229)27332.111(0162.02

2=?'+=?'=?'a a f ℃

21.32355

)2731.60(0162.02

3=?'+=

?'=?'a a f ℃ 由于不考虑液柱静压和流动阻力对沸点的影响,所以总温差为5.7=?∑℃ 各效料液温度为02.13382.120.131111=+=?+'=T t ℃ 79.11347.232.111222=+=?+'=T t ℃ 31.6321.31.60333=+=?+'=T t ℃

由手册可查得400KPa 的饱和蒸汽的温度为143.4℃、汽化潜热为2138.5kJ/kg ,所以

8.755.71.604.143)('=--=?--=?∑∑k s T T t ℃

4.3 加热蒸汽消耗量和各效蒸发水量的初步计算

由于忽略溶液的浓缩热,所以

???

???'----+'

=--i i i pw i pw p i i i i i r t t c W c W Fc r r D W 1110)...(η

???

?

??=??

????'=1111121775.2138D r r D W ①

3465

8625

.0

2229

79

.

113

02

.

133

)

18

.4

5.3

11000

(

2229

2177

)

(

1

1

1

'

2

2

1

1

'

2

2

1

2

+

=

?

?

?

?

?

?-

?

-

?

+

=

?

?

?

?

?

?-

-

+

=

W

W

W

r

t

t

c

W

Fc

r

r

W

W

PW

PO

770

084

.0

8625

.0

9.

2854

48

.

50

)

18

.4

18

.4

5.3

11000

(

2355

2229

)

(

1

2

2

1

2

'

3

3

2

2

1

'

3

3

2

3

+

-

=

?

?

?

?

?

?

-

?

-

?

+

=

?

?

?

?

?

?-

-

-

+

=

W

W

W

W

W

r

t

t

c

W

c

W

Fc

r

r

W

W

pw

PW

PO

③又W1+W2+W3=7333.33④联立①②③④ 计算得W1=2217.7kg/h

W2=2460.1kg/h

W3=2733.7kg/h

D1=2263kg/h

与第一次计算结果比较,其相对误差为

计算相对误差均在0.05以下,故各效蒸发量的计算结果合理。

4.4 蒸发器传热面积的估算

2

6

333333363'

2232

6

222222263'

1122

6

11111116311145.6301

.4850010523.101.4831.6332.11110523.13600/1022291.246002.7741

.17100010341.141.1779.1132.13110341.13600/2177107.221774.6438

.10200010344.138.1002.1333.14310344.13600/105.21382263m t K Q S t T t W r W Q m t K Q S t T t W

r W Q m t K Q S t T t W r D Q t K Q S i

i i i =??=?==-=-=??=??===??=?==-=-=??=??===??=?==-=-=??=??==?=

℃℃

误差为05.018.002

.7745

.631-

1max min ≥=-=S S ,误差较大,应调整各效的有效温度差,重复上述计算过程。

4.5 有效温度的再分配

2

33221174.6601

.4841.1738.1001

.4845.6341.1702.7738.1074.64m t t S t S t S S =++?+?+?=∑??+?+?=

重新分配有效温度差,可得

℃℃64.4501.4874.6645.6309.2041.1774.6602

.7707.1038.1074.6674

.6433'

322'211'

1=?=?=?=?=

?=?=?=?=

?t S S t t S S t t S S t

4.6 重复上述计算步骤

4.6.1 计算各效料液

由所求得的各效蒸发量,可求各效料液的浓度,即

45

.028.01

.240607.22171100015

.0110002.07

.22171100015

.01100032102101==--?=--=

=-?=-=

x W W F Fx x W F Fx x

4.6.2 计算各效料液的温度

因末效完成液浓度和二次蒸气压力均不变,各种温度差损失可视为恒定,故末效溶液的温度仍为63.31℃, 即

31.633=t ℃

则第Ⅲ效加热蒸汽的温度(也即第Ⅱ效料液二次蒸气温度)为

88

.13309.2079.11395

.10864.4531.63'2

2'

12'

33'23=+=?+===+=?+==t t T T t t T T

表4-2 常压下不同质量分数的KNO 沸点

质量分数kg/l 18.8% 25.9% 45% 沸点℃ 101.5

102.2

104.2

相关查表参数

kg

kJ r T kg kJ r T kg

kJ r T /23551.60/223795.108/216588

.133'3'3'2'2'1'1====== 则

()℃

86.12165

27388.1330162.0'2

'

'

1=?+=?=?a a f

各效料液温度为℃

74

.

135

86

.1

88

.

133

1

'

1

1

=

+

=

?

+

=T

t

27

.

111

32

.2

95

.

108

'

2

2

2

=

+

=

?

=T

t

温度差重新分配后各效温度情况列于下表:

表4.2 三效蒸发器各效的温度

加热蒸汽温度,0C T1=143.4 T'1=133.88 T'2=108.95

有效温度差,0C 38

.

10

1

=

?t41

.

17

2

=

?t01

.

48

3

=

?t 料液温度(沸点),0C t1=135.74 t2=111.27 t3=63.31

4.6.3 各效的热量衡算

由于忽略溶液的浓缩热,所以

()()

??

?

??

?-

-

?

+

=

?

?

?

?

?

?

?

?-

-

+

=

2237

27

.

111

74

.

135

187

.4

5.3

11000

2237

2165

1

1

2

2

1

2

2

1

2

'

W

W

r

t

t

Wlc

Fc

r

r

W

W

pw

p

=0.9221W1+419.65②=0.8646W2-0.0853W1+784.06 ③

又W1+W2+W3=7411.5 ④ 联立 ①②③④ 计算得 W1=2235.3 kg/h W2=2480.82kg/h W3=2739.05 kg/h D1=2263 kg/h 与第一次计算结果比较,其相对误差为

2

0.002733.72739.05

184

0.002460.1

2480.82

1079

0.02217.7

2235.3

1=-

=-=-

与第一次计算结果比较,其计算相对误差均在0.05以下,故各效蒸发量的计算结果合理。其各效溶液无明显变化,不需要重新计算。

4.6.4 蒸发器传热面积的计算

2

63

333363232

6

22222

61122

6'

1

11

116111m 66.9945.64

500101.529Δt K Q S C 45.64Δt W 101.52922372460.1r W Q m 66.9220.09

1000101.344Δt K Q S C

20.09Δt W

101.34421652235.39r W Q 66.75m 10.07

2000101.344Δt K Q S C 10.Δt W 101.32138.5r D Q =??==

?=?=??='

==??==?=?=??='

==??==

?=?=??==3600/10003600/10000744/360010002263

误差为0.05 0.003666.99

66.75

1S S

1max min <=-=-,迭代计算结果合理。 平均传热面积为

2

321m m 66.893

66.99

66.9266.753S S S S =++=++=

4.7 计算结果列表

表4.3 物料计算的结果

效次 Ⅰ Ⅱ Ⅲ 冷凝器 加热蒸汽温度,0

C 143.4 133.88 108.95 60.1 操作压力P'i,kPa 311 137 20 20

溶液温度(沸点)t i,0C 135.74 111.27 63.31 完成液浓度x i,% 20 28 45 蒸发量W i ,kg/h 2235.3 2480.82

2739.05

蒸气消耗量D ,kg/h 2263

传热面积S i ,m 2

66.89

66.89

66.89

五、主体设备计算和说明

5.1 加热管的选择和管数的初步估计

根据加热管的型号选用:φ25×2.5mm 根据实际情况选择加热管长度选用:2m 初步估算所需管子数为n

n=

()25.4489

.1025.089

.661.00=??=-ππL d s

5.2 循环管的选择

循环管的截面积是根据使循环阻力尽量减小的原则来考虑的。中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%~100%。本次计算取90% 。 则循环管的总截面积为

()71

.4015.222525.4489.09.04

9.04

'12

'

2

1=?-??===i i

d n D d n D π

π

根据上式结果,选取管径相近的标准管型号为φ426×12 mm 循环管的管长与加热管相等,为2 m 。

5.3 加热管的直径以及加热管数目的确定

加热管的内径取决于加热管和循环管的规格、数目及在管板上的排列方式。

节热管在管板上的排列方式为正三角形

不同加热管尺寸的管心距查表得

表5.1 不同加热管尺寸的管心距

加热管外径19 25 38 57

管心距25 32 48 70

由上表查得型号为φ25×2.5mm的管心距为

t=32mm

1.1'=

=

n

=n

?

1.1

25

24

448

.

c

估计加热管的内径

其中,

所以

表5.2 壳体的尺寸标准

壳体内径,400~700 800~1000 1100~1500 1600~200 最小壁厚,8 10 12 14

根据估算,及容器的公称直径表,试选用作为加热管的内径,

并以此内径和循环管外径作同心圆,在同心圆的环隙中,按加热管的排列

方式和管心距作图。有图可得,当内径为1000mm是,获得管数为918根,

大于估算的管数,满足要求。所以加热管的直径为,总加热管

数n=918。

5.4 分离室直径和高度的确定

5.4.1 分离室体积的计算式为

其中,U 为蒸发体积强度,一般允许值为

,在此取

将工艺计算中二次蒸气的温度和流量以及根据温度所查得的二次蒸气的密度列于下

表5.3 二次蒸气相应密度

效次

Ⅰ Ⅱ Ⅲ 二次蒸气温度

131.20 113.32 60.1 二次蒸汽流量W i ,kg/h 2235.3

2480.82 2739.05 二次蒸气密度

1.5038

0.82981

0.1307

依据上表数据,分别算出各效分离室数据

3111344.02

.15038.1360005

.22353600V m U W =??==ρ

3222692.02

.182981.0360082

.24803600V m U W =??==ρ

3333851.42

.11307.0360005

.27393600V m U W =??==

ρ

为方便起见,各效分离室的尺寸均取一致,所以体积V 取最大值3851.4V m =。

5.4.2 分离室的高度和直径的确定 确定需考虑的原则:

分离式的高度与直径之比H/D=1~2。对于中央循环管式蒸发器,其分离室

的高度一般不能小于1.8m ,以保证足够的雾沫分离高度。分离室的直径也不能太小,否则二次蒸汽流速过大,将导致严重雾沫夹带。

在允许条件下,分离室直径应尽量与加热室相同,这样可使结构简单,加

工制造方便。

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工课程设计小结

化工原理课程设计小结 随着毕业日子的到来,课程设计也接近了尾声。经过几周的奋战我的课程设计终于完成了。在没有做课程设计以前觉得课程设计只是对这几年来所学知识的单纯总结,但是通过这次做课程设计发现自己的看法有点太片面。课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。 在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。 我的心得也就这么多了,总之,不管学会的还是学不会的的确觉得困难比较多,真是万事开头难,不知道如何入手。最后终于做完了有种如释重负的感觉。此外,还得出一个结论:知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了。 在此要感谢我们的指导老师罗老师、朱老师和李老师对我们悉心的指导,感谢老师们给我们的帮助。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。 课程设计报告主要包括以下几个方面. 1.封面(根据自己的个性设计)2.目录3.主界面(介绍这次设计的课题、人员、目标、任务、人员分工)4.主要过程(要告诉别人你的这个作品该怎么用)5.程序流程图(用图来表示主要过程)6.核心源程序(你觉得这个作品它具备的主要功能是什么,就将实现这个功能的代码给COPY下来)7.主要函数(你程序代码里用的函数中你觉得重要的或是难的)8.心得9.附录(你完成这次课程设计参考的书,这个可以多写一点,以示用心认真) 我第一次做课程设计时写报告就是这么写的.你参考参考.希望能对你有些帮助

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

化工原理课程设计(浮阀塔)

板式连续精馏塔设计任务书 一、设计题目:分离苯一甲苯系统的板式精馏塔设计 试设计一座分离苯一甲苯系统的板式连续精馏塔,要求原料液的年处理量 为 50000 吨,原料液中苯的含量为 35 %,分离后苯的纯度达到 98 %, 塔底馏出液中苯含量不得高于1% (以上均为质量百分数) 二、操作条件 厂址拟定于天津地区。 设计内容 1. 设计方案的确定及流程说明 2. 塔的工艺条件及有关物性数据的计算 3. 精馏塔的物料衡算 4. 塔板数的确定 5. 塔体工艺尺寸的计算 6. 塔板主要工艺尺寸的设计计算 7. 塔板流体力学验算 8. 绘制塔板负荷性能图 9. 塔顶冷凝器的初算与选型 10. 设备主要连接管直径的确定 11. 全塔工艺设计计算结果总表 12. 绘制生产工艺流程图及主体设备简图 13. 对本设计的评述及相关问题的分析讨论 1. 塔顶压强: 2. 进料热状态: 3. 回流比: 加热蒸气压强: 单板压降: 4 kPa (表压); 101.3 kPa (表压); 塔板类型 浮阀塔板 四、 生产工作日 每年300天,每天 24小时运行。 五、 厂址

一、绪 论 二、设计方案的确定及工艺流程的说明 2.1 设计流程 2.2 设计要求 2.3 设计思路 2.4 设计方案的确定 三、全塔物料衡算 3.2 物料衡算 四、塔板数的确定 4.1 理论板数的求取 4.2 全塔效率实际板层数的求取 五、精馏与 提馏段物性数据及气液负荷的计算 5.1 进料板与塔顶、塔底平均摩尔质量的计算 5.4 液相液体表面张力的计算 目录 5.5 塔内各段操作条件和物性数据表 11 六、塔径及塔板结构工艺尺寸的计算 14 6.1塔径的计算 14 6.2塔板主要工艺尺寸计算 15 6.3 塔板布置及浮阀数目与排列 17 5.2 气相平均密度和气相负荷计算 10 5.3 液相平均密度和液相负荷计算 10 11

化工原理课程设计

安阳工学院课程设计说明书 课程名称:化工原理课程设计 设计题目:列管式换热器 院系:化学与环境工程学院 学生姓名:赵安顺 学号:201005020025 专业班级:应用化学一班 指导教师:路有昌

列 设计一台列管式换热器 一、设计任务及操作条件 (1)处理能力 2.5×105 t/a热水 (2)设备型式列管式换热器 (3)操作条件 ①热水:入口温度80℃,出口温度60℃. ②冷却介质:循环水,入口温度32℃,出口温度40℃. ③允许压降:不大于105Pa. ④每年按300天计算,每天24小时连续运行. 二、设计要求及内容 (1)根据换热任务和有关要求确认设计方案; (2)初步确认换热器的结构和尺寸; (3)核算换热器的传热面积和流体阻力; (4)确认换热器的工艺结构. 摘要:通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。 关键词:标准方案核算结构尺寸

目录 一.概述 (4) 二.方案的设计与拟定 (4) 三.设计计算 (8) 3.1确定设计方案 (9) 3.1.1选择换热器的类型 (9) 3.1.2流动空间及管子的确定 (9) 3.2确定物性数据 (9) 3.3初选换热器规格 (10) 3.3.1热流量 (10) 3.3.2冷却水用量 (10) 3.3.3平均温度差 (10) 3.3.4换热器规格 (11) 3.4核算总传热系数 (11) 3.4.1计算管程传热系数 (11) 3.4.2 计算壳程传热系数 (12) 3.4.3 确定污垢热阻 (13) 3.3.4 总传热系数 (13) 3.5计算压强降 (14) 3.5.1计算管程压强降 (14) 3.5.2计算壳程压强降 (14)

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理课程设计

化工原理课程设计 ──板式塔的工艺设计 学院 专业班级 姓名 学号 指导老师 成绩 学年第二学期

目录 1.任务书 ····························································· - 3 - 2.任务要求 ····································错误!未定义书签。 3.设计过程 ·························································· - 3 - 3.1塔板工艺尺寸计算········································ - 4 - 3.2塔板流体力学验算········································ - 8 - 3.3塔板负荷性能图··········································- 10 - 3.4数据汇总···················································- 14 - 3.5心得体会与总结··········································- 15 -

1.任务书 拟建一浮阀塔用以分离甲醇——水混合物,决定采用F1型浮阀(重阀),试根据以下条件做出浮阀塔的设计计算。 已知条件: 2.任务要求: 1.进行塔的工艺计算和验算 2.绘制负荷性能图 3.绘制塔板的结构图 4.将结果列成汇总表 5.分析并讨论

3.设计过程 3.1塔板工艺尺寸计算 (1)塔径:欲求塔径,先求出空塔气速u,而 u =安全系数?m ax u ; 最大允许速度m ax u 计算公式为:m ax u =V V L C ρρρ- 式中C 可由史密斯关联图查出,横坐标的数值为: h h V L 5.0??? ? ??V L ρρ=0.09681.018191.8820.00640.5 =???? ??; 取板间距;45.0m H T =取板上液层高度m h L 06.0=; 那么,图中的参数值为:m h H L T 39.006.045.0=-=-; 根据以上的数值,查史密斯关联图可得0.078m/s C 20=; 因为物系的表面张力为m mN /38因此需要按照下式进行校正: 2 .02020??? ??=σC C 所以校正后得到C 为: 0.0887m/s 20380.0780.2 =? ?? ? ???=? ?? ? ??=2 .02020σC C ; 取安全系数为0.6,则空塔气速为: m ax u = 2.524m/s 1.01 1.01 8190.0887=-?=-V V L C ρρρ; 1.51m/s 2.5240.6u 0.6u max =?=?=; 塔径D 为: 1.26m 1.51 3.141.881 4πu 4V D S =??== ; 按照标准塔径圆整为m D 4.1=;则 塔截面积为:

化工设计课程学习总结范文三篇

化工设计课程学习总结范文三篇 化工设计课程学习总结范文三篇 本学期顺利完成了化学工程与工艺专业共100名同学的化工原 理课程设计,总体来看学生的工艺计算、过程设计及绘图等专业能力得到了真正有效的提高,可以较好地把理论学习中的分散知识点和实际生产操作有机结合起来,得到较为合理的设计成果,达到了课程综合训练的目的,提高了学生分析和解决化工实际问题的能力。同时,在设计过程中也存在者一些共性的问题,主要表现在: 一、设计中存在的问题 1.设计过程缺乏工程意识。 学生在做课程设计时所设计的结果没有与生产实际需要作参考,只是为了纯粹计算为设计,缺乏对问题的工程概念的解决方法。 2.学生对单元设备概念不强。 对化工制图、设备元件、材料与标准不熟悉,依葫芦画瓢的不 在少数,没有达到课程设计与实际结合、强化“工程”概念的目的。

绘图能力欠缺,如:带控制点工艺流程图图幅设置、比例及线型选取、文字、尺寸标注以及设备、仪表、管件表示等绘制不规范。 3.物性参数选择以及计算。 在化工原理课程设计工程中首要的问题就是物性参数选择以及 计算,然而学生该开始并不清楚需要计算哪些物性参数以及如何计算。这对这些问题,指导老师应在开课之初给学生讲一下每个单元操作所需的物性参数,每个物性参数查取方法以及混合物系物性参数的计算方法,还有如何确定体系的定性温度。 二、解决措施 1.加强工程意识。 设计过程中鼓励学生多做深层次思考,综合考虑经济性、实用性、安全可靠性和先进性,强化学生综合和创新能力的培养;引导学生积极查阅资料和复习有关教科书,学会正确使用标准和规范,强化学生的工程实践能力。为了增强学生的工程意识提出以下措施:一是在化工原理课程讲述过程中应加强对学生工程意识的培养,让同学明确什么是工程概念,比如:理论上的正确性,技术上的可行性,操作上的安全性,经济上的合理性,了解工程问题的计算方法。比如试差

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

《化工原理》课程设计实践教学总结

《化工原理》课程设计实践教学总结 摘要:化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使学生初步掌握化工设计的基础知识、设计原则及方法。 关键词:化工原理;课程设计;实践;可行性 中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)22-0205-02 《化工原理》是化学工程与工艺专业的必修专业课程之一,理论课之后国内大部分高校的本科人才培养计划中安排了实践教学环节――《化工原理》课程设计。我们学校的化学工程与工艺专业培养计划也如此。《化工原理》课程设计是培养化工专业学生综合运用所学的理论知识,树立正确的设计思想,解决常规化工设计中一些实际问题的一项重要的实践教学。其出发点是通过课程设计提高学生搜集资料、查阅文献、计算机辅助绘图、分析与思考解决实际生产问题等能力。笔者从事了3届的课程设计教学,从中总结了许多宝贵的经验和教学方法,以期提高教学效果。现将笔者的教学体会作一介绍。 一、课程设计题目应具有普遍性、代表性

我校化学工程与工艺专业的《化工原理》课程设计一般为二周时间。课程设计基本要求是通过这一设计过程使每个学生都受到一定程度的训练,使将来在不同岗位就业的学生都能受益,都能解决这类工程的实际问题,并可以举一反三。所以课程设计的选题需要我们指导老师慎重,尽量选择化工行业中最普遍且最具代表性的单元操作进行设计。根据以往的教学的经验,题目的选取应从以下几个方面考虑: 1.课程设计题目尽可能接近实际生产,截取现有的某化工项目中的某一操作单元为设计模型,比如某合成氨厂的传热单元的设计,流体输送过程中离心泵的设计,管壳式换热器等等。这样学生在课程设计过程中有参照体系,不至于出现不合理的偏差。 2.课程设计题目应该围绕着常见的化工操作单元进行展开,比如我们都知道在讲授《化工原理》理论知识时其中的单元操作有流体输送、传热、精馏、吸收、萃取等等。一个课程设计题目应该包括2~3个常见的单元操作,从而实现某一简单的化工任务。 3.课程设计题目中涉及的物质尽可能常见易得。因为完成虚拟的生产任务过程中需要这些物质的物性参数进行核算,常见易得的物质能够降低学生在查阅参数方面的工作量。比如,如果我们设计分离任务尽量选择苯-甲苯,或甲醇-水等这样的体系,因为这些混合体系的参数大部分工具

化工原理课程设计报告(换热器) (2)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

化工课程设计心得体会

化工课程设计心得体会 篇一:化工原理课程设计心得 小结;本次化工原理课程设计历时两周,是学习化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。 在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过

程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。 我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。 在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问 题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符

合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。 通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。 我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。限于我们的水平,设计中难免有不足和谬误之处,恳请老师批评指正。

化工原理课程设计任务书

化工原理课程设计任务书 一、设计题目:年产万吨苯冷却器的工艺设计 二、设计条件 1.生产能力(2、、3、、4、、5、、6)4 吨每年粗苯 10 2.设备型式:列管换热器 3.操作压力:常压 4.苯的进出口温度:进口 80℃,出口35℃ 5.换热器热损失为热流体热负荷的% 6.. 7.每年按330天计,每天24小时连续生产 8.建厂地址:兰州地区 9.要求管程和壳程的阻力都不大于104Pa, 10.非标准系列列管式换热器的设计 三、设计步骤及要求 1.确定设计方案 (1)选择列管换热器的类型 (2)选择冷却剂的类型和进出口温度 ! (3)查阅介质的物性数据 (4)选择冷热流体流动的空间及流速 (5)选择列管换热器换热管的规格 (6)换热管排列方式 (7)换热管和管板的连接方式 (8)选择列管换热器折流挡板的形式 (9)材质的选择 2.初步估算换热器的传热面积A 3.{ 4.结构尺寸的计算 (1)确定管程数和换热管根数及管长 (2)平均温差的校核 (3)确定壳程数 (4)确定折流挡板,隔板规格和数量 (5)确定壳体和各管口的内径并圆整 5. 校核 (1)核算换热器的传热面积,要求设计裕度不小于10%,不大于20%. · (2)核算管程和壳程的流体阻力损失 (3)管长和管径之比为6~10 如果不符合上述要求重新进行以上计算. 6. 附属结构如封头、管箱、分程隔板、缓冲板、拉杆和定距管、人孔或手孔、法兰、 补强圈等的选型 7. 将计算结果列表(见下表) 四、设计成果 1. 设计说明书(A4纸)

(1)内容包括封面、任务书、目录、正文、参考文献、附录 ^ (2)格式必须严格按照兰州交通大学毕业设计的格式打印。 2. 换热器工艺条件图(2号图纸)(手绘) 五、时间安排 (1)第十九周~第二十二周 (2)第二十二周的星期五(7月20日)下午两点本人亲自到指定地点交设计成果,最迟不得晚于星期五的十八点钟. 六、设计考核 (1)设计是否独立完成; (2)设计说明书的编写是否规范 " (3)工艺计算与图纸正确与否以及是否符合规范 (4)答辩 七、参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版社 2、《换热器设计手册》化学工业出版社 3、化工原理夏清天津科学技术出版社

相关主题
文本预览
相关文档 最新文档