当前位置:文档之家› 精馏塔

精馏塔

精馏塔
精馏塔

精馏塔

目录

第一章精馏塔控制的原理和工艺要求 (1)

1.1 精馏塔分馏原理 (1)

1.2 精馏塔的控制要求及主要扰动 (2)

1.2.1 精馏塔的控制要求 (2)

1.2.2 精馏塔的干扰因数特性 (3)

1.3 精馏塔的控制目标 (6)

1.3.1 质量指标 (6)

1.3.2 产品产量和能量消耗 (7)

第二章精馏塔控制方案设计 (9)

2.1 精馏塔控制方案 (9)

2.1.1提馏段参数控制 (9)

2.1.2精馏段参数控制 (9)

第一章精馏塔控制的原理和工艺要求

1.1 精馏塔分馏原理

以A、B两种液体混合物的分馏为例,在压力一定的情况下,A、B二种组分混合溶液汽—液相温度-浓度曲线如图1.1所示。纯A的沸点是100℃,纯B的沸点是135℃.两组分的混合比变化时,混合溶液的沸点也将随之变化,如图中液相曲线所示,图中还标出了温度变化时,汽相组分的变化曲线。

设原溶液中A占20%,B占80%,把A、B混合液加热到124.5℃时,液体沸腾。这时,于液相共存的气相成分比是A占45.8%,B占54.2%,将这些气体单独冷凝后所形成的混合液体中,A为45.8%,B为54.2%;如果在使冷凝后的液体沸腾,其沸点为114.5℃.这时气态成分比又变成A占73.5%,B占26.5%,这样反复的进行上诉操作,不断的蒸发和冷凝,最终就可以将A分离出来。

图1.1 A,B二组分混合物温度-浓度曲线

1.2 精馏塔的控制要求及主要扰动

1.2.1 精馏塔的控制要求

为了保证精馏生产过程安全,高效地连续进行,精馏塔自动控制系统应当满足以下几方面的要求:

(1)保证产品质量对于正常工作的精馏塔,应当使塔顶或塔底产品中的一个产品达到规定的纯度;另一端产品的成分亦应保持在规定的范围内。为此,应以塔顶或塔底一种产品的纯度作为质量参数进行控制,这样的控制系统称为质量控制系统。

质量控制需要能直接测出测出产品成分的分析仪表。由于目前还不能生产出测量滞后小、精度等级高、能在线检测的分析仪表,所以在大多数情况下,精馏塔自动控制系统是通过温度控制来间接实现生产过程的产品质量检测,即用温度控制系统代替质量控制系统。

(2)保证平稳生产为了保证精馏塔的平稳运行,应设法预先克服原料进塔之前的主要可控干扰,同时尽可能减缓不可控的扰动。可通过进料的温度控制、加热剂和冷凝剂的压力控制、进料量的均匀控制等,使精馏塔的进料参数保持稳定或避免其剧烈波动。为了维持塔的物料平衡,还要控制塔顶和塔底产品采出量,使二者之和等于进料量,两个采出量变化要缓慢,以保证精馏塔的平稳运行;精馏塔内的储液量应保持在限定的范围内。控制塔内压力稳定也是精馏塔平稳运行所必须的。

(3)满足约束条件为了保证精馏产品质量和生产过程的正常运行,必须满足

一些参数的极限值所规定的约束条件。例如对塔内气体流速的上下限限制,流速过高易产生液泛,流速过低会降低塔板效率,尤其对工作范围较窄的筛板塔和乳化塔的流速必须严格控制,通过测量和控制塔底于塔顶间的差压,间接实现塔内气体流速的检测和控制。精馏塔本身还有最高压力限制,当塔内压力超过其耐压极限时,容器的安全就没有保障。

(4)节能要求和经济性精馏过程消耗的能量主要是再沸器的加热量和冷凝器的冷却能量的消耗。另外,塔和附属设备及管道也要散失一部分能量。

精馏塔的操作情况必须从整个经济收益来衡量。在精馏操作中,质量指标、产品回收率和能量消耗均是要控制的目标。其中质量指标是必要条件,在优先保证质量指标的前提下,应使产品产量高一些,能量消耗尽可能低一些。

1.2.2 精馏塔的干扰因数特性

在精馏塔运行过程中,影响其质量指标和平稳生产的主要干扰有以下几种:

1.进料流量F的波动

进料量F的波动通常是难免的,如果精馏塔位于整个生产过程的起点,则以采用定值控制。但是精馏塔进料量F往往是由上一道生产工序所决定,如果一定要使精馏塔进料量F恒定,就必须设置中间储槽进行缓冲。现在精馏工艺是尽可能减少或取消中间储槽,采取在上一道工序设置液位均匀控制系统控制出料流量,使精馏塔的进料流量F比较平稳,避免F的剧烈变化。

2.进料成分ZF的变化

进料成分ZF是由上一道工序出料或原料情况决定的。

3.进料温度TF和进料热焓值QF的变化

进料温度和状态对塔的操作影响很大,一般情况下进料温度是比较稳定的,如果进料温TF度变化较大,为了维持塔内的热量平衡和稳定运行,在单相进料时采用进料温度控制可克服这种干扰,然而在多相进料时,进料温度恒定并不能保证其热焓值QF稳定。当进料是气液两相混合状态时,只有当气液两相比例恒定时,恒温进料的热焓值才能恒定。为了保持精馏塔的进料热焓值恒定,必要时可通过热焓控制来维持进料热能恒定。

4.再沸器加热剂输入热量变化

当加热剂是蒸气时,通过再沸器输入精馏塔的热量扰动往往是由蒸气压力变化所引起的,这一扰动可通过在蒸气总管设置压力控制来加以克服,或者通过温度串级控制系统的副回路予以克服。

5.冷却剂在冷凝器内吸收热量的变化

冷却剂吸收热量的变化主要是由冷却剂的压力或温度变化引起的,吸收热量的变化会影响到精馏塔顶回流量或回流温度,进而引起精馏塔输出热量的变化。冷却剂的温度一般变化较小,而流量的变化大多是由压力波动引起的,可采用与克服加热剂压力变化类似的方法进行控制。

6.环境温度的变化

环境温度一般变化较小。冷凝器采用风冷方式时,天气聚变及昼夜温差对精馏塔的运行影响较大,会使回流量或回流温度发生变化,对于这种干扰可采用内回流控制的方法予以克服。内回流是指精馏塔精馏段上一层塔盘向下一层塔盘流下的液体量。内回流控制,是指在精馏过程中,控制内回流为恒定量或按某一规

律变化。

通过以上几点分析可以看出,进料流量和进料成分扰动是精馏塔运行中的主要干扰,一般是不可控的。其他干扰比较小,可以采用辅助控制系统预先加以克服和抑制,各种精馏塔的工作情况不尽相同,需要根据实际情况具体分析。

1.3 精馏塔的控制目标

1.3.1 质量指标

精馏操作的目的是将混合液中各组分分离为产品,因此产品的质量指标必须符合规定的要求。也就是说,塔顶或塔底产品之一应该保证达到规定的程度,而另一产品也应保证在规定的范围内。

在二元组分精馏中,情况比较简单,质量指标就是使塔顶产品中轻组分纯度符合技术要求或塔底产品中重组分纯度符合技术要求。

在多元组分精馏中,情况较复杂,一般仅控制关键组分。所谓关键组分,是指对产品质量影响较大的组分。从踏顶分离出挥发度较大的关键组分称为轻关键组分,从塔底分离出挥发度较小的关键组分称为重关键组分。以石油裂解气分离中的脱乙烷塔为例,他的目的是把来自脱甲烷塔底部分产品作为进料加以分离,将乙烷和更轻的组分从底部分离出来,比乙烷重的组分从塔底分离出来,这时,显然乙烷是轻关键组分,丙烯则是重关键组分。因此,对多元组分的分离可简化为对二元关键组分的分离,这就大大的简化精馏操作。

在精馏操作中,产品质量应该控制到刚好能满足规定上的要求,即处于“卡边”

生产。超过规定的产品是一种浪费,因此它的售价不会太高,只会增加能耗、降低产量而已。

1.3.2 产品产量和能量消耗

精馏塔的其他两个重要控制目标是产品的产量和能量消耗。精馏塔的任务,不仅要保证产品质量,还要有一定产量。另外,分离混合液也需要消耗一定的能量,这主要是再沸器的加热量和冷凝器的冷却量消耗。此外,塔的附属设备及管线也要散失一定的热量和冷量。从定性的分析可知,要使分离所得的产品纯度越高,产品产量越大,则所消耗的能量越多

产品的产量通常用该产品的回收率来表示。回收率的定义是进料中每单位产品组分所能得到的可售产品的数量。数学上组分i的回收率定义为:Ri=P/Fzi

式中,P为产品产量;F为进料流量;Zi为进料组分i的浓度。

产品回收率、产品纯度及能量消耗三者之间的定量关系可以用图2.3中的曲线来说明。这是对于某一精馏塔按分离50%两组合分混合液作出的曲线图,纵坐标是回收率,横坐标是产品纯度(按纯度的对数值刻度),图中的曲线是表示每单位进料所消耗能量的等值线(用塔内上升蒸气量V与进料量F之比V/F来表示)。曲线表明,在一定的能耗V/F情况下,随着产品纯度的提高,会使产品的回收率迅速下降。纯度越高,这个倾向越明显。

以上讨论说明,在精馏操作中主要产品的质量指标,刚好达到质量规格的情况是期望的,低于要求的纯度将使产品不合格,而超过纯度要求会降低产量。然

而,在一定的纯度要求下,提高产品的回收率,必然要增加能量消耗。可是单位产量的能耗最低并不等于单位产量的成本最低,因为决定成本的不仅是能耗,还有原料的成本。右此可见,在精馏操作中,质量指标、产品回收率和能量消耗均是要控制的目标。其中质量指标是必要条件,在质量指标一定的前提下,在控制过程中应使产品产量尽量高一些,同时能量消耗尽可能低一些。至于在质量指标一定的前提下,使单位产品产量的能量消耗最低消耗或单位产品量的成本最低以及使综合经济效益最大等,均是属于不同目标函数的最优控制问题。

第二章精馏塔控制方案

2.1 精馏塔控制方案

不同精馏塔生产工艺、产品质量标准不一样,对控制的要求个不相同,因而精馏塔控制方案较多。下面对常见的几种方案进行分析。

提馏段温度控制系统具有如下特点:

1)以提馏段温度作为间接质量指标,能较迅速、直接地反映提馏段产品品质。在以塔底采出液为主要产品,对塔底产品成分的要求高于对塔顶馏出液成分的要求时,往往采用提馏段温度控制系统方案。

2)当干扰首先进入提馏段时,例如在液相进料时,由进料产生的干扰首先要引起提馏段和塔底的参数变化,故用提馏段温度控制比较及时,动态响应过程也比较迅速。

2.1.2精馏段参数控制

当以塔顶采出液为主要产品时,往往以精馏段的温度作为衡量质量的间接指标,这时可选精馏某点温度作为被控参数(间接塔顶采出液的纯度),以回流量QL作为控制变量组成单回路控制系统,也可组成串级控制系统。串级控制系统虽较复杂,但可迅速而有效地克服进入副环的扰动,并可降低对调节阀特性的要求,有较高的精度。精馏段温度控制方案可保证塔顶产品的纯度,当干扰不很大时,塔底产品的纯度变化范围也不大。

为了抑制其他干扰对被控参数的影响,除了主系统外,还设有五个辅助控制系统。其中,进料量、塔压、塔底采出量与塔顶馏出液的控制方案与提馏段温控时相同;再沸器加热量应足够大,且维持一定,可以使精馏塔在最大负荷时,仍能保证塔底产品的质量指标稳定在一定范围内。

精馏段温度控制系统有如下特点:

1)用精馏段温度作为间接质量指标,能较迅速、直接地反映提馏产品品质。在以塔顶采出物为主要产品,对塔顶产品成分的纯度要求高于对塔底产品成分的要求时,往往采用精馏段温度控制系统方案。

2)当干扰首先进入精馏段时,例如在汽车相进料时,进料产生的干扰首先引起精馏段和塔顶的参数变化,故用精馏段温度控制比较及时,动态响应比较迅速。

3)串级控制系统的流量回路对回流罐液位与压力、精馏塔内压力等干扰对回流量的影响有较强的抑制。可实现被控参数的高精度控制。

以精馏段温度作为衡量质量指标的间接被控参数,当分离的产品纯度较高时,

塔底温度变化很小。为了及时、精确地检测和控制产品质量,要求温度检测仪表有很高的测量精度和灵敏度。若将温度传感器安装在塔底以上的灵敏塔板上,以灵敏板的温度作为被控参数,可以取得满意的检测和控制效果。

所谓灵敏板,是指出现扰动时温度变化最大的那块塔板。以灵敏板温度作为被控参数有利于提高控制精度。

由于本人对知识掌握的不够全面,中存在不足,竭诚希望各位师傅提出宝贵的建议。

精馏实验

精馏实验 一、简答题 1、电加热开关何时开启?精馏过程如何调节电压? 待塔釜料液加好后,将加热电压调节旋钮全关,再开电加热开关,以免启动功率过大,烧坏电加热管。刚开始加热电压可高些如200~220V,等塔釜温度稳定在九十几度也即釜温达泡点时,电压降至100~120V左右,注意加热电压不能太高,否则会出现淹塔现象。 2、其他条件都不变,只改变回流比,对塔性能会产生什么影响? 3、进料板位置是否可以任意选择,它对塔的性能有何影响? 4、为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 5、将本塔适当加高,是否可以得到无水酒精?为什么? 6、为什么精馏开车时,常先采用全回流操作? 精馏塔要保持稳定高效操作,首先必须使精馏塔从下到上建立起一整套与给定操作条件对应的逐板递升的浓度梯度和逐板递降的温度梯度。即使全塔的浓度梯度和温度梯度按需要渐变。所以,在精馏塔开车时,常先采用全回流操作,待塔内情况基本稳定后,再开始逐渐增大进料流量,逐渐减小回流比,同时逐渐增大塔顶塔底产品流量。 7、精馏塔操作时,若精馏段的高度已不能改变,要提高塔顶产品易挥发组分的浓度,则采用什么方法? 影响塔顶产品质量的诸因素中,影响最大而且最容易调节的是回流比。所以若需提高塔顶产品易挥发组分的浓度,常采用增大回流比的办法。 8、精馏塔操作时,若提馏段的高度已不能改变,要提高塔底产品中难挥发组分的浓度,则采用什么办法? 最简便的办法是增大再沸器上升蒸汽的流量与塔底产品的流量之比。 (由7、8题可见,在精馏塔操作中,产品的浓度要求和产量要求是相互矛盾的,为此必须统筹兼顾,不能盲目地追求高浓度或高产量。一般是在保证产品浓度能满足要求以及能稳定操作的前提下,尽可能提高产量。此时提高产量的办法是在允许的范围内采用尽可能小的回流比和尽可能大的再沸器加热量。) 9、精馏操作稳定的必要条件是什么?

精馏塔-PPT

填料塔的附属结构填料支承板(Packing support plate ) 主要包括:填料支承装置;液体分布及再分布装置;气体进口分布装置;除沫装置等。 要求:(1)足够的机械强度以承受设计载荷量,支承板的设计载荷主要包括填料的重量和液体的重量。(2)足够的自由面积以确保气、液两相顺利通过。总开孔面积应不小于填料层的自由截面积。一般开孔率在70%以上。常用结构:栅板;升气管式;气体喷射式。

栅板(support grid): 优点是结构简单,造价低; 缺点是栅板间的开孔容易被散装填料挡住,使有效开孔面积减小。

升气管式:具有气、液两相分流而行和开孔面积大的特点。气体由升气管侧面的狭缝进入填料层。

气体喷射式(multibeam packing support plate): 具有气、液两相分流而行和开孔面积大的特点。气体由波形的侧面开孔射入填料层。

床层限位圈和填料压板(Bed limiter and hold down plate)填料压紧和限位装置安装在填料层顶部,用于阻止填料的流化和松动,前者为直接压在填料之上的填料压圈或压板,后者为固定于塔壁的填料限位圈。 规整填料一般不会发生流化,但在大塔中,分块组装的填料会移动,因此也必需安装由平行扁钢构造的填料限制圈。

液体分布器(Liquid distributor) 作用:将液体均匀分布于填料层顶部。 莲蓬头分布器: 一种结构十分简单的液体喷洒器,其喷头的下部为半球形多孔板,喷头直径为塔径的1/3~1/5,一般用于直径在0.6m以下的塔中。它的主要缺点是喷洒孔易堵塞,且气量较大时液沫夹带量大。

筛板精馏塔实验

实验8 筛板精馏塔实验 一、实验目的 1.了解筛板式精馏塔的结构流程及操作方法。 2.测取部分回流或全回流条件下的总板效率。 3.观察及操作状况。 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上接触,实现传质,传热过程而达到两相一定程度的分离。如果在每层塔板上,液体与其上升的蒸汽到平衡状态,则该塔板称为理论板,然而在实际操作中、汽、液接触时间有限,汽液两相一般不可能达到平衡,即实际塔板的分离效果,达不到一块理论板的作用,因此精馏塔的所需实际板数一般比理论板要多,为了表示这种差异而引入了“板效率”这一概念,板效率有多 种表示方法,本实验主要测取二元物系的总板效率E p : E N N P T D 板式塔内各层塔板的传质效果并相同,总板效率只是反映了整个塔板的平均效率,概括地讲总板效率与塔的结构,操作条件,物质性质、组成等有关是无法用计算方法得出可靠值,而在设计中需主它,因此常常通过实验测取。实验中实验板数是已知的,只要测取有关数据而得到需要的理论板数即可得总板效率,本实验可测取部分回流和全回流两种情况下的板效,当测取塔顶浓度,塔底浓度进料浓度以及回流比并找出进料状态、即可通过作图法画出平衡线、精馏段操作线、提馏段操作线,并在平衡线与操作线之间画梯级即可得出理论板数。如果在全回流情况下,操作线与对角线重合,此时用作图法求取理论板数更为简单。 三、实验装置与流程 实验装置分两种: (1)用于全回流实验装置 精馏塔为一小型筛板塔,蒸馏釜为卧直径229m长3000mm内有加热器。塔内径50mm共有匕块塔板,每块塔板上开有直径2mm筛孔12个板间距100mm,塔体上中下各装有一玻璃段用以观察塔内的操作情况。塔顶装有蛇管式冷凝器蛇管为φ10×1紫铜管长3.25m,以水作冷凝剂,无提馏段,塔傍设有仪表控制台,采用1kw调压变压器控制釜内电加热器。在仪表控制台上设有温度指示表。压强表、流量计以及有关的操作控制等内容。 (2)用于部分回流实验装置 装置由塔、供料系统、产品贮槽和仪表控制柜等部份组成。蒸馏釜为φ250×340×3mm 不锈钢罐体,内设有2支1kw电热器,其中一支恒加热,另一支用可调变压器控制。控制电源,电压以及有关温,压力等内容均有相应仪表指示, 塔身采用φ57×3.5mm不锈钢管制成,设有二个加料口,共十五段塔节,法兰连接,塔身主要参数有塔板十五块,板厚1mm不锈钢板,孔径2mm,每板21孔三形排列,板间距100mm,溢流管为φ14×2不锈钢管堰高10mm。 在塔顶和灵敏板塔段中装有WEG—001微型铜阻感温计各一支由仪表柜上的XCE—102温度指示仪显示,以监测相组成变化。 塔顶上装有不锈钢蛇管冷凝器,蛇管为φ14×2长250mm以水作冷凝剂以LZB10型转子流量计计量,冷凝器装有排气旋塞。

精馏塔装配图

1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 1 23 45 k 86 79 j1 10 1112 i n 1 13 14 2 3 4 5 30 11l Ⅰ 41 40 39 审核审定批准 1:5 Ⅲ 设计制图校核职务件号 12345 6 9 7810 34 Ⅱ j3 Ⅲ 35 38 3736g h Ⅳ 33 3231 27 Ⅴ 1:5 19151312 141716 1823212022 252426ⅤI 1:5 292830 3133 323534363738 39 40 41Ⅵ 18 15 16Ⅴ f 33 m5 31 32 34 35 17 50 51m7 19 20b c a 30 29e 28 2726 a f k 1:2 Ⅵ 1:2 A、B类焊缝 j1 管口方位示意图 m1-7j4 d 25 24 2322 21b c e l g d n i j2h j3 HG20594-971 1.03设计项目设计阶段 重量(Kg) 总重322.7 94.2374.19140.62.97 5.382.364.67 0.41 精馏塔 1∶20 比例 图幅 A1 版次 引出孔 φ159×4.5法兰 PN1.0,DN40接管 DN20,L=250日期 姓名 图号或标准号 名称 基础环 筋板JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93静电接地板盖板垫板引出管 DN40排气管 φ80材料Q235-A Q235-A 数量 148单件6.72Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 2424114111 3.931.551.17毕业设计施工图 备注 21.9376181210.692.02380370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.54总质量:27685 Kg 2901 1Q235-A GB/T3092-93回流管 DN45法兰 PN1.0,DN20筒体 φ1600×16法兰 PN1.0,DN32上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20GB/T3092-93GB/T3092-93JB4710-92 HG20594-97HG5-1373-80JB/T4737-95进料管 DN32塔釜隔板液封盘 吊柱 GB/T3092-93HG20594-97HG20594-97HG8162-87HG20594-97GB/T3092-93GB704-88出气管 DN600扁钢 8×16气体出口挡板1Q235-A Q235-A Q235-A·F 16MnR Q235-A Q235-A·F Q235-A 组合件16MnR 1111111Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 1111311450.6 法兰 PN1.0,DN45接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16法兰 PN1.0,DN20地脚螺栓M42×4.5HG20594-97JB/T4736-95HG21515-95HJ97403224-3HG20594-97GB/T3092-93HJ97403224-7JB/T4734-95补强圈 DN450×8人孔 DN450塔盘裙座筒体 HG20594-97GB/T3092-93JB4710-92JB4710-92HG20652-1998JB/ZQ4363-86引出管 DN20引出孔 φ133×4检查孔 排净孔Q235-A Q235-A Q235-A 组合件Q235-A Q235-A 16MnR Q235-A 71751111116.944.357 Q235-A Q235-A Q235-A Q235-A Q235-A 1111224δ=8 技术特性表 连接尺寸标准 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG21515-95h 20l 20m1-7 n 40 450j1-4k i 204020公称尺寸 d 20f g e 322045符号b c 20600凹液面计口凹凹凹凹凹凹 出料口人孔再沸器返回口 温度计口排气管口至再沸器口紧密面 型式凹凹凹凹凹凹压力计口回流口进料口液面计口用途或名称温度计口气相出口管口表 7许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 11 109 83设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件65 43 序号 21项 目0.5857.93271170指 标0.11500.027筒体、封头、法兰102 技术要求

精馏塔的操作及塔效率的测定实验

或液相经过一层实际塔板前后的组成变化值与经过一层理论塔 X n 1 图1塔板气液流向示意 按气相组成变化表示的单板效率为 匚 _ yn 一 y n 1 匸MV * y n — yn + 按液相组成变化表示的单板效率为 精馏塔的操作及塔效率的测定实验 实验目的 1. 了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2 .学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 .基本原理 1 .全塔效率E T 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即 E T N T -1 N P 式中,N T -完成一定分离任务所需的理论塔板数,包括蒸馏釜; N p —完成一定分离任务所需的实际塔板数,本装置 N p = 10。 全塔效率简单地反映了整个塔内塔板的平均效率,说明了塔板结构、物性系数、操作状况对塔分 离能力的影响。对于塔内所需理论塔板数 N T ,可由已知的双组分物系平衡关系,以及实验中测得的塔 顶、塔釜出液的组成,回流比 R 和热状况q 等,用图解法求得。 2?单板效率E M y n_1 单板效率又称莫弗里板效率,如图 1所示, 相 板前后的组成变化值之比。 y^n X n y n

X F y £ q-1 E X n - X n E ML 二 *■ X n 」—X n 式中,y n 、y n 1 —离开第n 、n+1块塔板的气相组成,摩尔分数; X n J 、X n —离开第n-1、n 块塔板的液相组成,摩尔分数; y n -与X n 成平衡的气相组成,摩尔分数; X n —与y n 成平衡的液相组成,摩尔分数。 3.图解法求理论塔板数 N T 图解法又称麦卡勃—蒂列( McCabe — Thiele )法,简称 M — T 法,其原理与逐板计算法 完全相同,只是将逐板计算过程在 y -x 图上直观地表示出来。 精馏段的操作线方程为: y n 1 R X n X D- R 十1 R+1 y n 1 -精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; X n -精馏段第n 块塔板下流的液体组成,摩尔分数; X D -塔顶溜出液的液体组成,摩尔分数; R —泡点回流下的回流比。 提馏段的操作线方程为: L ' X WX W ' X m 一 ' L _W L -W 式中, Y m 1 式中,y m1 —提馏段第 m+1块塔板上升的蒸汽组成,摩尔分数; X m —提馏段第 m 块塔板下流的液体组成,摩尔分数; X W -塔底釜液的液体组成,摩尔分数; L —提馏段内下流的液体量,kmol/s ; W -釜液流量, kmol/s 。 加料线(q 线)方程可表示为:

精馏塔实验讲义

E T = ?100% C pm (t BP - t F ) + r m 精馏塔实验讲义 一、 实验目的 1. 充 分 利 用 计 算 机 采 集 和 控 制 系 统 具 有 的 快 速 、 大 容 量 和 实 时 处 理 的 特 点 , 进 行 精馏过程多实验方案的设计,并进行实验验证,得出实验结论。以掌握实验研究的方法。 2. 学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3. 学习精馏塔性能参数的测量方法,并掌握其影响因素。 4. 测定精馏过程的动态特性,提高学生对精馏过程的认识。 二、 实验原理 1. 在板式精馏塔中,由塔釜产生的蒸汽沿塔板逐板上升与来字塔板下降的回流液,在塔板 上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是 精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分 离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全 部返回塔内中,这在生产中无实际意义。但是,由于此时所需理论塔板数最少,又易于达到 稳定,故常在工业装置的开停车、排除故障及科学研究时使用。 实际回流比常取最小回流比 1.2—2.0 倍。在精馏操作中,若回流系统出现故障,操作情 况会急剧恶化,分离效果也会变坏。 2. 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操 作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数 N T 。按照式(5-1)可以 得到总板效率 E T ,其中 N P 为实际塔板数。 N T N P 部分回流时,进料热状况参数的计算式为 q = r m 式中:

乙醇精馏塔设计(1)资料

化工原理课程设计 设计题目:乙醇精馏塔 前言 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。 精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 本次设计的筛板塔是化工生产中主要的气液传质设备。此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。 本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。通过对精馏塔的运算,调试出塔的工艺流程、生产操作条件及物性参数,以保证精馏过程的顺利进行并使效率尽可能的提高。

精馏塔的操作及塔效率的测定实验【共6页】

精馏塔的操作及塔效率的测定实验 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方精馏塔的操作及塔效率的测定实验一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、基本原理 1、全塔效率全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即式中,-完成一定分离任务所需的理论塔板数,包括蒸馏釜;-完成一定分离任务所需的实际塔板数,本装置=10。 全塔效率简单地反映了整个塔内塔板的平均效率,说明了塔板结构、物性系数、操作状况对塔分离能力的影响。对于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得。

2、单板效率单板效率又称莫弗里板效率,如图1所示,是指气相或液相经过一层实际塔板前后的组成变化值与经过一层理论塔板前后的组成变化值之比。 图1 塔板气液流向示意按气相组成变化表示的单板效率为按液相组成变化表示的单板效率为式中,、-离开第n、n+1块塔板的气相组成,摩尔分数;、-离开第n- 1、n块塔板的液相组成,摩尔分数;-与成平衡的气相组成,摩尔分数;-与成平衡的液相组成,摩尔分数。 3、图解法求理论塔板数图解法又称麦卡勃-蒂列(McCabe -Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 精馏段的操作线方程为:式中,-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;-精馏段第n块塔板下流的液体组成,摩尔分数;-塔顶溜出液的液体组成,摩尔分数;-泡点回流下的回流比。 提馏段的操作线方程为:式中,-提馏段第m+1块塔板上升的蒸汽组成,摩尔分数;-提馏段第m块塔板下流的液体组成,摩尔分数;-塔底釜液的液体组成,摩尔分数;-提馏段内下流的液体量,kmol/s;-釜液流量,kmol/s。 加料线(q线)方程可表示为:其中,式中,-进料热状况参数;-进料液组成下的汽化潜热,kJ/kmol;-进料液的泡点

精馏塔的控制方式

精馏塔的控制方式 字体: 小中大| 打印发表于: 2007-7-25 21:15 作者: chjzhou 来源: 海川化工论坛 精馏塔的控制方式很多,其中有: 1.提留段温度控制 2.精馏段温度控制 3.精馏塔温差控制 4.恒流控制 5.双温差控制 6.压差控制 7.在线仪表监测控制 过路的朋友一起交流一下那种控制自动化程度更高,操作人员的参与度最少,对于生产最经济,交流的朋友别忘了写下你的理由哦 答案不是重要的,你的理由却是非常重要的,欢迎讨论啊,一起学习 我也来说两句查看全部回复 最新回复 ?chping80 (2007-7-25 21:36:13) 我认为精馏段温度控制更好,更能说明精馏塔的运行情况! ?chjzhou (2007-7-26 09:10:51) 压差控制比较好(以下是摘抄版) 蒸汽压力突然变化时,将直接影响塔釜难挥发组分的蒸发量,使当时塔内热量存在不平衡,导致气-液不平衡,为此如何将塔釜热量根据蒸汽进料量自动调节达到相对稳定,从而保证塔内热量平衡是问题的关键。在生产过程中,各精馏塔设备已确定,塔釜蒸发量与气体流速成正比关系,而流速与塔压差也成正比关系,所以控制好塔顶、塔釜压力就能保证一定的蒸发量,而在操作中,塔顶压力可通过塔顶压力调节系统进行稳定调节或大部分为常压塔,为此,稳定塔釜压力就特别重要。于是在蒸汽进料量不变情况下,我们对蒸汽压力变化情况与塔釜压力的变化进行对比,发现两者成正比关系,而且滞后时间极小。于是将蒸汽进料量与塔釜压力进行串级操作,将塔釜压力信号传递给蒸汽流量调节阀,蒸汽流量调节阀根据塔釜压力进行自动调节,通过蒸汽进料量自动增大或减少,确保塔釜压力稳定,从而保证了精馏操作不受外界蒸汽波动的影响。 [本帖最后由chjzhou 于2007-7-26 17:05 编辑] ?zzna (2007-7-26 09:16:01) 精馏段温度控制和温差控制结合!

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

精馏塔基础知识

塔基础知识 1:化工生产过程中, 是如何对塔设备进行定义的? 答: 化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到 相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。 2:塔设备是如何分类的? 答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔 (合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。 3:什么是塔板效率?其影响因素有哪些? 答:理论塔板数与实际塔板数之比叫塔板效率,它的数值总是小于 1 。在实际 运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。 4:塔的安装对精馏操作有何影响? 答::(1)塔身垂直.倾斜度不得超过1/1000, 否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm塔板水平度如果达不到要求, 则会造成液层高度不均匀, 使塔内上升的气相易从液层高度小的区域穿过, 使气液两相不能在塔板上达到预期的传热,传质要求. 使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向与该层塔板上液体的流动方向一致。(3)溢 流口与下层塔板的距离应根据生产能力和下层塔板溢流堰的高度而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等部件的安装,检修情况都是要注意的。对于不同的塔板有不同的安装要求,只有按要求安装才能保证塔的生产效率。 5:塔设备中的除沫器有什么作用? 答:除沫器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除沫器。可有效去除 3 —5um的雾滴,塔盘间若设置除沫器,不仅可保证塔盘的传质效率,还可以减小板间距。所以丝网除沫器主要用于气液分离。 6:塔器在进行设备的材料选择时, 应考虑哪些问题? 答:(1)在使用温度下有良好的力学性能,即较高的强度, 良好的塑性和冲击韧性以及较低的缺口敏感性。(2)要求具有良好的抗氢, 氮等气体的腐蚀性能。(3)要求具有较好的制造和加工性能,并具有良好的可焊性。(4)热稳定性好

精馏塔常用的一些控制方案

精馏塔常用的一些控制方案 塔的作用是在同一个设备中进行质量和热量的交换,是石油化工装置非常重要的设备。塔的型式有板式塔(泡罩塔、浮阀塔、栅板塔等)、填料塔(高效填料、常规填料、散装填料、规整填料等)、空塔。塔由筒体和内件组成。 蒸馏塔由精馏段和提馏段组成,进料口以上是精馏段,进料口以下是提馏段。 精馏塔的控制方案主要从塔压、釜温、顶温、塔釜液面四个方面来说明: 1.精馏操作中塔压的控制调节方法 塔的压力是精馏塔主要的控制指标之一。任何一个精馏塔的操作,都应当把塔压控制在规定的指标内,以相应地调节其它参数。塔压波动过大,就会破坏全塔的物料平衡和气液平衡,使产品达不到所要求的质量。所以,许多精馏塔都有其具体的措施,确保塔压稳定在适宜范周内。 对于加压塔的塔压,主要有以下三种调节方法 (1)塔顶冷凝器为分凝器时,塔压一般是靠气相采出量来调节的,如图6-1所示。在其它条件不变的情况下,气相采出量增大,塔压下降,气相采出量减小,塔压上升。

(2)塔顶冷凝器为全凝器时,塔压多是靠冷剂量的大小来调节,即相当于调节回流液温度,如图6-2所示。在其它条件不变的前提下,加大冷剂量,则回流液的温度降低,塔压降低,若减少冷剂量,回流液温度上升,塔压上升。 (3)热旁通(浸没式)法调节塔压。 对于常压塔的压力控制,主要有以下三种方法 (1)对塔顶压力在稳定性要求不高的情况下,无需安装压力控制系统,应当在精馏设备(冷凝器或回流罐)上设置一个通大气的管道,以保证塔内压力接近于大气压。 (2)对塔顶压力的稳定性要求较高或被分离的物料不能和空气接触时,塔顶压力的控制可采用加压塔塔压的控制方法,如图6-1、图6-2。

实验十 板式精馏塔的操作及全塔效率的测定

实验十 板式精馏塔的操作及全塔效率的测定 一、实验目的: 1.熟悉筛板式精馏塔的结构、精馏流程及原理; 2.熟悉筛板式精馏塔的操作方法; 3.学会精馏塔效率的测定; 4.观察精馏过程中汽液两相在塔板上的接触情况; 5.了解回流的作用; 二、实验内容 1.测定在全回流条件下的全塔效率; 2.在进料条件下:进料浓度约25~28%(体积百分数,以下用v 表示)的乙醇水溶液,达到塔顶馏出液乙醇浓度大于93%(v ),塔釜残液乙醇浓度小于3%(v )。并在规定的时间内完成500mL 的采出量,记录下所有的实验参数; 3.要求控制料液进料量为3 L/h ,调节回流比,尽可能达到最大的塔顶馏出液浓度。 三、操作原理 精馏操作是分离工程中最基本最重要的单元之一。在板式精馏塔中,混合液在塔板上传质、传热,气相逐板上升,液相逐板下降,层层接触,多次部分气化,部分冷凝,在塔顶得到较纯的轻组分,塔釜得到较纯的重组分,从而实现分离,实验物料是乙醇—水系统。 1.维持稳定连续精馏操作过程的条件 (1)根据进料量及其组成、以及分离要求,严格维持塔内的物料平衡 总物料平衡— F=D+W 若F >D+W ,塔釜液面上升,会发生淹塔;相反若F <D+W ,会引起塔釜干料,最终导致破坏精馏塔的正常操作。 各组分的物料平衡— Fx F = Dx D + Wx W 塔顶采出率 W D W F x x x x F D --= 若塔顶采出率过大,即使精馏塔有足够的分离能力,塔顶也不能获得合格产物。 (2)精馏塔的分离能力 在塔板数一定的情况下,正常的精馏操作要有足够的回流比,才能保证一定的分离效果,获得合格的产品,所以要严格控制回流量。 (3)精馏塔操作时,应有正常的汽液负荷量,避免不正常的操作状况 1) 严重的液沫夹带现象 2) 严重的漏液现象 3) 溢流液泛 2.产品不合格原因及调节方法 (1)由于物料不平衡而引起的不正常现象及调节方法

精馏塔

填料塔的操作是从物料平衡、热量平衡、相平衡及填料塔性能等几个方面考虑,通过控制系统建立并调节塔的操作条件,使填料塔满足分离要求。 控制系统可采用手动、一般自动化仪表或智能计算机操作。 (一)、控制参数 图中表示了塔操作控制的典型参数,其中6个流量参数:进料量、塔顶和塔釜产品流量、冷凝量、蒸发量和回流量。 除流量参数外,还有压力、塔釜液位、回流罐液位、塔顶产品组成和塔釜产品组成等参数。 此主题相关图片如下: 精馏塔常用控制参数 压力和液位控制是为了建立塔稳态操作条件,液位恒定阻止了液体累积,压力恒定阻止了气体累积。对于一个连续系统,若不阻止累积就不可能取得稳态操作,也就不可能稳定。压力是精馏操作的主要控制参数,压力除影响气体累积外,还影响冷凝、蒸发、温度、组成、相对挥发度等塔内发生的几乎所有过程。 产品组成控制可以直接使用产品组成测定值, 也可以采用代表产品组成的物性,如密度、蒸气压等。最常用的是采用灵敏点温度。 (二)、填料塔操作瓶颈及解决方法 任何一个设计都不可能把装置中的每个设备及每个设备中的每个部分设计在同一最大负荷百分数下操作,而许多工厂则希望采取各种手段使装置生产能力达到最大,这就使装置中的至少一个部分成为操作瓶颈,填料塔操作中,填料塔的任一部分、塔顶冷凝器、塔釜再沸器等都可能成为操作瓶颈,这里所指的瓶颈是指装置已达到设计负荷需进一步提高分离效率和生产能力,而装置中的某一设备或某一设备的某一部分限制了生产能力和分离效率的提高。 1、填料塔为操作瓶颈 填料塔在设计气液负荷范围内操作可取得所需的分离效率,超过此负荷范围,会导致分离效率下降、压降升高泛塔等现象,多数情况下填料塔操作提高处理能力和分离效率的瓶颈是填料塔本身。 (1)填料塔处理能力的提高

乙醇-水精馏塔实验

乙醇-水精馏塔实验 一、实验目的: 1.了解板式精馏塔的结构和操作。 2.学习精馏塔性能参数的测量方法,并掌握其影响因素。 二、实验内容: 1.测定精馏塔在全回流条件下,稳定操作后的全塔理论塔板数和总板效率。 2.测定精馏塔在部分回流条件下,稳定操作后的全塔理论塔板数和总板效率。 三、实验原理: 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数N T .按照式1可以得到总板效率E T ,其中N P 为实际塔板数。 E T %100?= P T N N (1) 部分回流时,进料热状况参数的计算式为 m m F BP Pm r r t t C q +-= )( (2) 式中: t F — 进料温度,℃ 。 t BP — 进料的泡点温度,℃ 。 Cpm — 进料液体在平均温度(t F + t P )/2下的比热,kJ/(kmol ? ℃) r m — 进料液体在其组成和泡点温度下的汽化潜热,kJ/kmol 222111x M C x M C Cpm P P += kJ/(kmol ? ℃) (3) 222111x M r x M r r m += kJ/kmol (4) 式中: C P1, C P2 —分别为纯组份1和组份2在平均温度下的比热,kJ/(kg ? ℃)。 r 1,r 2 —分别为纯组份1和组份2在泡点温度下的汽化潜热,kJ/kg 。 M 1,M 2—分别为纯组份1和组份2的摩尔质量,kJ/kmol 。

x1,x2—分别为纯组份1和组份2在进料中的摩尔分率。 四、实验装置基本情况: 1.实验设备流程图(如图1所示): 图1 精馏实验装置流程图 1-储料罐;2-进料泵;3-放料阀;4-加热器;5-直接进料阀;6-间接进料阀;7-进料流量计;8-高位槽;9-玻璃观察段;10-精馏塔;11-塔釜取样阀;12-釜液放空阀;13-塔顶冷凝器;14-回流比流量计;15-塔顶取样阀;16-塔顶液回收罐;17-放空阀;18-冷却水流量计;19-塔釜储料罐;20-塔釜冷凝器;21-第8块板进料阀;22-第9块板进料阀;23-第10块板进料阀;24-液位计;25-料液循环阀;26-釜残液出料阀;27-进料入口阀;28-指针压力表

精馏塔常识

1,液泛? 在精馏操作中,下层塔板上的液体涌至上层塔板,破坏了塔的正常操作,这种现象叫做液泛。 液泛形成的原因,主要是由于塔内上升蒸汽的速度过大,超过了最大允许速度所造成的。另外在精馏操作中,也常常遇到液体负荷太大,使溢流管内液面上升,以至上下塔板的液体连在一起,破坏了塔的正常操作的现象,这也是液泛的一种形式。以上两种现象都属于液泛,但引起的原因是不一样的。 2,雾沫夹带? 雾沫夹带是指气体自下层塔板带至上层塔板的液体雾滴。在传质过程中,大量雾沫夹带会使不应该上到塔顶的重组分带到产品中,从而降低产品的质量,同时会降低传质过程中的浓度差,只是塔板效率下降。对于给定的塔来说,最大允许的雾沫夹带量就限定了气体的上升速度。 影响雾沫夹带量的因素很多,诸如塔板间距、空塔速度、堰高、液流速度及物料的物理化学性质等。同时还必须指出:雾沫夹带量与捕集装置的结构也有很大的关系。虽然影响雾沫夹带量的因素很多,但最主要的影响因素是空塔速度和两块塔板之间的气液分离空间。对于固定的塔来说,雾沫夹带量主要随空塔速度的增大而增大。但是,如果增大塔板间的距离,扩大分离空间,则相应提高空塔速度。 3,液体泄漏? 俗称漏液,塔板上的液体从上升气体通道倒流入下层塔板的现象叫泄漏。在精馏操作中,如上升气体所具有的能量不足以穿过塔板上的液层,甚至低于液层所具有的位能,这时就会托不住液体而产生泄漏。 空塔速度越低,泄漏越严重。其结果是使一部分液体在塔板上没有和上升气体接触就流到下层塔板,不应留在液体中的低沸点组分没有蒸出去,致使塔板效率下降。因此,塔板的适宜操作的最低空塔速度是由液体泄漏量所限制的,正常操作中要求塔板的泄漏量不得大于塔板上液体量的10%。泄漏量的大小,亦是评价塔板性能的特性之一。筛板、浮阀塔板和舌形塔板在塔内上升气速度小的情况下比较容易产生泄漏。4,返混现象? 在有降液管的塔板上,液体横过塔板与气体呈错流状态,液体中易挥发组分的浓度降沿着流动的方向逐渐下降。但是当上升气体在塔板上是液体形成涡流时,浓度高的液体和浓度低的液体就混在一起,破坏了液体沿流动方向的浓度变化,这种现象较做返混现象。返混现象能导致分离效果的下降。 返混现象的发生,受到很多因素的影响,如停留时间、液体流动情况、流道的长度、塔板的水平度、水力梯度等。 5,最适宜的进料板位置确定 最适宜的进料板位置就是指在相同的理论板数和同样的操作条件下,具有最大分离能力的进料板位置或在同一操作条件下所需理论板数最少的进料板位置。 在化学工业中,多数精馏塔都设有两个以上的进料板,调节进料板的位置是以进料组分发生变化为依据的。当进料组分中的轻关键组分比正常操作较低时,应将进料板的位置向下移,以增加精馏段的板数,从而提高精馏段的分离能力。反之,进料板的位置向上移,则是为增加提馏段的板数,以提高提馏段的分离能力。总之,在进料板上进料组分中轻关键组分的含量应该小于精馏段最下一块塔板上的轻关键组分的含量,而大于提馏段最上一块塔板上的轻组分的含量。这样就使进料后不至于破坏塔内各层塔板上的物料组成,从而保持平稳操作。 6,精馏操作的影响因素 除了设备问题以外,精馏操作过程的影响因素主要有以下几个方面:塔的温度和压力(包括塔顶、塔釜和某些有特殊意义的塔板);进料状态;进料量;进料组成;进料温度;塔内上升蒸汽速度和蒸发釜的加热量;回流量;塔顶冷剂量;塔顶采出量和塔底采出量。塔的操作就是按照塔顶和塔底产品的组成要求来对这几个影响因素进行调节。 7,进料组成的变化对精馏操作的影响 进料组成的变化,直接影响精馏操作,当进料中重组分的浓度增加时,精馏段的负荷增加。对于固定了精馏段板数的塔来说,将造成重组份带到塔顶,使塔顶产品质量不合格。

精馏塔的计算

4.3 塔设备设计 4.3.1 概述 在化工、石油化工及炼油中,由于炼油工艺和化工生产工艺过程的不同,以及操作条件的不同,塔设备内部结构形式和材料也不同。塔设备的工艺性能,对整个装置的产品产量、质量、生产能力和消耗定额,以及“三废”处理和环境保护等各个方面,都用重大的影响。 在石油炼厂和化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.93%。塔设备所耗用的钢材料重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压减压炼油装置中耗用的钢材重量占62.4%,在年产60-120万吨催化裂化装置中占48.9%。因此,塔设备的设计和研究,对石油、化工等工业的发展起着重要的作用。本项目以正丁醇精馏塔的为例进行设计。 4.3.2 塔型的选择 塔主要有板式塔和填料塔两种,它们都可以用作蒸馏和吸收等气液传质过程,但两者各有优缺点,要根据具体情况选择。 a.板式塔。塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。 b.填料塔。塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。 4.3.2.1 填料塔与板式塔的比较: 表4-2 填料塔与板式塔的比较

4.3.2.2 塔型选择一般原则: 选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。 (1)下列情况优先选用填料塔: a.在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度; b.对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔; c.具有腐蚀性的物料,可选用填料塔。因为填料塔可采用非金属材料,如陶瓷、塑料等; d.容易发泡的物料,宜选用填料塔。 (2)下列情况优先选用板式塔:

筛板精馏塔化工实验报告

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN 图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3 全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;(2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b; (3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线; (6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D=68mm,厚度洌?4mm,塔板数N=10块,板间距HT =100mm。加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰长56mm,堰高7.3mm,齿深4.6mm,齿数9个。降液管底隙4.5mm。筛孔直径d0=1.5mm,正三角形排列,孔间距t=5mm,开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

相关主题
文本预览
相关文档 最新文档