【原创】平面向量的基本定理说课稿
- 格式:ppt
- 大小:457.50 KB
- 文档页数:19
平面向量基本定理说课一、介绍平面向量基本定理是线性代数中的一个重要定理,它在平面向量的运算和几何表示中起到了至关重要的作用。
本文将详细介绍平面向量基本定理的概念、相关定义以及推导过程,并阐述其重要性和应用领域。
二、平面向量的定义在引入平面向量基本定理之前,我们首先需要了解平面向量的定义。
平面向量又称为二维向量,它是由两个有序实数对表示的量,通常用小写字母加上矢标来表示,⃗⃗⃗⃗⃗ 表示从点A到点B的向量。
平面向量可以用坐标对(x,y)来表示,其中x和y分如AB别表示向量在x轴和y轴上的投影长度。
三、平面向量的运算平面向量的运算包括加法和数乘两种操作。
具体而言,对于两个平面向量A(x1,y1)和B⃗ (x2,y2),它们的和记作A+B⃗ =(x1+x2,y1+y2);对于一个平面向量A(x,y)和一个实数k,它们的数乘记作kA=(kx,ky)。
需要注意的是,平面向量的加法满足交换律和结合律,数乘满足分配律和结合律。
四、平面向量基本定理的概念平面向量基本定理是指对于一个平面上的任意三个向量A、B⃗ 和C,如果A+B⃗ =A+C,那么B⃗ =C。
简言之,如果两个向量的和与另外两个向量的和相等,那么这两个向量本身也相等。
这个定理对于平面向量的运算和方程的解有重要的应用。
五、平面向量基本定理的证明为了证明平面向量基本定理,我们可以利用向量的性质和向量的定义进行推导。
具体而言,我们可以假设A+B⃗ =A+C,然后通过向量的运算和性质逐步推导得出B⃗ =C。
这个证明过程比较简单,但是需要严格的逻辑推理和数学运算。
六、平面向量基本定理的重要性平面向量基本定理在线性代数和几何学中都有着广泛的应用。
首先,它在平面向量的运算和方程的求解中起到了关键作用,可以帮助我们简化表达式、计算结果和解方程的过程。
其次,平面向量基本定理可以用来证明其他定理和命题,为我们建立起一个严密的理论体系。
此外,它还有助于我们理解向量空间和线性变换的概念,为进一步学习高等数学和线性代数打下坚实的基础。
高中数学人教A版(2019)必修第二册6.3.1平面向量基本定理说课稿一、教材分析本节课选自普通高中课程标准实验教科书人教版必修2第六章《平面向量及其应用》第三节《平面向量基本定理及其坐标表示》第一课时。
本节首先由向量的概念和运算得出平面向量基本定理.平面向量基本定理是平面向量中的重要内容.此定理表明平面内的任一向量可以由同一平面内的两个取定的不共线向量表示,而且表示式是唯一的.因而向量的运算可以归结为两个取定的不共线向量的运算,这为利用向量运算解决问题带来了方便.由此定理还可引出向量的坐标的概念,进而引出向量运算的坐标表示。
1.平面向量基本定理平面向量基本定理告诉我们,同一平面内任一向量都可表示为两个取定的不共线向量的线性组合,这样,如果将平面内向量的起点放在一起,那么由平面向量基本定理可知,平面内的任意一个点都可以通过取定的两个不共线的向量得到表示。
也就是说,平面内的任意一个点可以由平面内的一个点及两个取定的不共线的向量来表示.这是引进平面向量基本定理的一个原因,下面对其中的思想作一概述.用向量表示几何元素是容易的,并且很直接.选一个定点,那么,任何一个点都可以用一个向量来表示.对于一条直线l,如果我们的兴趣只在于它的方向,那么用一个与l平行的非零向量图片就行了;如果想确定这条直线的位置,则还要在l上任选一点。
这样,一个点A,一个向量图片就在原则上确定了直线l,这是对直线的一种定性刻画。
如果想具体地表示l上的每一个点,我们需要实数k和向量图片的乘法图片.这时,l上的任意一点X都可以通过点A和某个图片来表示(图6-17).希望在“实际”上控制直线l,可以看作是引入图片的一个原因.再来看平面.两条相交直线确定一个平面 a.一个定点,两个不共线的向量便“原则”上确定了平面α,这是对平面的一种定性刻画.但在讨论几何问题时,常常涉及平面α上的某一点X,为了具体地表示它,我们需要引进向量的加法.这时,平面α上的点X就可以表示为(相对于定点A),这样点X 就成为可操作的对象了(图6-18).在解决几何问题时,这种表示能发挥很重要的作用.虽然向量的加法、数乘运算有非常坚实的物理背景,但当我们舍弃了这种背景而只从纯粹数学的角度来看问题的话,上述考虑可使我们看到引进相应的向量运算的理由,这可以使我们更容易接受并喜爱向量运算。
平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
尊敬的各位评委各位老师:大家好,我是高中数学组号考生,今天我说课的题目是《平面向量的基本定理》。
下面我将从说教材、说学情、说教学目标、说教学过程等几个方面来展开我的说课。
首先来说说教材。
本课是北师大版高中数学必修四第二章第6节课内容,向量是沟通代数和几何的桥梁,为研究几何问题提供了新的工具和方法,同时对更新和完善中学数学知识结构起着重要作用。
向量集数、形于一身,有着极其丰富的实际背景。
平面向量基本定理是共线向量基本定理的一个推广,平面向量基本定理揭示了平面向量的基本关系和基本结构,是进一步研究向量问题的基础;是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段。
分析完了教材,再来说说学情。
高二年级的学生,在此之前学生已学习了向量的概念、向量的加减法、数乘向量,都为此节课做了充分的准备,由于我们的学生认识问题还不够深入,其思维能力和判断分析能力尚在培养形成之中。
鉴于此种情况,教师要充分利用他们的兴趣引导学生进入特定的教学意境,如何理解平面向量的基本定理,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。
因此,本节内容的学习是学生认知发展和知识构建的一个生长点。
基于以上教材地位、学情特点以及新课标的要求,我确定了以下三维教学目标:1、了解平面向量基本定理的条件和结论,会用它来表示平面上的任一向量,为向量坐标化打下基础,这是本课教学的重点。
2、通过对平面向量基本定理的学习过程,体验数学定理的产生、形成过程,体验定理所蕴涵的数学思想方法,使学生的思维能力得到训练,而对向量基本定理的理解也是本课教学的难点。
3、通过对平面向量基本定理的运用,增强学生向量的应用意识,进一步体会向量是处理几何问题强有力的工具之一。
培养学生认识客观事物的数学本质的能力,意识到数学源于生活。
数学课程标准倡导“合作、自主、探究”的学习方法,教学过程应重视学生的实践活动,引导学生主动地获取知识,全面提高学生的数学素养。
2、3、1 《平面向量基本定理》说课稿高三数学今天,我说课的内容就是:人教版全日制普通高级中学教科书第一册(下)、第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学情分析、教法分析、教学过程以及教学评价五个方面来阐述一下我对本节课的设计一、说教材1、关于教材地位及作用向量就是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。
本课时内容包含“平面向量基本定理”与“平面向量的正交分解及坐标表示”、此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要就是研究向量的坐标运算,更多的就是向量的代数形态。
平面向量基本定理就是坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位、2、关于教学目标的确定与分析根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
(1)知识与技能:①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量②会把任意向量表示为一组基地的线性组合。
掌握线段中点的向量表达式(2)过程与方法:通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法,培养学生的归纳总结能力;体验用基底表示平面内任一向量的方法、(3)情感态度与价值观:引导学生从生活中挖掘数学内容,培养学生的发现意识与应用意识,提高学习数学的兴趣,感受数学的魅力那么为了实现以上的教学目标在教学中要注意把握一下几点1、了解平面向量基本定理的条件与结论,会用它来表示平面内的任意向量,为向量坐标化打下基础,2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生与形成过程,提高学生抽象的能力与概括的3、通过对定理的应用增强向量的应用意识,进一步体会向量就是处理几何问题的强有力的工具。
3、重点与难点的分析根据教材特点及教学目标的要求及学生的认知规律,我认为本节课的本节课的重点亦就是本节课的难点。
教材分析: (一)教材地位分析平面向量基本定理研究的是平面内任意两个不共线向量的线性组合表示,是用坐标表示平面的向量的理论基础,是对平面内任一向量进行分解的重要依据。
具有承上启下的作用,对于今后进一步学习向量和利用向量解决实际问题具有重要作用(二)教学目标分析1.知识目标:了解平面向量基本定理及其意义,掌握平面内任何一个向量都可以用不共线的两个向量表示,能够在具体问题中选取基底,使其他向量都能用基底来表示 。
2.能力目标:培养学生观察、抽象概括,合作交流能力;培养学生的归纳总结能力,体会 “特殊-一般-特殊” 的思想方法。
3.德育目标:培养学生独立思考及勇于探求、敢于创新的精神、培养自主学习的意识; (三)重点、难点分析重点:.平面向量基本定理难点:平面向量基本定理的理解及其应用突破难点的几项措施:1.创设恰当的问题情境,激发学生的学习兴趣;2.通过小组合作讨论分析,弄清平面向量基本定理的探究形成过程3.通过归纳分析,明确平面向量基本定理的本质4.借助多媒体教学,动漫展示定理中实数1a ,2a 的一般性。
二、教法分析本节课采用引导发现法,并且使用“精导自主,互动训练”的教学模式实施教学,通过教师精导,学生自主、合作完成教学目标,充分体现学生的主体地位和教师的主导作用。
引导发现法更重视学生的参与,有利于教师及时发现学生学习过程中存在的问题,便于教师及时调整教学策略,从而让学生在自主探索建构知识体系的过程中深化对知识的理解,实现以学定教、分层教学,渗透数形结合和转化的数学思想,把课堂变为学堂。
三、学法指导学情分析:前几节课已经学习了向量的线性运算,向量共线的条件,学生对向量的物理背景有了初步的了解,都为学习本节课做了充分准备。
学法指导:教师平等的参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,引导学生全员全过程参与,保证学生的认知水平和情感体验分层次向前推进。
平面向量的基本定理及坐标表示说课稿
平面向量的基本定理及坐标表示第一课时说课稿
各位评委、各位老师,大家好。
今天,我说课的内容是:人教A版必修四第二章第三节《平面向量的基本定理及坐标表示》第一课时,下面,我将从教材分析、教法分析、学法指导、教学过程以及设计说明五个方面来阐述一下我对本节课的设计。
一、教材分析:
1、教材的地位和作用:
向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。
本课时内容包含“平面向量基本定理”和“平面向量的正交分解及坐标表示”.此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。
平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.
2、教学目标:根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
(1)知识与技能
了解向量夹角的概念,了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示。
(2)过程与方法
通过对平面向量基本定。
尊敬的各位评委;大家好。
我是XXX,今天我说课的内容是平面向量基本定理,所用的教材是普通高中课程标准实验教科书人教A版数学必修4第二章2.3.1。
下面我将从教材分析、教法与学法分析、教学过程、板书设计和教学反思五个方面来阐述我对本节课的理解与设计。
一、首先,教材分析我主要谈谈以下三个方面。
1、教材的地位和作用。
平面向量基本定理是衔接本章向量几何运算和与代数运算内容之间的桥梁。
它揭示了平面向量的基本关系和基本结构,是学生后继学习向量坐标表示及选修2-1中空间向量基本定理的基础。
因此本节课在向量知识体系中具有核心地位和承上启下的作用。
2、教学目标根据新课标下的的课程目标和要求以及本节课的内容与结构,同时结合本班学生的实际情况,我制定了以下的教学目标。
知识目标了解平面向量基本定理的意义和向量夹角的概念。
掌握用基向量表示平面上的任一向量,为学习向量坐标表示表示打下基础。
能力目标通过对平面向量基本定理的探究,让学生体验由特殊到一般及类比的数学思想,培养学生观察发现问题的能力。
情感目标通过学生自行探究平面向量基本定理,培养学生敢于实践,勇于发现的创新精神。
3、教学重点和难点掌握了平面向量基本定理,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算。
因此我认为本节课的重点是掌握利用平面向量基本定理进行向量的分解。
而对平面向量的分解以及这种分解唯一性的理解对于初学者来说有一定难度,所以是本节的难点。
二、接下来我要谈一下教学和学法的分析结合新课标“以学生为本”的课堂教学原则,本节课我设计了由“设疑—引导—点拨—建构—拓展”五个环节构成的问题引导式教法。
而学法上,因为学生前面已经学习了向量的运算和共线向量的概念,而且对向量的物理背景也很熟悉,所以我采用了自学探究式学法。
这种方法借助预先编制好的学案,在教师创设的问题情境下,让学生根据已有的知识和经验,主动探索,合作交流,由此获得新知。
平面向量基本定理说课稿平面向量基本定理是高中数学中非常重要的概念之一,它是向量基础知识中最根本的定理之一。
本文将介绍平面向量基本定理的定义、性质和应用。
一、定义平面向量基本定理是指,任意平面上的向量都可以表示成以该平面上两个不共线向量为基的线性组合,而且这个表示方式是唯一的。
换句话说,如果a,b是平面上两个不共线向量,那么对于任意向量c,都存在唯一的实数k1,k2,使得c=k1a+k2b。
其中,k1,k2称为向量c关于向量a,b的坐标。
二、性质平面向量基本定理有以下几个重要性质:1、向量线性组合的可加性:若c=k1a+k2b,d=k1'a+k2'b,则c+d=(k1+k1')a+(k2+k2')b。
2、关于坐标的唯一性:向量c在向量a,b构成的平面内的坐标,是唯一的。
3、基向量的坐标:向量a在以自身为基向量的坐标系中的坐标为(1,0),向量b在以自身为基向量的坐标系中的坐标为(0,1)。
4、基向量的线性无关性:向量a,b不共线。
5、基向量的方向:向量a,b为基向量时,a与b的向量积a×b的方向与该平面的法向量相同。
三、应用平面向量基本定理广泛应用于几何证明、向量运算和物理力学等领域。
1、几何证明:平面向量基本定理可以用来证明平面上的三点共线,平面上的四边形是平行四边形等等几何性质。
2、向量运算:平面向量基本定理可以用来推导向量的加减、数量积和向量积等运算公式。
比如,向量的数量积可以表示成坐标之积的形式。
3、物理力学:平面向量基本定理在力学中有着广泛的应用,可以用来研究物体的受力情况和运动轨迹等。
例如,向量法可以用来计算物体在斜面上的滑动问题。
总之,平面向量基本定理是向量基础知识中非常重要的一部分。
掌握了它,不仅可以更深入地理解向量的概念和性质,还可以应用到实际问题中,解决复杂的几何和物理问题。
2.3.1 《平面向量基本定理》说课稿高三数学今天,我说课的内容是:人教版全日制普通高级中学教科书第一册(下)、第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学情分析、教法分析、教学过程以及教学评价五个方面来阐述一下我对本节课的设计一、说教材1.关于教材地位及作用向量是沟通代数、几何和三角函数的一种工具,有着极其丰富的实际背景。
本课时内容包含“平面向量基本定理”和“平面向量的正交分解及坐标表示”.此前的教学内容由实际问题引入向量概念,研究了向量的线性运算,集中反映了向量的几何特征,而本课时之后的内容主要是研究向量的坐标运算,更多的是向量的代数形态。
平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量和它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁,也决定了本课内容在向量知识体系中的核心地位.2.关于教学目标的确定和分析根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
(1)知识和技能:①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量②会把任意向量表示为一组基地的线性组合。
掌握线段中点的向量表达式(2)过程和方法:通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法,培养学生的归纳总结能力;体验用基底表示平面内任一向量的方法.(3)情感态度和价值观:引导学生从生活中挖掘数学内容,培养学生的发现意识和使用意识,提高学习数学的兴趣,感受数学的魅力那么为了实现以上的教学目标在教学中要注意把握一下几点1、了解平面向量基本定理的条件和结论,会用它来表示平面内的任意向量,为向量坐标化打下基础,2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生和形成过程,提高学生抽象的能力和概括的3、通过对定理的使用增强向量的使用意识,进一步体会向量是处理几何问题的强有力的工具。
3.重点和难点的分析根据教材特点及教学目标的要求及学生的认知规律,我认为本节课的本节课的重点亦是本节课的难点。