当前位置:文档之家› 水位检测仪系统)

水位检测仪系统)

水位检测仪系统)
水位检测仪系统)

数理与信息工程学院课程设计

题目:水位检测仪系统

专业:

班级:

姓名:学号:

实验地点:

指导老师:

成绩:

( 2006.6 )

目录

第1节引言 (1)

1.1 设计背景 (1)

1.2 系统功能说明 (1)

第2节硬件设计基本原理与实现方法 (2)

2.1 水位检测与数据采集 (2)

2.2 数码管LED显示 (4)

2.2.1 相关芯片简介 (4)

2.2.2 显示部分工作原理 (5)

第3节系统软件设计 (8)

3.1 初始化程序 (8)

3.2 TMR1中断服务程序 (9)

3.3 数据转换子程序 (10)

3.4 TMR0中断服务程序 (11)

3.5 程序清单 (13)

第4节结束语 (22)

参考文献 (22)

水位检测仪系统

第1节引言

水位检测和显示仪表装置在工业上有着广泛的应用。本设计采用的是一种低成本的数码管显示驱动方案。在对成本较敏感的小型系统中,该方案有着一定的参考价值。

1.1 设计背景

键盘和显示器是单片机系统中人机对话不可缺少的一部分。在许多智能仪表的设计中,多用LED数码管来显示。这是因为LED数码管驱动简单,成本较低并且能适应恶劣的环境。用于数码管显示驱动的芯片有很多种,常见的有MAX7219、MAX7221、ZLG7290、IMC7218B以及8279等。这些专用芯片使用方便、功能教强,但价格偏高。本设计中采用的循环扫描的方式,充分利用单片机快速的处理能力对各显示单元分时选通,只需普通的串行移位芯片,就可以达到显示驱动的目的。这种方法对单片机的CPU占用率相对较高,不适宜于CPU任务繁忙的场合,但是对那些功能相对简单,CPU相对空闲的中小型系统非常实用,能够大大降低系统成本。

1.2系统主要功能

该装置对偏离零点的水位进行检测,然后将带符号的水位值(低于或高于零点)用数码管显示出来,并通过双色发光二极管LED阵列对水位高度进行模拟显示。整个装置主要包含水位检测和显示两个部分,现将每部分功能说明如下:(1)水位检测:在0mm、±10mm、±25mm、±50mm、±80mm、±120mm、±160mm、±240mm共15点基础上,检测水位偏离零点的大小。

(2)水位显示:将上一步检测结果用数码显示出来,显示值以比实际水位小的最近点为准,例如:水位实际高度为35mm,则数码管显示25mm。同时,用15个竖直排列的双色LED阵列直观的模拟当前水位高度,当水位没有达到某点相应的LED显示红色,达到或超过则显示绿色。当水位低于-240mm时报警灯显示绿色,高于+240mm时报警灯显示红色,当水位恢复正常值时报警灯熄灭。

第2节硬件设计基本原理与实现方法

2.1 水位检测与数据采集

本设计采用电接点水位检测方法,在每一个预定水位检测点处,将两个电极安装在容器壁,使其一端能够与没过该点的水充分接触,另一端引出到容器外面同检测电路相连,两个电极等高度并间隔一定距离。当水位没有达到该检定点时,两个电极间电阻为无穷大;而一旦水位上升到该点高度,则两个电极同时没于水中,由于水的导电性,两个电极导通。通过检测两个电极是否导通就可以检测水位的高度了。对15个检测点相应有15个检测通道,本设计运用了两片8通道的多路开关CD4051,对各通道循环检测来实现数据采集。

CD4051是一种双向8通道的多路开关,可以8路选通输入,1路输出;也可1路输入,8路选通输出。通过3为数据位A、B、C进行通道选择。禁止输入输出端INH 可以禁止和允许工作。CD4051具有低接通电阻和低关断电流的特点,其引脚定义如图2.1所示,真值表如表2.1所示。

IN/OUT

V DD 1 0 3 A B C

4 6 OUT/IN 7

5 INH V EE V SS

IN/OUT IN/OUT

图2.1 CD4051引脚图

尽管水位检测原理简单,但应用时却不能仅仅用每路的通断来判断水位是否没过该路的电极。实际上,水的电阻因水中所含成分不同有很大的差异,例如蒸馏水就不导电,就不能用这种方法来检测,而本设计所应用的场合经试验测得水阻在几KΩ到几十KΩ不等;另一方面,空气电阻也不是无穷大,也跟其成分有关,例如饱和蒸汽的阻值就大概在1MΩ欧左右。所以,不能通过判断单片机的数据采集引脚输入电平高低来判断水位是否到达某点,否则,对介于高、低电平之间的电平状态就无法做出判断,而这种情况是可能存在的。一个可靠的方法是对输入引脚的数据进行采样,然后将采样结果与一个阈值进行比较,从而得出正确的结论。根据这个原理设计的水位检测电路如图2.2所示。从图中可以看出,通过RD0~RD3口进行采样通道地址译码,在不同时刻选通16个通道中的1个。当水位上升到某一对电极高度时,相应通道的采样电压将会较低;若水位没有上升到电极高度,那么上拉电阻将会把采样值钳位到+5V。RA0口作为A/D采样通道输入口。

图2.2 水位检测电路原理图

2.2 数码管与LED显示

模拟水位高度由15个双色发光二极管(LED)来完成,共分为4组。在某一特定时刻,每组LED与一个数码管一起被选通(4组LED对应4个数码管),两个8位的移位寄存器741S164级联,将单片机送出的2个字节串行数据转化为16位并行数据,分别送选通的LED和数码管。在不同时刻,系统对4组LED和数码管快速地循环扫描,就完成了面板显示的功能。

2.2.1 相关芯片简介

显示部分用到的芯片包括移位寄存器74LS164、数据缓冲器74LS244以及多路开关CD4051。下面就74LS164和74LS244作简单介绍。

(1)移位寄存器74LS164。74LS164引脚定义如图2.3所示,起真值表如表2.2所示,其功能是将外部输入的串行数据转化为8位的并行数据输出具有锁寸功能。A、B端为串行数据输入端,QA ~ QH,CLK为外部时钟输入端,CLR为清零端。74LS164在高电平输出时,为并行数据输出端其输出最大电流为0.4mA;低电平输出时,其输出最大电流为8mA,不足以驱动数码管或发光二极管正常工作,所以在本设计中外加数据缓冲器以增大驱动能力。

图2.3 74LS164引脚图

表2.2 74LS164真值表

注Q A0、Q B0、Q H0为在稳态输入条件建立之前Q A、Q B和Q H相应的电平;Q An、Q Gn为在最近的时钟↑转换前Q A或Q G的电平,表示移1位。

(2)数据缓冲器74LS244。74LS244 缓冲器常用作三态缓冲或总线驱动,+5V供点,其高电平时输出最大电流可达15mA,低电平输出时最大电流可达24mA,足以驱动数码管和LED工作。74LS244共8个输入输出通道,通过门控端G1和G2来选择其通断,其功能原理及引脚如图2.4所示。

图2.4 74LS244内部结构及引脚图

从图中可以看出,当引脚1G为低电平时,输入通道1A~1A4与输出通道1Y1~1Y4连通;当引脚1G为高电平时则截止。同理引脚2G控制着输入通道2A1~2A4与输出通道2Y1~2Y4的通断。

2.2.2显示部分工作原理

首先介绍一下双色二极管的功能和用法。如图1.5所示,1个双色二极管有3个引脚,引脚1、2均为信号“+”端,引脚3为GND端(信号“—”端)。引脚电平(TTL电平)与LED显示颜色如表1.6所示。

图1.5 双色二极管外观图

数码管及LED显示电路如图1.6所示,RC5口作为串行数据的同步时钟端,与74LS164的数据输入端相连;RC3口作为串行数据的同步时钟端,与74LS164的同步时钟输出端均与SPI方式时端口一样;实际应用中,若不用SPI方式,而用第5章中提到的模拟数据串行口时,可以用任何普通I/O端口代替)。两片移位寄存器74LS164的并行数据输出端则分别与两片数据缓冲器74LS244的输入端相连,RD7口作为数据缓冲器74LS244的门控信号输出端,控制74LS244的通断。

图1.6 数码管和LED显示电路

每4个双色二极管和1个数码管一组,二极管的8个信号“+”端分别与第一片74LS244的8位数据输出端相连,数码管的8位数据输入端分别与第二片74LS244的8位数据输入端相连,每组二极管和数码管的GND端都与CD4051的1个输入通道相连,CD4051的输出端与系统的“地”相连。RE0~RE1口作为地址译码输出端口,用于多路开关CD4051的4路通道选择,每一时刻只有一组共4个二极管和1个数码管被选通,其GND端同系统的“地”构成通路,其他的二极管与数码管则不能构成通路。

每向74LS164传送完两个字节共16位数据,通过RD7口使能74LS244,将数据送到二极管和数码管的输入口,然后通过RE0~RE1口打开一条通道,则被选通的数码管和二极管就会按照接收的数据进行相应的显示。不断地发送新数据并利用CD4051循环的扫描4个通道,则所有的二极管和数码管就会持续的发光显示。

另外由一个双色二极管作为报警灯,RD5口与二极管的引脚1相连,RD4口与二极管的引脚2相连。

第3节系统的软件设计

本系统的软件的核心是两个不断循环执行的中断程序:TMR0中断用于驱动数码管和LED显示:TMR1中断用于采集水位值并且将采集结果送缓冲寄存器供显示部分读取,同时对采集结果进行简单的分析,判断其是否超过水位上限或下限,若超过则点亮相应的报警灯。

整个软件部分大体可分为初始化程序、TMR1中断服务程序、数据转化子程序、TIMR0中断服务程序4个部分,以下分别加以描述。

3.1初始化程序

初始化程序位于主程序开始部分,主要对3个部分进行初始化:I/0端口、TMR1和TMR0各部分初始化步骤如下描述,不再给出流程图。

1.I/O端口方向控制寄存器

A/D输入端口RA0设置为输入方式,串行时钟及串行数据输出端口RC,采样通道地址译码端口RD、显示部分地址译码及报警输出端口RE均设置为输出方式。

2. TIMR1初始化

TIMR1初始化步骤如下:

●将第一位外设中断标志寄存器PIR1中的中断标志位TMR1IF清零。

●将第一位外设中断屏蔽寄存器PIE1中的中断允许位TMR1IE置位。

●通过TMR1中断控制器I1CON设置时钟及分频比等

●给TMR1计数器TMR1H、TMR1L赋初值。

●将中断控制寄存器INTCON中的全局中断屏蔽位GIE置位。

●将外设中断屏蔽位PEIE置位。

3. TIMR0初始化

TIMR0初始化步骤如下:

●通过选项寄存器OPTION_REG设置TMR0的分频比及时钟。

●将INTCON寄存器中的TMR0中断标志位清零并将中断屏蔽位置位。

●给TMR0计数器赋初值。

3.2TMR1中断服务程序

设计系统的水位值刷新时间为1s,即单片机每秒钟对采样通道一遍A/D转换。软件上则设定TMR1定时器每秒产生一次中断,执行数据采样程序,从最高水位采样通道向下执行,并不断将每次采样结果与系统设定的门限值比较,当检测到水位超过某一对电极时,则退出采样程序。接下来判断水位是否越限,若是则点亮相应的报警灯,否则使报警灯灭。然后调用数据转换子程序,将水位采样结果转化为相应数码管和LED显示段码值,存入显示数据缓冲寄存器。由于PIC单片机的中断矢量只有一个,而本设计用到两个中断,故而在中断服务程序入口处,需要对中断源进行判断,这是通过判断相应的中断标志寄存器俩实现的。

设置TMR1定时器分频比为1:8,采用内部时钟源,系统采用2M晶振。那么TMR1的时钟脉冲周期为2μs,由于分频比为1:8,则每16μs计数一次,1s需要计数62500次,即从计时开始到62500个计数周期后,TMR1寄存器达到上限65536并产生溢出,所以TMR1寄存器初始值为65536-62500=3036,即0BDCH。TMR1中断服务程序流程图如图3.7所示。

图3.7 TMR1中断服务程序流程图

3.3数据转换子程序

在进行水位检测后,会产生一个水位的高度值(设为HEIGHT),但它并不是一个真实的水位值,只是一个标志水位高度的通道号,其值为0~15中的某个数,分别表示没有水以及15种水位高度共16种情况。故而需要将其转化为LED和数码管的实际显示段码值。表3.6列出了高度值HEIGHT、LED段码值LED1~LED4和数码管显示数据SEG1~SEG4d的对应关系,表3.7则为数码管的七段码值与显示符号对应关系。

表3.6 高度值与显示段码对照表

注空白处表示不显示任何数据。

表3.7 数码管七段码

有3种方法对LED和数码管显示缓冲寄存器写入数据:第一钟是采用查表方法,将各个高度值对应的数据预先存入一块缓冲区内,通过对指令指针赋值来访问特定数据单元,返回转换后的数值;第二种是采用逐个比较的方法,将采样结果与0~15的数逐个比较,若相等则向缓冲区赋相应的值;第三种方法是根据表的特征来赋值,例如当HEIGHT≥8时,LED1的值为0FFH,SEG2没有显示。

很显然,第二种、三种方法比较费时间,第一种方法虽然程序代码量较大,但执行起来速度快,本设计采用第一种方法,具体可参见查表子程序的程序代码。

3.4TMR0中断服务程序

TMR0中断用于数码管及LED显示,每次中断将两个字节的数据串行发送至移位寄存器,后经74LS244驱动1组LED和1个数码管发光。由于每个LED或数码管两次被选通的时间最大不能超过100ms(利用人的视觉暂留现象,否则就会出现闪烁),加之TMR1中断可能占用的时间,所以每次TMR0中断溢出时间不能太长;另一方面,TMR0中断溢出时间又不能太短,必须保证串行发送完毕。综合这两个方面因素,将TMR0溢出时间设为10ms。

TMR1寄存器初始值计算方法与TMR1初始值计算方法类似,只是分频比设为1:128,计算结果为0D9H。

图3.8所示为TMR0中断服务程序流程图。

图3.8 TMR0中断服务程序流程图

3.5程序清单及注释

;********************************************************************************** ;《水位检测仪》程序清单

;程序文件名为: Leval_TEST.ASM

;**********************************************************************************

LIST P=16F877

INCLUDE P16F877.INC

STATUS EQU 03H ;定义状态寄存器地址

PCL EQU 02H ;定义程序计数器低8位指针地址

PORTA EQU 05H ;定义端口RA的数据寄存器地址

PORTC EQU 07H ;定义端口RC的数据寄存器地址

PORTD EQU 08H ;定义端口RC的数据寄存器地址

PORTE EQU 09H ;定义端口RC的数据寄存器地址

TRISA EQU 85H ;定义端口RA的方向控制寄存器地址

TRISD EQU 87H ;定义端口RC的方向控制寄存器地址

TRISE EQU 88H ;定义端口RC的方向控制寄存器地址

INTCON EQU 89H ;定义中断控制寄存器地址

T1CON EQU 10H ;定义TMR1中断控制寄存器

TMR0 EQU 01H ;定义TMR0寄存器地址

PIR1 EQU 0CH ;定义第一外设中断标志寄存器地址

PIE1 EQU 8CH ;定义第一外设中断屏蔽寄存器地址

ADRESH EQU 1EH ;定义ADC结果寄存器高子节地址

ADCON0 EQU 1FH ;定义ADC控制寄存器0地址

ADCON1 EQU 9FH ;定义ADC控制寄存器1地址

T1CON EQU 10H ;定义TMR1控制寄存器地址

TMR1L EQU 0EH ;定义TMR1低字节地址

TMR1H EQU 0FH ;定义TMR1高字节地址

SSPBUF EQU 13H ;定义SPI收发缓冲寄存器地址

SSPCON EQU 14H ;定义同步控制串口寄存器地址

SSPSR EQU 94H ;定义同步串口状态寄存器地址

;======================================变量======================================== TEMP EQU 20H ;定义暂存寄存器

HEIGHT EQU 22H ;定义采样结果寄存器,用以标志水位高度SELECT_COUNT EQU 23H ;定义翻转计数器,用以标志选通的显示通道

AD_COUNT EQU 24H ;定义翻转计数器,用以标志选通的采样通道

TX_LED EQU 25H ;LED数据串行发送暂存寄存器

TX_DATA EQU 6H ;数码管数据串行发送暂寄存器

LED1 EQU 29H ;发光二极管显示数据寄存器1

LED2 EQU 30H ;发光二极管显示数据寄存器2

LED3 EQU 31H ;发光二极管显示数据寄存器3

LED4 EQU 32H ;发光二极管显示数据寄存器4

SEG1 EQU 33H ;数码管显示数据寄存器1

SEG2 EQU 34H ;数码管显示数据寄存器2

SEG3 EQU 35H ;数码管显示数据寄存器3

SEG4 EQU 36H ;数码管显示数据寄存器4

;======================================常量======================================== TMR1LB EQU 0DCH ;定义TMR1低字节寄存器初始值(定时1s)TMR1HB EQU 0BH ;定义TMR1高字节寄存器初始值

TMR0B EQU 0D9H ;定义TMR0寄存器初始值(定时10ms)

GATE_VALUE EQU 07FH ;定义采样结果门槛值,用以区分水和空气阻值

;********************************复位矢量和中断矢量******************************** ORG 000H

NOP

GOTO MAIN

ORG 004H

;*********************************中断服务程序************************************* BTFSC PIR1,0 ;检测是否是TMR1中断

GOTO TMR1_INT ;是,则转TMR1中断

BTFSC INTCON,2 ;否,检测是否是TMR0中断

GOTO TMR0_INT ;是,则转TMR0中断

REFIE ;否,中断返回

;===============================TMR1中断服务程序================================== TMR1_INT BCF PIR1,0 ;清TMR1中断标志位

BCF STATUS,5

MOVLW 0FH

MOVWF AD_COUNT ;通道数送翻转计数器

TEST_LOOP DECF AD_COUNT,0

IORLW OFOH ;屏蔽高4位

ANDWF PORTD,1 ;输出到CD4051通道译码端,以选通某一采样通道

BSF STATUS,5

MOVLW 41H

MOVWF ADCON0 ;选择系统时钟8分频,通道0,关闭AD启位 NOP ;等待采样值稳定

NOP ;等待采样值稳定

NOP ;等待采样值稳定

BSF ADCON0,2 ;启动AD采样

AD_LOOP NOP

BTFSC ADCON0,2 ;检测采样是否结束

GOTO AD_LOOP ;否,继续检测

MOVF ADRESH,0 ;是,读取采样结果高8位

MOVWF HEIGHT ;将当前通道数送HEIGHT

DECFSZ AD_COUNT,1 ;当前通道数减1后是否为0

GOTO TMR1_NEXT2 ;退出采样循环

TMR1_NEXT1 MOVF TEMP

SUBWF GATE_VALUE,0 ;门限值减去采样结果

BTFSC STATUS,0 ;检测是否产生借位

GOTO TEST_LOOP ;否,继续进行下一个通道采样

TMR1_NEXT2 BCF PORTD,4 ;是,熄灯下限报警灯

BCF PORTD,5 ;熄灯下限报警灯

BCF STATUS,0 ;清借位标志位

MOVLW 15H

SUBWF HEIGHT ;采样结果与上限值比较

BTFSS STATUS,0 ;检测借位标志位是否为1

GOTO TMR1_NEXT3 ;否,转下限检测

BSF PORTD,5 ;是,点亮下限报警灯

TMR1_NEXT3 BCF STATUS,2 ;清零标志位是否为1

MOVLW 00H

SUBWF HEIGHT ;采样结果与下限比较

BTFSS STATUS,2 ;检测零标志位是否为1

GOTO TMR1_NEXT4 ;否,转采样结果转换

BFS PORTD,4 ;是,点亮下限报警灯

TMR1_NEXT4 CALL ADRES_CON ;调转采样结果转换子程序

MOVLW 04H

MOVWF SELECT_COUNT ;将显示通道选择翻转计数器赋初值

MOVLW TMR1LB

MOVWF TMR1L ;写入TMR1寄存器低字节数

MOVLF TMR1HB

MOVWF TMR1H ;写入TMR1寄存器高字节数

RETFIE ;中断返回

;==============================TMR0中断服务程序=================================== TMRO_INT BCF INTCON,2 ;清TMR0中断标志位

BCF STATUS,0

DECF SELECT_COUNT,0

MOVWF TEMP ;将翻转计数器内容减1送TEMP寄存器

RLF TEMP,0 ;TEMP寄存器内容乘以2,作为查询显示数据

;的偏移地址量

ADDWF PCL,1 ;将地址偏移量与程序计数器值叠加

MOVF LED1

GOTO TMR0_NEXT1

MOVF LED2

GOTO TMR0_NEXT1

MOVF LED3

GOTO TMR0_NEXT1

MOVF LED4

TMR0_NEXT1 MOVWF TX_LED ;将本次显示的LED数据送LED发送寄存器

RLF TEMP ;TEMP寄存器内容乘以2,作为查询显示数据

;的地址偏移量

ADDWF PCL,1 ;将地址偏移量与程序计数器值叠加

MOVF SEG1

GOTO TMR0_NEXT2

MOVF SEG2

GOTO TMR0_NEXT2

MOVF SEG3

GOTO TMR0_NEXT2

MOVF SEG4

TMR0_NEXT2 MOVWF TX_DATA ;将本次显示的数码管数据送数码管发送

;寄存器

BCF PORTD,7 ;清74LS244使能位,暂时禁止数据输出

;显示

BSF STATUS,5

CLRF SSPSTAT ;SPI方式清SMP位,CKE位和BF位,在

;脉冲上沿移位输出数据跳

MOVLW 30H

MOVWF SSPCON ;允许串口工作,时钟频率为系统时钟1/4 MOVF TX_LED,0 ;将第一个待发送的字节送缓冲寄存器

CALL SPI_TX ;调发送完成查询子程序

DECF SELECT_COUNT,0 ;通道寄存器减1

MOVWF PORTE ;选通待显示的通道

BSF PORTD,7 ;置74LS244使能位,允许数据输出显示 DECFSZ SELECT_COUNT,1 ;通道寄存器减1,并检测是否为0

GOTO TMR0_NEXT3 ;否,转TMR0_NEXT3

MOVLW 04H ;是,重新对通道寄存器赋初值

MOVWF SELECT_COUNT

TMR0_NEXT3 MOVLW TMR0B

MOVWF TMR0 ;TMR1寄存器赋初值

RETFIE ;中断返回

;**************************************主程序************************************** MAIN BSF STATUS,5

MOVLW 01H

MOVWF TRISA ;置RA0口为输入方式

MOVLW 00H

MOVWF TRISC ;置RC口为输出方式

MOVWF TRISC ;置RD口为输出方式

MOVWF TRISC ;置RE口为输出方式

;====================================TMR0初始化=================================== MOVLW 07H

MOVWF OPTION_REG ;分频器给TMR0,分频比1:128,选用

;系统时钟

BCF STATUS,5

MOVLW 0E0H

MOVWF INTCON ;开全局中断,允许响应TMR0及第二梯

;队中断

;请求(TMR1中断),TM0中断标志清零 MOVLW TMR0B

MOVWF TMR0 ;TMR0寄存器赋初值

;====================================TMR1初始化================================== BSF STATUS,5

MOVLW 01H

MOVWF PIE1 ;允许TMR1中断

BCF STATUS,5

MOVLW 00H

MOVWF PIR1 ;TMR1中断标志位清零

MOVLW 30H

MOVWF T1CON ;分频比为1:8,选用内部时钟源

MOVLW TMR1LB

MOVWF TMR1L ;TMR1寄存器低字节赋初值

BSF T1CON,0 ;启动TMR1定时

MOVLW 04H

MOVWF SELECT_COUNT ;显示通道寄存器赋初值

MOVWF MAIN_LOOP

;******************************SPI发送完成查询子程******************************** SPI_TX MOVWF SSPBUF

BCF STATUS,6

SPI_LOOP BSF STATUS,5

BTFSS SSPSTAT,BF ;查询发送是否完成

GOTO SPI_LOOP ;否,继续查询

BCF STATUS,5 ;是,选择BANK0

MOVF SSPBUF ;将缓冲器的数据读出,不管数据是否

;有用

RETURN ;子程序返回

;********************************数据转换子程序************************************ ADRES_CON

;==================================LED1赋初值===================================== MOVF HEIGHT,0

CALL LED1_CON

MOVWF LED1

;==================================LED2赋初值===================================== MOVF HEIGHT,0

CALL LED2_CON

MOVWF LED2

;==================================LED3赋初值===================================== MOVF HEIGHT,0

CALL LED4_CON

MOVWF LED4

; ==================================LED4赋初值===================================== MOVF HEIGHT,0

CALL LED4_CON

MOVWF LED4

;==================================SEG1赋初值====================================== MOVF HEIGHT,0

CALL SEG1_CON

MOVWF SEG1

;=================================SEG2赋初值====================================== MOVF HEIGHT,0

CALL SEG2_CON

MOVWF SEG2

; =================================SEG3赋初值======================================

MOVF HEIGHT,0

CALL SEG3_CON

MOVWF SEG3

;==================================SEG4赋初值==================================== MOVF HEIGHT,0

CALL SEG4_CON

MOVWF SEG4

RETURN

; ==================================LED1表子程序=================================== LED1_CON ADDWF PCL,1

RETLW 0F0H

RETLW 0E1H

RETLW 0C3H

RETLW 87H

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

;=================================LED2查表子程序================================== LED2_CON ADDWF PCL,1

RETLW OF0H

RETLW 0F0H

RETLW OF0H

RETLW OF0H

RETLW OF0H

RETLW 0E1H

RETLW 0C3H

RETLW 87H

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

RETLW 0FH

;===================================LED3查表子程序=================================

水位检测仪系统文献综述

高精度水位监测仪的设计 一.高精度水位监测仪意义 中国水之源总量居世界第六位,人均占有水资源量仅为世界人均占有量的四分之一,并且在 地域上分布很不平衡,长江以北的广大地区,特别是北方大、中城市大部分地区处于缺水状态,水资源短缺已成为制约我国经济发展的一个重要因素。合理的利用水资源已成为我国现在面临的一个重要问题。 为了达到水资源的合理利用,除了要在兴修水利工程和提高全民节水意识等方面努力提高。而更重要的是应用新的技术信息,实时准确的了解和掌握各种水情信息,以此根据做出正确的水资源调度和管理,做到防患于未然,尽可能减少水资源的浪费。再加上长久以来水情水位测量一直是水文、水利部门的重要课题。为及时发现事故苗头,防患于未来,经济实用、可靠的水位无线监测系统将会发挥巨大的作用。水位是水库大坝安全、水利排灌调度、蓄水、泄洪的重要参数之一。水位的自动化监测、传输和处理为水库现代化建设提供了良好的基础资料。在工农业生产的许多领域都需要对水位进行监控。在现场可能无法靠近或无需人力来监控时,我们就可以通过远程监控,坐在监控室里对着相关的仪器就能对现场进行监控,既方便又节省人力。 为了保证水利发电站的安全生产,提高发电效率,水电站生产过程需要对水库水位、拦污栅压差和尾水位进行监测。但是,由于不同电站有着不同的实际情况,因此就有着不同的技术要求,而且水位参数的测量方法和测量位置不同,对监测设备的要求亦有所不同。这样往往造成监测系统设备专用化程度高,品种多,互换性差,不利于设备维护,亦增加了设备设计、生产、安装的复杂性。因此,在综合研究水电站水位监测的实际情况以及特点的基础上,利用现代电子技术,特别是单片机技术,设计开发一种通用性好,可靠性高,维护方便,精度高的水位监测系统具有重要的实际意 义{1}。 二.高精度水位监测仪的发展历史 目前我国水文自动测报系统建设的三个阶段:初级阶段、发展阶段以及网络化阶段。上一世纪七十年代中期开始到八十年代中期为初级阶段。八十年代中后期开始的十余年为(小流域)水文自动测试系统建设的发展期。九十年代后期为适应防汛和水利调度现代化、信息化的要求,以及近代通信、嵌入式、计算机和网络技术高速发展的时代特点,水文自动测试系统的建设进入了网络化阶段。 近三十年的发展历史,水位自动测报系统的建设和技术有了巨大的进步。在不同的历史时期,所建系统快速采集的数据,为防汛和水利调度的决策提供了依据和参考,发挥了相当大的社会经济效益。不少系统除常规水雨情信息外,闸门开度、大坝渗压渗流、灌区水位流量、土壤墒情、风向风速、温度湿度、地下水位乃至在线水质监视参数陆续纳入遥测系统,使遥测系统的功能大为扩展,从而可为防汛、水利调度、水环境管理等各应用服务提供了更多的实时数据。 水位自动测报系统运用的先进技术有: ·可靠的传感技术:各种类型的传感技术,声学、光学、力学和化学的传感技术。系统的可自动监测的参数不断丰富。

液位检测实验装置操作说明

KPXJS-LRC系统实训步骤 液位实训装置是自动化及相关专业的教学及实训设备。通过本套实训装置,学生可熟练掌握常用液位仪表及装置的使用、安装、调试校准、维护,熟悉液位仪表控制装置信号回路及信号关系,培养学生液位仪表的专业基础技能,提高学生的实际操作能力,为将来走向工作岗位打下坚实基础。 一、液位检测系统实训装置组成 1-主水箱:试验装置中液体主盛装容器;2-1#水箱:试验装置中液体付盛装容器;3-2#水箱:试验装置中液体付盛装容器;4-3#水箱:试验装置中液体付盛装容器;5-4#水箱:试验装置中液体付盛装容器;6-5#水箱:试验装置中液体付盛装容器;7-电动调节阀:电动执行机构,通过智能数显控制仪来控制它,调节分容器液位的变化;8-玻璃管液位计:可视液位计,直观的显示出各容器的液位; 9-主水泵:实现试验中液体在主与付容器之间的切换,实现试验中液体的流动;10-副水泵:实现试验中液体各付容器之间的切换,实现试验中液体的流动;11-浮筒液位计:1#水箱液位显示;12-静压液位计:2#水箱液位显示;13-雷达液位计:3#水箱液位显示;14-电容液位计:4#水箱液位显示;15-磁翻板液位计:5#水箱液位显示;16-差压变送器:5#水箱液位液位显示,通过球阀Q6、Q7、Q8可以进行差压变送器的零点迁移试验;17-电磁阀:与主副水泵配合,实现液体在各容器间的变化; 18-仪表控制柜:试验所需仪器仪表控制箱;A1-闪光报警器;B1-B5智能数显表:1#-5#水箱液位;C1-智能数显控制仪:

控制调节阀,副操器;C2-智能数显表; C3-智能数显控制仪:控制调节阀,副操器;C4-智能数显表;C5-智能数显表:5#容器液位比较;ST11-15:1#-5#容器上电磁阀控制旋钮;ST16:副水泵液位旋钮;ST21-25:1#-5#容器下电磁阀控制旋钮;T26:主水泵液位旋钮;ST31:A1报警器声音消除按钮;ST32:A1报警器声音试验按钮;ST33:调节阀仪表控制柜与DCS切换旋钮;ST34:备用旋钮; Q1 ——Q9等球阀:通过球阀的开关来实现不同的试验。 二、实训准备步骤 1.仪表柜送电,观察仪表柜电源指示灯,如果不亮,请检查电源 2.将各数显仪表送电,观察数显表和现场仪表,如有异常请检查,排除故障 3.观察主水箱液位,如果主水箱液位低于1/2,请补充液位 4.通过与水箱连通的玻璃管液位计感知容器内的水位与实际数显控制仪显示液位比较,先校验零位和满度使数显控制仪显示零位、满量程 三、液位试验(无调节阀) 1.打开阀门Q1、Q3、Q4、Q5,关闭Q2、Q6 2.操作ST11旋钮,打开1#水箱上电磁阀LV101A,操作ST26旋钮,打开主水泵,开始上水 3.观察主泵出口压力表,观察视窗,观察1#水箱液位 4.通过调节实际水位依次调整满量程的0%、25%、50%、75%、

水位检测器SWJ-029说明书

SWJ型水位检测器 控制装置 说 明 书 西安蓝田恒远水电设备有限公司

一、概述 SWJ系列电极式双式水位显示控制装置主要用于各种汽泡水位的监控及高、低压加热器、除氧器、蒸发器、直流锅炉启动分离器、双水内冷发电机、水箱等的水位测量。本装置由取样筒(一次仪表)和超纯陶瓷电极及显示仪表(二次仪表)组成,本装置采用热工习惯标声的汽红水绿的双色合成光柱直观地显示汽液位,另外还具有闪光报警、声音报警、保护连锁输出等功能。本控制装置中的二次仪表具有功耗低、寿命长、灵敏度高、维护量小,功能齐全及使用范围广等优点。 一、系统工作原理 (一)统工作原理图 (二)系统工作原理说明 本控制装置是利用炉水和蒸汽的导电率的差异,使被测容器的取样筒上的超纯陶瓷电极由于液位的变化,使部分电极侵入炉水中,部分电极置于蒸汽中,由于在炉水中的电极对筒体阻抗小,可将非电量的水位转化为电量,送给二次仪表,从而实现水位的显示、报警、保护连锁等功能。 二、二次仪表的技术参数及说明 1、工作环境条件 环境温度:-10~40℃相对温度:80≤﹪ 2、电源AC220V 50﹪HZ

3、水位显示点数5~19点例: ①:±15 ±20 ±35 ±50 ±80 ±120 ±180 ±250 ±300 19点即原本厂的SWJ-4B型仪表 ②:0 ±15 ±30 ±75 ±100 ±150 13点即原本厂的SWJ-4B型仪表。 4、报警 本仪表设有闪光报警和声音报警。闪光报警高、低位各一组,位置可以任意选择(由用户需要而定,下同),声音的警、低位各二组,即高水位报警,高极限水位报警,低水位报警,低极限水位报警,位置可以任意选择,并且各位置的报警声音各有区别,以便操作人员辨别。 5、保护连锁输出: 本仪表设有保护连锁输出功能,高、低位各二组,即高位保护连锁输出,高极限位保护连锁输出、低位保护连锁输出、低极限位保护连锁输出。位置可以任选,触点容量一般为1A、220V。 6、自检 本仪表设有自检装置,便于操作人员快速判断仪表是否正常工作。当显示面板上有异常现象时,使用自检装置能区别是仪表本身故障还是外部故障,可帮助操作人员尽快地找到故障部位。检测时外部连锁脱开,以免发生事故。 7、被测液位体阻抗条件 0~120 KΩ 8、功耗:≤6V A 9、安装方式:竖式 10、外型尺寸340*160*80 11、表盘开孔尺寸:152+1*75+1 12、重量:约3.5kg 13、工作方式:连续

单片机课程设计--超声波液位检测仪

《单片机原理及应用》 课程设计报告书 课题名称超声波液位检测仪 姓名 学号 专业 指导教师 机电与控制工程学院 年月日 任务书 一、课题名称 超声波液位检测仪的设计与制作 二、设计内容及要求 1、以单片机为核心,设计一个液位检测系统 2、测量数据由液晶显示 3、系统要有一定的可靠性和一定的测量精度 目录 1、绪论 (1) 2、方案论证 (2) 3、方案说明 (4) 4、硬件方案设计 (8) 5、软件方案设计 (12) 6、调试 (22) 7、技术小结 (23) 8、参考文献 (24) 1、绪论 随着各行业的快速发展,液位测量已应用到越来越多的领域,不仅用于各种容器、管道内液体

液位的测量,还用于水渠、水库、江河、湖海水位的测量。这些领域使用传统的液位测量手段已经无法满足对其精确性的要求,所以超声波液位测量这种新的测量方向已经成为一种新的手段被广泛的应用。 在目前市场上,按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。 非接触型液位测量主要有微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 超声波液位测量计就属于非接触型液位测量的一种,所以它也有不受被测介质影响,不影响被测介质,能适应粘度高、腐蚀性强、污染性强、易结晶、高温、高压、低温、低压、有辐射性、毒性、易挥发易爆等特殊介质的测量的特点,能适应的范围比其它的测量手段更广泛。 本次课程设计,将对超声波液位检测系统进行介绍。 2、方案论证 液位计量仪表早期大多采用机械原理,但近年来随着电子技术的应用,逐步向机电一体化发展,并且发展了许多新的测量原理。在传统原理中也渗透了电子技术及微机技术,结构有了很大的改善、功能有了很大的提高。尤其是近二十年来,随着微处理器的引入,测量仪表更是发生了革命性的变化。液位计的量程从几米到几十米,测量精度亦大大提高。根据液位测量所涉及的液体存储容器、被测介质以及工艺过程的不同,液位计类型的选用也不同。在进行液位测量前,必须充分了解液位测量的工艺特点,以此作为液位计设计过程中的参考因素。 因此,可根据系统的工作原理的不同,设计出三种不同的液位检测方法。 方法一: 根据连通器原理,可以直接用与被测容器连通的玻璃管或玻璃板来显示容器中的液位高度,他是最原始但仍应用较多的一种液位测量仪表,另外,利用侵入式刻度钢皮尺直接测量液面高度的人工检尺法也是应用较广泛的液位计量方法,尤其是在大型油罐储油量中,也可把它用作现场检验其他测量仪表的参考手段。其精度一般为2mm的人为误差。

水位检测设计

摘要 对偏离零点的水位进行检测,然后将带符号的水位值(低于或高于零点)用数码管显示出来,并通过双色二极管LED阵列对水位高度进行模拟显示利用水位监测模拟传感器以测得水位的状况,通过单片机和显示系统在水位现场以LED的方式显示出来,并通过与之相连的GSM模块将水位信息以一种无线的方式发送给远程终端,起到检测的作用。在终端通过仿人工智能控制算法在大惯性、纯滞后系统中的应用,可克服传统PID控制的相位滞后、积分饱和,解决控制系统的稳定性及准确性的矛盾。在每一个预定水位检测点处,将两个电极安装在容器壁,使其一端能够与没过该点的水充分接触,另一端引出到容器外面同检测电路相连,两个电极等高度并间隔一定距离。当水位没有达到该检定点时,两个电极间电阻为无穷大;而一旦水位上升到该点高度,则两个电极同时没于水中,由于水的导电性,两个电极导通。通过检测两个电极是否导通就可以检测水位的高度了。对15个检测点相应有15个检测通道,本设计运用了两片8通道的多路开关CD4051,对各通道循环检测来实现数据采集。系统的软件的核心是两个不断循环执行的中断程序:TMR0中断用于驱动数码管和LED显示:TMR1中断用于采集水位值并且将采集结果送缓冲寄存器供显示部分读取,同时对采集结果进行简单的分析,判断其是否超过水位上限或下限,若超过则点亮相应的报警灯。整个软件部分大体可分为初始化程序、TMR1中断服务程序、数据转化子程序、TMR0中断服务程序4个部分。该系统还设计了报警系统,因为水位检测和显示仪表装置在工业上有着广泛的应用而本设计采用的是一种低成本的数码管显示驱动方案。所以在对成本较敏感的小型系统中,该方案有着一定的参考价值。 关键字:单片机水位检测应用 前言 在当今社会,水在人们正常生活和生产中起着非常重要的作用。给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格

加油站液位仪自动计量系统解决方案

加油站液位仪自动计量系统解决方案 开物通油罐液位自动计量检测系统主要由CRT-M5系列磁致伸缩液位计、CRT-MT510液位监控仪、管理服务器和管理软件等组成。该系统通过对油罐液位、平均温度等数据的精确测量,以有效的管理加油站的进销存及交接班等业务。 CRT-M5系列磁致伸缩液位计可以同时检测液面、界面、温度,多功能、寿命长,早已被国内外石化企业作为加油站卧式罐液位自动检测的首选产品。 M5产品具有以下优点: 1、高稳定性、高可靠性、高精度; 2、结构精巧,安装简单、方便、免维护; 3、防电磁干扰,防液体波动干扰; 4、液位、界位和多点平均温度多参数设计; 5、防腐蚀,耐高温设计,寿命长等。

MT510液位监控仪可对1-12个油罐进行监控,具有事故,侧漏报警等功能,实现对油罐的密闭测量,减少对环境的污染,满足GB/20952-2007《加油站大气污染物排 放标准》的要求。CRT-M5系列磁致伸缩液位计防爆标志为ExiaⅡBT4。 结合油罐数量和管理的实际需要,建议客户可分三种情况来选择订货。 一是选择MT510液位监控仪和M5液位计组合监控,本组合适合小型加油站,使 用灵活,性价比报高。 二是选择监控电脑(服务器与管理软件)和M5液位计使用,本组合适合有多项 管理要求的加油站。丰富的程序管理及数据储存功能会给您带来更多的使用体验。 三是选择MT510液位监控仪、管理服务器、M5液位计和大型监控管理软件使用,本组合适用于大型集团、网络型油气销售企业,结合用户订制的管理系统软件,可实现自动生成报表及打印、网络配送、远程精确监控等先进的管理功能。您在选择主要产品后,还需要明确告知开物通电子系统安装时所采用的安装方式,以便我们选择合适 的附件为您现场服务。 CRT-M5系列磁致伸缩液位计工作原理 CRT-M5系列磁致伸缩液位计是利用韦德曼效应原理(磁致伸缩工作原理),通过现代先进的电子技术手段,精密的计测脉冲波间的时间值,达到精确测量液体液位的 目的(如图)。这一方式原理生产的液位计是目前测量液位领域最为精确、简单,性能 稳定、可靠、成熟的产品。尤其是在小量程、常温、常压这类普通环境下更独具优势,是其它测量方法不可比的。 CRT-M5系列型磁致伸缩液位计产品结构 CRT-M5系列型磁致伸缩液位计由电子变送器、介面浮子、探杆、显示仪表共四部分组成。前三部份是必须配套选购的。显示仪表根据使用目的确定,可选购亦可不选

水位仪说明书

WFX-40G型光电编码型水位传感器 1、工作原理 WFX-40G型光电编码型水位传感器与WFX-40V型浮子式水位传感器的不同点在于它采用了GB系列光电开关旋转编码器。其编码器由金属码盘、光电开关、IC芯片、主轴、轴承、精密传动齿轮系、输出线缆、金属壳体等组成。它是通过码盘旋转,由光电开关读取编码数据的绝对值型非接触式编码器,它具有内置(或外接式)RS485数字通信接口或4-20mA电流环输出模块(选装),可直接用于通信组网和自控系统。 2、GB型光电开关编码器结构特点 ?精选进口高质量光电开关制造; ?以金属码盘取代易破碎的玻璃码盘,抗冲击性好; ?零件精密模具成型、产品一致性好; ?金属防腐蚀外壳,防护性好; ?标准化的安装尺寸及多样化的耦合、连接方式给使用带来方便。 3、GB型光电开关编码器性能特点 ?集编码、数据采集、通信传输于一体,编码范围可达(8~16)bit。 ?单转分辨力可达1/512~1/32768;多转分辨力可达(1/32~1/512)×64转。 ?光电非接触型检测编码器的寿命长,可达10万小时。 ?抗强电磁干扰,无零位和温度漂移,可靠性高。 ?极好的温度性能,在-25℃—85℃能可靠地工作。 ?在旋转、停转过程中均可读出编码数据,即使停电以后,再次送电,也能准确地读出编码电信号。 4、光电编码型水位传感器主要技术参数 4.1 基本参数 a 测量范围:30m; b 水位变率:<400厘米/分; c 分辨力:±1mm; d 水位轮启动力矩:60克?厘米(0.0059N.m); e 测量精度:(0.03-0.3)%×F.S。 3.2 机械参数 a 水位轮周长:根据分辨力选配; b 测量缆:Φ1mm不锈钢缆; c 浮子直径:10、15cm可选; d 轴负荷:轴向 9.8N;径向 29.4N。 3.3 电参数 a 变位正逻辑:15位; b 电源电压:12/24VDC; c 消耗电流(无负荷时):50mA; d 触点容量:0.1A/24VDC; e 最高响应频率:20KHz。 3.4 输出形式

自制简易水位检测器

自制简易水位检测器 本例介绍一款CD4069数字集成电路制作的水位检测器,它能在水箱(或水塔)进水到位时发出声光报警信号,提醒用户及时关闭水泵或水阀门。 电路工作原理 该水位检测报警器电路由水位检测传感器、间歇振荡器、LED闪烁指示电路、音频振荡器和音频放大电路等组成,如图下所示。 水位检测传感器由两只电极片构成。间歇振荡器由六非门集成电路IC(CD4069)内部的非门电路f、非门电路e和有关外围元器件组成。LED闪烁指示电路由IC内部的非门电路d、电阻器R3和发光二极管VL组成。音频振荡器由IC内部的非门电路a、非门电路b和有关外围元器件组成,其振荡频率约lkHz。音频放大电路由IC内部的非门电路c、晶体管V1、V2和扬声器BL组成。 当水箱内无水或送水未到位时,水位传感器的两个电极片处于开路状态,+9V电压经开关S、电阻器R1加至二极管VDl的正极,使VDl导通,IC的13脚、10脚、1脚和4脚均为高电平,报警器电路不工作。 当水箱(或水塔)加水到位时,水位检测传感器的两个电极片与水接触(通过水接通),使二极管VDl的正极变为低电平,VDl截止,间歇振荡器振

荡工作,从IC的10脚输出周期较长的振荡信号。当该振荡信号电压为正时,二极管VD2导通,IC的1脚为高电平,音频振荡器不工作;当IC的10脚输出的振荡信号电压为负时,VD2截止,音频振荡器振荡工作。这样,音频振荡器在间歇振荡器的控制下间歇地工作,从IC的6脚输出断续的音频信号,该信号经V1和V2放大后,推动扬声器BL发出报警声。 元器件选择 IC选用CD4069或TC4069六非门集成电路。VDl、VD2选用1N4148硅开关二极管;VL选用Φ3mm的红色或绿色发光二极管。VTl、VT2均选用硅NPN 型晶体管,其中VI为S9013,V2为C8050。R1~R4选用1/4W碳膜电阻器。C1选用耐压值为16V的电解电容器;C2选用涤纶电容器或独石电容器。BL 选用玩具用的小型电动式扬声器 或压电蜂鸣器(使用压电蜂鸣器 时,在其两端并接一只10~27mH 的电感器)。 实际电路制作时,请参见线路 板图。

基于超声波传感器的液位测量

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

环境监测仪器项目规划设计方案

环境监测仪器项目规划设计方案 规划设计/投资分析/实施方案

承诺书 申请人郑重承诺如下: “环境监测仪器项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx投资公司(盖章) xxx年xx月xx日

项目概要 环境监测仪器,是用于监测室内外环境各项参数的仪器总称,通过对 影响环境质量因素的代表值的测定,确定环境质量(或污染程度)及其变 化趋势。 该环境监测仪器项目计划总投资8044.12万元,其中:固定资产 投资5584.12万元,占项目总投资的69.42%;流动资金2460.00万元,占项目总投资的30.58%。 达产年营业收入18097.00万元,总成本费用14207.24万元,税 金及附加154.27万元,利润总额3889.76万元,利税总额4580.55万元,税后净利润2917.32万元,达产年纳税总额1663.23万元;达产 年投资利润率48.36%,投资利税率56.94%,投资回报率36.27%,全部投资回收期4.26年,提供就业职位313个。 重视环境保护的原则。使投资项目建设达到环境保护的要求,同时,严格执行国家有关企业安全卫生的各项法律、法规,并做到环境 保护“三废”治理措施以及工程建设“三同时”的要求,使企业达到 安全、整洁、文明生产的目的。 报告主要内容:项目承担单位基本情况、项目技术工艺特点及优势、项目建设主要内容和规模、项目建设地点、工程方案、产品工艺 路线与技术特点、设备选型、总平面布置与运输、环境保护、职业安

水位检测仪系统

数理与信息工程学院课程设计 题目:水位检测仪系统 专业: 班级: 姓名:学号: 实验地点:数理与信息工程学院电子系统设计室指导老师: 成绩:

目录 第1节引言 (1) 1.1 设计背景 (1) 1.2 系统功能说明 (1) 第2节硬件设计基本原理与实现方法 (2) 2.1 水位检测与数据采集 (2) 2.2 数码管LED显示 (4) 2.2.1 相关芯片简介 (4) 2.2.2 显示部分工作原理 (5) 第3节系统软件设计 (8) 3.1 初始化程序 (8) 3.2 TMR1中断服务程序 (9) 3.3 数据转换子程序 (10) 3.4 TMR0中断服务程序 (11) 3.5 程序清单 (13) 第4节结束语 (22) 参考文献 (22)

水位检测仪系统 第1节引言 水位检测和显示仪表装置在工业上有着广泛的应用。本设计采用的是一种低成本的数码管显示驱动方案。在对成本较敏感的小型系统中,该方案有着一定的参考价值。 1.1 设计背景 键盘和显示器是单片机系统中人机对话不可缺少的一部分。在许多智能仪表的设计中,多用LED数码管来显示。这是因为LED数码管驱动简单,成本较低并且能适应恶劣的环境。用于数码管显示驱动的芯片有很多种,常见的有MAX7219、MAX7221、ZLG7290、IMC7218B以及8279等。这些专用芯片使用方便、功能教强,但价格偏高。本设计中采用的循环扫描的方式,充分利用单片机快速的处理能力对各显示单元分时选通,只需普通的串行移位芯片,就可以达到显示驱动的目的。这种方法对单片机的CPU占用率相对较高,不适宜于CPU任务繁忙的场合,但是对那些功能相对简单,CPU相对空闲的中小型系统非常实用,能够大大降低系统成本。 1.2系统主要功能 该装置对偏离零点的水位进行检测,然后将带符号的水位值(低于或高于零点)用数码管显示出来,并通过双色发光二极管LED阵列对水位高度进行模拟显示。整个装置主要包含水位检测和显示两个部分,现将每部分功能说明如下:(1)水位检测:在0mm、±10mm、±25mm、±50mm、±80mm、±120mm、±160mm、±240mm共15点基础上,检测水位偏离零点的大小。 (2)水位显示:将上一步检测结果用数码显示出来,显示值以比实际水位小的最近点为准,例如:水位实际高度为35mm,则数码管显示25mm。同时,用15个竖直排列的双色LED阵列直观的模拟当前水位高度,当水位没有达到某点相应的LED显示红色,达到或超过则显示绿色。当水位低于-240mm时报警灯显示绿色,高于+240mm时报警灯显示红色,当水位恢复正常值时报警灯熄灭。

基于单片机的空气质量检测仪的设计与实现

龙源期刊网 https://www.doczj.com/doc/cd13616106.html, 基于单片机的空气质量检测仪的设计与实现作者:彭玲 来源:《科学与信息化》2017年第08期 摘要本文主要介绍了基于arduino单片机和夏普GP2Y1010AUOF粉尘传感器的空气质量PM2.5测量设计系统。该系统通过传感器多次采集空气粉尘浓度数据,把相应的模拟量传回单片机,系统通过模数转换、滤波算法,最后把检测到PM2.5浓度数值显示到OLED显示屏 上,如果检测值超过了污染指标,就发出警报提醒使用者,除此之外,还加入了温湿度和时间,增加了设备的实用性。该设计对检测空气质量,提高人们的生活质量以及环境意识,促使人们改善环境,具有重要的意义,因此应用前景非常广泛。 关键词单片机;传感器技术;滤波算法;PM2.5 引言 由种种环境空气污染带来的危害是人所皆知的,人们也越来越渴望有个空气干净的居住环境,每天都看不到雾霾天气,呼吸新鲜空气。对PM2.5进行更深入细致地研究,可以有助于 我们了解身边的空气质量。天气预告往往只能给出某一个地区的近期空气质量大体情况,带有不少的时间、地域局限性。因此设计出一款轻便、小巧的PM2.5、温湿度检测仪对我们实时了解身边空气质量具有重要的意义和市场价值。 2 总体设计 本设计将单片机与传感器相结合,开发和研究时采用模块化设计的方案,系统架构图如图1所示,实现集成温湿度、空气PM2.5监测为一体的环境质量检测系统。 3 硬件设计 3.1 MCU(微控制单元) 本设计采用Arduino uno R3核心板作为开发单片机,是Arduino USB接口系列的最新版,集成了USB接口贴片芯片ATmega16U2和ICSP在线串行编程接口。其MCU是使用ATMEGA328P-PU芯片,是一款高性能、低功耗的8位AVR微处理器。另外最重要的是它分别集成了6个独立的ADC模拟输入口和6个PWM数字输出口,这极大地方便了传感器等设备在其身上的应用。 3.2 PM2.5粉尘传感器 本设计采用的是一款GP2Yl010AUOF光学空气质量传感器,其内部结构为对角安放着红外线发光二极管和光电晶体管,使其能够探测到空气中尘埃反射光[1]。相对于同类产品

水位监测课 程 设 计

电子技术基础课程设计题目:水位检测器 姓名: 院系: 专业: 学号: 指导教师: 2015年1月6日

电路说明:本电路的功能是检测容器内的水位。把探头装在容器的底部、中部和顶部,通过导线与电路板连接,而3个LED灯分别代表不同的水位。最右侧的代表满,中间的代表一半的水位,最左侧的代表空。探头用用的是电路的接触通电的原理,然后用导线连接到电路板上的对应焊接孔上。 目录 一、电路的设计 1、电路设计功能和原理 2、介绍电路各个元件模块在整体电路中的工作原理 二、电路设计的要求 1、电路的制作过程 2、注意事项 三、总结 附录1、实物图展示 附录2、所用元器件清单 一、电路设计 (一)、功能 此次的数字电子技术课程设计,我们运用模电的知识制作水位检测器。水位检测器所具有的功能是:可以自动检测不同的水位,用不同的灯表示出来,如果外界水泵或电磁阀则可以做到自动加水和排水的功能,让水位维持在一定范围内。

原理: 工作电压:5V 继电器触点容量:3A/250V 液位控制器可实现以下两种功能:(功能1和2通过按键S1切换) 1. 三种颜色LED分别指示低(红色)、中(黄色)、高(绿色)水位,低水位时继电器吸合(外接水泵工作),开始加水,水位升高到高水位时继电器断开(水泵停止工作),待水位再次降到低水位时继电器再次吸合,上述过程循环。此功能应用在自动加水设备中,可让水位维持在低水位和高水位之间。 2. 三种颜色LED分别指示低(红色)、中(黄色)、高(绿色)水位,高水位时继电器吸合(外接电磁阀工作),开始排水,水位降到低水位时继电器断开(电磁阀停止工作),待水位再次升高到高水位时继电器再次吸合,上述过程循环。此功能应用在自动排水设备中,可让水位维持在低水位和高水位之间。 工作原理: 整个系统由振荡电路、LED指示电路、继电器驱动电路、基准电压、电源电路及传感器电路构成。 1.振荡电路:U1A及外围元个组成一个多谐振荡器,工作在放大比较 器状态。R1和R12对5V进行分压,R3为正反馈电阻,共同作为同相输入3脚的基准电压V+,反相输入端2脚V-取自R2、C1组成的积分电路C1两端。V+与V-进行比较决定输出SIG电压的高低,

智能环境监测系统的设计说明

智能环境监测系统的设计 Design on the intelligent system of monitoring environment

摘要 系统主要由数据采集端和移动监控终端两部分组成。采用16位单片机SPCE061A为处理核心,在数据采集端,利用两片CD4067BE分别挂接16只DHT11温湿度传感器和16只光照强度传感器;采用10位ADC实现对环境声音的实时录制,加入OV7670摄像头进行实时拍照监控,最后把所采集到的数据帧通过NRF905无线传输模块传送到移动监控终端。在移动监控终端,通过NRF905接收数据,将处理后的环境参数数据进行显示,接收到的语音压缩编码通过10位DAC进行解码播放,通过按键切换进入全屏环境参数显示模式或全屏监控照片显示模式,并将接受到的环境参数、声音、照片存储到SD卡中。本文以SPCE061A超低功耗单片机为核心,设计了通用智能终端和智能温湿度传感器,重点介绍了该终端和传感器的任务、硬件、软件以及控制算法的设计与实现。硬件方面,介绍了系统各个部分的设计思想、原理电路以及,并给出了系统总硬件原理图;另外,为了实现系统的低成本和低功耗,在满足设计要求的前提下,尽可能选用了价格低廉和低功耗的元器件。软件方面,采用了时间触发的混合调度器模式设计,对系统各个任务进行了设计,并给出了系统软件低功耗设计方法。 关键词:SPCE061A;多节点;无线传输;HMI Abstract The system is designed for two parts of data acquisition terminal and mobile monitoring terminal. Its processing core is SPCE061A which is a 16 bits mcu. In the data acquisition terminal, 16 DHT11 of single bus temperature, humidity sensor and 16 light intensity sensor are hung on two CD4067BE. The environmental sound is recorded to coding and compression with 10 bits ADC which is built in the mcu at any time. Add OV7670 which is a camera module to monitor at anytime. ALL collected data is transmitted to the mobile monitoring terminal through NRF905 of wireless transmission module. In the mobile monitoring terminal, the data is received through NRF905.The environmental parameter data is displayed after dealing with and the compression coding of speech is decoded to play with 10 bits DAC.We can switch to full-screen environment parameter display mode or full-screen picture display mode with the keys. At last, the environmental parameter, sound and photos are stored to the SD card.Based on the SPCE061A ultra low power microcontroller as the core, a general intelligent terminal and intelligent temperature and

水位水温检测系统的设计与制作

本科毕业论文(设计) 题目:水位水温检测系统的设计与制作 学院:物理与电子科学学院 班级: 姓名: 指导教师:卢玉和职称:教授 完成日期: 2014 年 5 月 25 日

水位水温检测系统 摘要:此系统的设计主要是采用了STC89C52这种单片机,还有其它设备如:单总线温度传感器DS18B20,三极管与少量的上拉电阻,串口与并口功能兼具的液晶示出器LCD12864,以及发声器等,要做出具有可以出示容器内水位水温的小型仪器。此系统包含硬件与软件两大部分,硬件部分又包含五小部分:单片机、DS18B20监测、三极管,上拉电阻装置、显示部分、发声提醒装置。这样的设计就能使那些需要具备这些功能的水容器有了可行的仪器,而这种仪器是简单耐用的,是容易移动的,是价格低廉的。 关键词:芯片STC89C52;传感器DS18B20;发声提醒器。

目录 1 绪论 ····························································································- 1 - 1.1 背景 ·······················································································- 1 - 1.2研究与发展前景 ········································································- 1 - 2 设计水位水温系统的目的与内容 ························································- 1 - 2.1 设计的目的 ··············································································- 1 - 2.2 设计的内容 ··············································································- 2 - 3 水位水温系统的硬件分析 ·································································- 2 - 4 硬件部分介绍 ················································································- 2 - 4.1主控芯片单片机 ········································································- 2 - 4.2DS18B20测温装置 ····································································- 4 - 4.3测水位装置 ··············································································- 6 - 4.412846测温装置·········································································- 6 - 4.5 发声装置 ·················································································- 7 - 5 硬件工作情况介绍 ··········································································- 7 - 6 软件部分介绍 ················································································- 8 - 6.1仿真电路 ·················································································- 8 - 6.2 软件程序 ·················································································- 9 - 6.3软件检测 ·················································································- 9 - 7 实物与功能检查 ··········································································· - 10 - 8 总结 ·························································································· - 11 - 参考文献 ······················································································· - 12 - The detection system of Water level and temperature ···································· - 13 - 致谢 ····························································································· - 14 -

常用20种液位计工作原理

本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。常见液位计种类1、磁翻板液位计2、浮球液位计3、钢带液位计4、雷达物位计5、磁致伸缩液位计6、射频导纳液位计7、音叉物位计8、玻璃板/玻璃管液位计9、静压式液位计10、压力液位变送器11、电容式液位计12、智能电浮筒液位计13、浮标液位计14、浮筒液位变送器15、电接点液位计16、磁敏双色电子液位计17、外测液位计18、静压式液位计19、超声波液位计20、差压式液位计(双法兰液位计)常用液位计的工作原理1、磁翻板液位计磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。2、浮球液位计浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。3、钢带液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。4、雷达液位计雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。5、磁致伸缩液位计磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永久磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。通过测量脉冲电流与扭转波的时间差可以精确地确定浮子所在的位置,即液面的位置。6、射频导纳液位计射频导纳料位仪由传感器和控制仪表组成,传感器可采用棒式、同轴或缆式探极安装于仓顶。传感器中的脉冲卡可以把物位变化转换为脉冲信号送给控制仪表,控制仪表经运算处理后转换为工程量显示出来,从而实现了物位的连续测量。7、音叉物位计音叉式物位控制器的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉与被测介质相接触时,音叉的频率和振幅将改变,这些变化由智能电路来进行检测,处理并将之转换为一个开关信号。8、玻璃板液位计(玻璃管液位计)玻璃板式液位计是通过法兰与容器连接构成连通器,透过玻璃板可直接读得容器内液位的高度。9、压力液位变送器压力式液位计采用静压测量原理,当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力的同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压Po与传感器的负压腔相连,以抵消传感器背面的Po,使传感器测得压力为:ρ.g.H,通过测取压力P,可以得到液位深度。10、电容式液位计电容式液位计是采用测量电容的变化来测量液面的高低的。它是一根金属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当液位升高时,电容式液位计两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。所以,电容式液位计可通过两电极间的电容量的变化来测量液位的高低。11、智能电浮筒液位计智能电浮筒液位计是根据阿基米德定律和磁藕合原理设计而成的液位测量仪表,仪表可用来测量液位、界位和密度,负责上下限位报警信号输出。12、浮标液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带(绳)的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带(绳)移动,位移

相关主题
文本预览
相关文档 最新文档