高频电子线路-振幅调制与解调讲解
- 格式:ppt
- 大小:2.23 MB
- 文档页数:87
太原理工大学现代科技学院高频电子线路课程实验报告专业班级测控14-4学号2014101XXX姓名XXXXXXXX指导教师XXXXXXX实验名称 振幅解调器、包络检波、同步检波 同组人 专业班级 测控14-4 姓名 XX 学号 201410XXX 成绩实验5 振幅解调器、包络检波、同步检波5-1 振幅解调基本工作原理解调过程是调制的反过程,即把低频信号从高频载波上搬移下来的过程。
解调过程在 收信端,实现解调的装置叫解调器。
一.普通调幅 波的解调振幅调制的解调被称为检波,其作用是从调幅波中不失真地检出调制信号。
由于普通调幅波的包络反映了调制信号的变化规律,因此常用非相干解调方法。
非相干解调有两种方式,即小信号平方律检波和大信号包络检波。
我们只介绍大信号包络检波器。
1.大信号检波基本工作原理大信号检波电路与小信号检波电路基本相同。
由于大信号检波输入信号电压幅值一般在 500mV 以上,检波器的静态偏置就变得无关紧要了。
下面以图 6-1 所示的简化电路为例进行分析。
大信号检波和二极管整流的过程相同。
图 6-2 表明了大信号检波的工作原理。
输入信号 ui(t) 为正并超过 C 和 RL 上的 uo(t) 时,二极管导通,信号通过二极管向 C 充电,此时 uo(t) 随充电电压上升而升高。
当 ui(t) 下降且小于uo(t) 时,二极管反向截止,此时停止向 C 充电, uo(t) 通过 RL 放电, uo(t) 随放电而下降。
……………………………………装………………………………………订…………………………………………线……………………………………………………………………………装………………………………………订…………………………………………线……………………………………充电时,二极管的正向电阻 rD 较小,充电较快。
uo(t) 以接近 ui(t) 的上升速率升高。
放电时,因电阻 RL 比 rD 大得多(通常 RL5 ~ 10k),放电慢,故 uo(t) 的波动小,并保证基本上接近于 ui(t) 的幅值。
调幅解调电路的设计——高频电子线路期末设计小组成员:彭银虎 200740620134宋伟男 200740620138王海燕 200740620144杨静 200740620156一、调幅解调电路的设计任务:1).明确系统的设计任务要求,合理选择设计方案及参数计算;2).利用Protel99SE进行仿真设计;;3).画出电路图、波形图、频率特性图。
1.基本原理(1)振幅调制调幅指的是用需要传送的信息(低频调制信号)去控制高频载波的振幅,使其随调制信号线性变化。
若设载波为u c(t)=Ucmcosωc t, 调制信号为单频信号,即uΩ(t)=UΩmcosΩt, 则普通调幅信号为:u AM(t)= (U cm+kUΩm cos Ωt)cosωc t=U cm(1+M a cosΩt)cosωc t其中M a=kaUΩm/Ucm为调幅指数(调幅度),ka为比例系数。
普通调幅波的波形和频谱图如图(1)所示。
因为载波不包含信息,为了减小不必要的功率浪费,可以只发射上下边频,而不发射载波,称为抑制载波的双边带调幅信号,用DSB表示。
设载波为u c(t)=U cm cosωc t, 单频调制信号为uΩ(t)=Uωm cosΩt(Ω〈〈ωc), 则双边带调幅信号为:u DSB(t)=kuΩ(t)u c(t)=kUΩm U cm cosΩtcosωc t= 错误!未找到引用源。
[cos (ωc+Ω)t+cos (ωc-Ω)t]其中k为比例系数。
可见双边带调幅信号中仅包含两个边频, 无载频分量, 其频带宽度仍为调制信号带宽的两倍。
图(2)显示了单频调制双边带调幅信号的有关波形与频谱图。
需要注意的是, 双边带调幅信号不仅其包络已不再反映调制信号波形的变化, 而且在调制信号波形过零点处的高频相位有180°的突变。
可以看出, 在调制信号正半周, cosΩt为正值, 双边带调幅信号u DSB(t)与载波信号u c(t)同相;在调制信号负半周, cosΩt为负值, u DSB(t)与u c(t)反相。
幅值调制的解调方法
幅值调制,也被称为振幅调制或AM,是常见的调制方法之一。
在幅值调制中,载波信号的振幅根据输入信号的大小而变化。
解调则是将已调信号还原为原始信号的过程。
以下是一些常用的幅值调制的解调方法:
1、同步解调:
在同步解调中,一个与发送端同步的本地载波信号用于解调。
通过乘法器将已调信号与本地载波相乘,得到一个脉动的包络信号。
包络信号经过滤波器滤除高频成分后,得到原始的调制信号。
2、包络检波法:
包络检波法是一种非相干解调方法。
它利用二极管或类似器件的导通特性,将已调信号的包络检测出来。
这种方法简单,但当信号受到噪声干扰时,可能会受到影响。
3、相干解调:
相干解调需要一个与发送端同步的本地载波信号。
已调信号与本地载波相乘后,再通过低通滤波器滤除高频成分,得到原始的调制信号。
4、频域解调:
频域解调是将已调信号进行快速傅里叶变换(FFT),在频域直接获取调制信号。
这需要较为复杂的计算,但可以避免在时域解调中可能遇到的困难。
5、希尔伯特变换法:
希尔伯特变换法能够从已调信号中准确地恢复出原始信号。
它首先对已调信号进行希尔伯特变换,得到解析信号。
解析信号与原始已调信号只相差一个常数因子。
6、相角解调:
相角解调是利用接收到的信号相位信息来恢复原始调制信号。
它需要一个本地载波信号,并测量已调信号与本地载波之间的相位差。
通过这个相位差信息,可以恢复原始的调制信号。
在实际应用中,选择哪种解调方法取决于具体的应用场景、系统复杂度、性能要求和可用资源等因素。
高频电子线路实验指导书(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高频电子线路实验指导书钓鱼岛及其附属岛屿自古以来就是中国的固有领土。
主权不容侵犯,领土不容抢夺。
上图为美丽的钓鱼岛。
实验地点:航海西楼 308 室实验要求1.实验前必须充分预习,完指定的预习任务,预习要求如下:1)。
认真阅读实验指导书,分析,掌握实验电路的工作原理,并进行必要的估算。
2)。
完成各实验“预习要求”中指定的内容。
3)。
熟悉实验任务。
4)。
复习实验中使用各仪器的使用方法及注意事项。
2.使用仪器和实验仪前必须了解其性能,操作方法和注意事项。
3.实验时接线要认真,相互仔细检查,确定无误后才能接通电源,初学或没有把握应经指导老师审查同意后再接通电源。
4.高频电路实验注意事项:1)。
卡式高频电路实验仪将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。
2)。
由于高频电路频率较高,分布参数及相会感应的影响较大,所以在接线时连接线要尽可能短,接地点必须接触良好,以减少干扰。
3)。
做放大器实验时如发现波形失真甚至变成方波,应检查工作设置是否正确,或输入信号是否过大。
5.实验中有焊接电路时注意事项:1)。
应先提前给电烙铁通电预热,电烙铁要远离仪器设备和各种测量线,以防烧坏仪器和测量线,导线等,做完实验要拔掉电烙铁,关断电源,防止火灾。
2)。
老师分发的元器件,根据元件列表进行清点,缺少的应让老师补齐。
3)。
有运算放大器电路,运算放大器不能直接焊在电路板上,应先焊上插座,等电路都焊接完成后,再插上运算放大器,电路检查无误后,才能接通电源。
4)。
焊接电路时要合理布局,地线和电源线要用不同颜色的导线,一般电源线要用红线,这样一来电源就不会接错。
5)。
尽量节约使用导线,焊锡,勤俭节约,注意环境卫生。
6)。
实验中故意损坏仪器设备,要按原价赔偿。
6.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟,发烫或有异味)应立即关断电源,保持现场,报告指导老师。
第一章绪论1.1 主要设计内容1. 无线通信系统的组成2. 无线通信系统的类型3. 无线通信系统的要求和指标4. 无线电信号的主要特性1.2 关键名词解释1. 基带信号:未调制的信号2. 调制信号:调制后的信号3. 载波:单一频率的正弦信号或脉冲信号4. 调制:用调制信号去控制高频载波的参数,是载波信号的某一个或者几个参数(振幅、频率或相位)按照调制信号的规律变化。
1.3 知识点1. 无线通信系统的组成(P1框图)详细了解一下无线通信系统的促成部分和每个部分的作用1)高频振荡器(信号源、载波信号、本地振荡信号)2)放大器(高频小信号放大器及高频放大器)3)混频和变频(高频信号变换和处理)4)调制和解调(高频信号变换和处理)2. 无线通信系统的分类1)按照工作频率和传输手段分为:中波信号、短波信号、超短波信号、微波信号、卫星通信2)按照通信方式分:全双工、半双工、单工方式3)按照调制方式分:调幅、调频、调相、混合调制4)按照传输发送信息的类型:模拟通信、数字通信3. 无线信号的特性:时间特性、频率特性、频谱特性、调制特性、传播特性4. 无线通信采用高频信号的原因:1) 频率越高,可利用的频带宽度越宽,可以容纳更多许多互不干扰的信道,实现频分复用或频分多址,方便某些宽频带的消息信号(如图像信号 2) 同时适合于天线辐射和无线传播。
5. 调制的作用:1) 通过调制将信号频谱搬至高频载波频率,使收发天线的尺寸大可缩小 2) 实现信道的复用,提高信道利用率。
第二章 高频电路基础与系统问题2.1 主要设计内容1. 高频电路中的元器件2. 高频率电路中的组件2.2 关键名词解释1. 参数效应:在高频信号中,随着信号的提高,元件(包括导线)产生的分布参数效应和由此产生的寄生参数(如导体间、导体或元件与地之间、元件之间的杂散电容,连接元件的导线的垫高和元件自身的寄生电感)。
2. 趋肤效应:在频率升高时,电流只集中在导体的表面,导致有效导电面积减小,交流电阻可能远大于直流电阻,从而是导体损耗增加,电路性能恶化。
振幅调制原理
振幅调制(Amplitude Modulation,简称AM)是一种调制技术,它通过改变载波的振幅,来传输要调制的信号。
具体而言,振幅调制是将调制信号的幅度(即振幅)与高频载波信号相乘,得到一个新的带有调制信号特征的调制信号。
在振幅调制中,调制信号通常是音频信号,比如人声或者音乐。
而载波信号是具有固定频率和振幅的高频信号。
调制信号和载波信号相乘的结果,就是振幅调制信号。
振幅调制过程中,调制指数(也称调制深度)是一个关键参数。
调制指数是调制信号的幅度变化与载波幅度的比值。
调制指数的大小会影响到调制信号的功率和频谱分布。
振幅调制的原理可以用以下几个步骤来解释:
1. 调制信号:将要传输的音频信号作为调制信号。
2. 载波信号:选择一个高频信号作为载波信号。
3. 调制过程:将调制信号的幅度与载波信号相乘,得到一个新的调制信号。
4. 调制指数:调节调制指数,控制调制信号的幅度变化。
5. 传输信号:将调制后的信号传输到接收端。
在接收端,需要进行解调过程,将调制信号还原为原始的调制信号。
解调过程是振幅调制的逆过程,在解调过程中,通过将收到的调制信号与一个参考信号(通常是与发送端相同的载波信号)相乘,就可以获得原始的调制信号。
振幅调制在广播和电视等领域中得到了广泛应用。
它可以实现信号的远距离传输,同时具有一定的抗干扰能力。
然而,振幅调制也存在一些问题,比如在传输过程中容易受到噪声和干扰的影响,以及只能传输一个信号的限制。
因此,在一些特定的应用场景中,人们也使用其他调制技术,比如频率调制(FM)和相位调制(PM)。
实验5 振幅解调器(包络检波、同步检波)—、实验准备1.做本实验时应具备的知识点:●振幅解调●二极管包络检波●模拟乘法器实现同步检波2.做本实验时所用到的仪器:●③号实验板《调幅与功率放大器电路》●双踪示波器●万用表●直流稳压电源●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用包络检波器实现AM波解调的方法。
了解滤波电容数值对AM波解调影响;3.理解包络检波器只能解调m≤100%的AM波,而不能解调m>100%的AM波以及DSB 波的概念;4.掌握用MC1496模拟乘法器组成的同步检波器来实现AM波和DSB波解调的方法;5.了解输出端的低通滤波器对AM波解调、DSB波解调的影响;6.理解同步检波器能解调各种AM波以及DSB波的概念。
三、实验内容1.用示波器观察包络检波器解调AM波、DSB波时的性能;2.用示波器观察同步检波器解调AM波、DSB波时的性能;3.用示波器观察普通调幅波(AM)解调中的对角切割失真和底部切割失真的现象。
四、基本原理振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。
通常,振幅解调的方法有包络检波和同步检波两种。
1.二极管包络检波二极管包络检波器是包络检波器中最简单、最常用的一种电路。
它适合于解调信号电平较大(俗称大信号,通常要求峰一峰值为1.5V 以上)的AM 波。
它具有电路简单,检波线性好,易于实现等优点。
本实验电路主要包括二极管、RC 低通滤波器和低频放大部分,如图9-1所示。
图中,D21为检波管,C23、R20、C24构成低通滤波器,W21为二极管检波直流负载,W21用来调节直流负载大小,W22相串构成二极管检波交流负载,W22用来调节交流负载大小。
开关K21是为二极管检波交流负载的接入与断开而设置的,短路下方时为接入交流负载,全不接入为断开交流负载。
短路上方为接入后级低放。
调节W23可调整输出幅度。
图中,利用二极管的单向导电性使得电路的充放电时间常数不同(实际上,相差很大)来实现检波,所以RC 时间常数的选择很重要。