当前位置:文档之家› 小半径曲线

小半径曲线

小半径曲线
小半径曲线

Abstract

Common railway line uninterrupted by locomotive, the vehicles the roller compaction and impact, so line state in the constant change of. Curve radius is especially small area curve by linear sector of the impact and rolling and push is more outstanding, not only line state change quickly, the larger, and rail are also serious wear parts, so small radius of the maintenance of curve and damage control line maintenance work as an important link, its maintenance task directly relates to the maintenance of the input and safety. According to the small radius curve and causes common disease are analyzed, and the small radius curve in the daily maintenance in geometry size adjustment, strengthening technical prevention and key disease should be adopted by the measures, and the measures for the continuous improvement of have a little bit of shallow knowledge.

Curve is the weak link of line equipment, and small radius is the weakest curve area, it is the disease concentration, equipment state not easy to control, maintenance workload relatively large area, for small radius curve, we are doing what we can to small radius curves for various kinds of effective prevention measures, one thousand party control of the hundreds of small radius curve state, extend the small radius curve maintenance period, lower the small radius curve maintenance cost.

Keywords Smallradius curvesDisease Curing Servis

1绪论 (1)

2小半径曲线常见病害及成因分析 (3)

2.1 小半径曲线成因分析 (3)

2.2 钢轨损伤病害 (5)

2.3 轨道几何尺寸易超限 (5)

2.4 联接零件易松动,且破损率高 (6)

2.5 易出现曲线“鹅头” (6)

3 防止小半径曲线产生病害的主要对策 (6)

3.1调整好小半径曲线各部尺寸是基础 (8)

3.2 对小半径曲线加强防范是保证 (8)

3.3 整治重点病害是关键 (9)

3.4强化小半径曲线技术是细节................................... .10

3.5建立科学的养护技术资料是完善 (11)

4 对提高小半径曲线养护效果的几点建议 (12)

结论 (13)

参考文献 (14)

致谢 (15)

中国铁路始建于1876年,铁路运输线是我国国民经济的大动脉,在我国交通运输体系中居于主导的骨干地位,它在国家的建设中占有重要地位。随着我国改革开放的深入,我国在修新线铁路时采用了国内外先进科技成果,与此同时,对既有铁路进行补强和改造,并加强了对线路的养护和维修。较大的改善了铁路的运营状况,提高了铁路抵抗自然灾害的能力,丰富了预防和整治铁路线路病害的理论与实践,对发展国民经济,促进工农业生产,改善人民生活,改变边远地区交通闭塞和文化技术落后面貌,巩固国防,沟通国际交往,起到了国民经济大动脉的重要作用。在当今社会经济高速发展的情形下,对铁路运输的需求量在逐渐增大,铁路运输的发展将偏向高速和重载运输。这样就会加重铁路线路的承载能力,造成铁路线路损害,严重影响铁路运输。为了保证铁路能够很好的完成运输任务,全面了解和掌握铁路线路常见病害分析及预防整治技术非常的重要。近年来,随着我国经济的飞速发展,综合国力的不断提升,铁路的发展也得到了质一样的飞跃。伴随着铁路的发展,势必会对铁路的需求和技术方面也越来越看重。而维修就是必不可少,在铁路的维修当中曲线是最为薄弱的环节之一,其轨道构造、受力状态、几何尺寸变化、钢轨磨耗等都较直线复杂,是线路维修中的簿弱环节之一,曲线轨道的维修质量,对保证行车的平稳与安全至关重要。

(1)地理位置需要

京广线在广局铁路网中是一条十分重要的区段,是连接省府与北京及国际联运的重要交通要道,京广线的线路是否畅通无阻,对广局的经济效益和湖南,广东经济发展,甚至全国的发展,乃至政治上的稳定,都将起到举足轻重的影响作用。

(2)列车行驶安全需要

随着铁路提速战略的实施,工务部门面临着“快速、重载、安全、减员和增效”的五大挑战,在京广线上,局投入大量财力、物力进行设备改造,从钢轨、轨枕、道岔及道碴,采用最佳级配,然而,列车行驶在曲线上,由于未被平衡超高度而导致偏载,因此,小半径曲线轨道在动荷载作用下,不仅要产生较大的横向推力,而且还会使内外轨发生增载或减载,它不仅会增大钢轨的动弯应力,影响轨道稳定性和强度,而且还可能危急行车安全。

(3)保证旅客舒适条件的需要

在曲线地段,因列车沿曲线运行所产生的离心力,使外股钢轨承受较大压力,旅客感觉不舒适,离心力过大还将影响行轩安全,为抵消离心力的作用,需将外轨抬高,即设置超高。在曲线上,所有列车是以各种不同的速度通过曲线的,所设置的超高不可能适应每一列列车,使所产生的离心力完全得到平衡,因而对每一列列车而言,普遍存在着过超高或欠超高的现象,合理的设置的超高,是保证旅客舒适条件、提高小半径曲线质量的需要

(4)线路养护维修需要

曲线部分的轨道结构、受力状态、几何尺寸变化、钢轨磨耗及某些病害,都比直线部分复杂,对整个线路而言,曲线部分是比较薄弱的环节。曲线的养护维修质量,对保证行车平衡和安全很重要,因此,从各方面做好曲线的养护维修,预防和整治曲线病害,保持曲线园顺是线路养护的需要。

(5)防止钢轨磨耗的需要

钢轨在空间的位置不正确是造成钢轨磨耗的主要原因。超高的过大或过小会引起钢轨的偏载和轮轨的不正常接触,轨底坡的不正确,使钢轨顶面与车轮踏面不相吻合,钢轨在偏压下会加速磨耗,曲线养护不良,对钢轨磨耗也会发生直接的影响,曲线方向不园顺、轨距超限以及缓和曲线递减距离不够,都会使车轮与钢轨的内接情况恶化,增加行车的阻力与摇晃,使钢轨造成磨耗或加剧磨耗。

因此研究小半径曲线是很有必要和很有意义的,为什么小半径曲线是曲线的薄弱环节?小半径曲线会带来哪些病害?怎样解决病害?解决完之后怎样养护,怎样去维修?这些都是很具有研究价值,因此我想好了要研究这个问题。

2 小半径曲线常见病害及成因分析

铁道线路不间断的受到机车,车辆的碾压和冲击,所以线路状态处在不断的变化当中。曲线地段尤其是小半径曲线地段较直线地段所受到的碾压和冲击更为的突出,不但线路状态变化较快,较大而且轨件的磨损也比较严重,因此小半径曲线的养护维修与病害整治成为线路养护维修的工作的一个重要环节,其养护任务的好坏直接关系着维修投入与行车安全,所以我们就必须要了解小半径曲线的病害成因以及它的成因分析,才能更好的保证行车安全,不会发生事故,安全重如泰山。

2.1 小半径曲线病害成因分析

小半径曲线病害的产生与钢轨受力有着直接关系。当列车在曲线地段运行时,产生的力十分复杂。通过力的分析,可将列车作用于钢轨上的力分为3个方向,即竖直方向、水平横向以及水平纵向。

(1)作用于钢轨上竖直方向分力的构成

机车和车辆在轨道上运行时,作用于钢轨上车轮的静压力(即分配到该车轮上的车辆重量——轴重)随着铁路运输的发展将不断增加,而加强轨道结构,首先是增加钢轨的重量,这样才有可能满足轴重不断增加的要求。列车通过轨道不平顺地段以及不平顺车轮运行时会产生附加力。轨道不平顺分为长不平顺和短不平顺两种。长不平顺通常因捣固不良、枕木腐朽、三角坑以及轨道弹性不均匀而形成;短不平顺的形成与钢轨波浪形磨耗、车轮空转有关。在曲线地段还有因外轨超高以及车架对车轮横向压力而引起的附加垂直力。

(2)作用于钢轨上横向水平力的构成

横向水平力主要指车轮对钢轨的侧压力和曲线上的附加横向力。以上力由轮缘对轨头的压力(传递车架压力)和车轮在钢轨上横向滑动时产生的摩擦力组成,因此车轮对钢轨的侧压力可以取上述两力之和或两力之差。曲线地段产生的横向水平力比较大。曲线半径愈小,横向水平力愈大。曲线上产生的离心力和因外轨超高使车辆倾斜而产生的机车车辆重力分力有关。这些横向力(导向力、侧向力及车架压力)的大小取决于离心力、行车速度、曲线半径和外轮超高。当在压应力和横向力的共同作用下超过了钢轨的屈服强度时,在钢轨作用边产生碾堆(即塑性变形),在踏面形成局部压陷特征,压陷处不易和车轮踏面接触(即短不平顺)而形成暗斑,最终形成疲劳裂纹。

当钢轨的磨耗速度小于疲劳裂纹的扩展速度时,最终将发展成剥离掉块。曲线半径越小,出现掉块的情况就越严重。

3)纵向水平力

产生纵向水平力的主要原因是轨道爬行和温度作用,在曲线地段,钢轨上还作用着滑动引起的摩擦力。轨道爬行主要是在车轮滚动下钢轨的蛇形起伏而产生的,在列车制动地段尤其明显。

如钢轨和轨枕之间连接不够牢固,弹性道床抵抗轨枕纵向位移的阻力大于钢轨在支座上滑动的阻力,此时钢轨可能纵向移动,而轨枕则仍然留在原地。轨道爬行实质上取决于轨下基础刚度,刚度愈大,因钢轨扭曲及其断面转动而引起的爬行也愈大;钢轨扭曲增大也将使爬行增加。

(4)根据有关资料和现场实际分析,造成小半径曲线病害多的原因是多方面的,有运营条件方面的,如牵引种类、运行速度、列车密度等,有轨道结构方面,如钢轨类型、坡度、半径大小等,然而任何一种病害也是由多个因素引发的,病害和因素之间没有一一对应的关系,只有主要因素和次要因素之分,主要因素和次要因素也不是永远不变的,它随着条件的变化而变化,且绝大部分病害之间互为影响因素。如:钢轨波磨的存在,将加剧轮轨系统的剧烈振动,致使轨道及机车车辆各部件承受过大的动荷载,造成扣件松动,轨枕开裂,道床粉化板结的病害,相反如扣件松动,不及时拧紧,轨枕失效不及时更换,道床粉化板结不及时清筛,轨道的强度和弹性降低,轮轨间的振动更剧烈,又加速了钢轨波磨的发展。这充分说明了钢轨病害既影响轨道几何尺寸和联结零件;轨道几何尺寸超限和联接零件松动、缺少、失效同样引发钢轨病害的产生和发展,轨道几何尺寸和联接零件也在相互影响。更进一步说,小半径曲线局部不平顺不但会引发其它曲线病害,而且会使该处不平顺程度加剧,使轨道状态恶化。从造成曲线病害的诸多因素分析,运营条件和轨道结构属于客观因素,在一定条件下,不容易改变。实际造成小半径曲线病害多的最直接因素是随着客观因素的变化,机车车辆作用在小半径曲线的附加力大小的变化。曲线状态好,附加力就小,对曲线的破坏越小,曲线状态差,附加力就大,对曲线的破坏越大,进而形成越差越大,越大越差的恶性循环。因此,保持曲线良好的状态,减少机车车辆作用在轨道上的附加力,是延长曲线维修周期,降低维修成本的关键。

2.2 钢轨损伤病害

钢轨侧磨、波磨及接头伤损是小半径曲线常见的病害,尤其是侧磨,是小半径曲线最突出的伤损类型,是影响曲线钢轨使用寿命的决定因素,也是引起小半径曲线轨距扩大的根源。小半径曲线钢轨磨耗特别是侧磨往往在多种因素的复合作用下形成。其一,线路的先天不足是钢轨磨耗的最主要原因。列车驶经小半径曲线时,由于车轮踏面与钢轨面发生滑动,使相同牵引力下列车的行驶速度大大降低,使钢轨受到的力较直线地段大的多,导致机车车辆与轨道部件都受到伤损,特别是钢轨的侧磨较大,使用寿命变短。其二,我国铁路运输逐步向“快速重载”方向发展,运量的增加对钢轨冲击破坏是最明显的,在车轮的快速碾压撞击下,并在其它因素的作用下,钢轨头部内侧接触面逐渐剥离,钢轨侧面磨耗逐步形成,并快速变化。曲线超高设置应根据实际通过的列车对数和实际通过的车速来确定。而事实上车速和通过对数是在不断变化、逐步增加的,超高数值的合理性很难确定。其三,超高偏大,车轮在向心力作用下撞击摩擦下股钢轨,从而逐渐形成下股钢轨波磨。其四,超高偏小,车轮在离心力作用下撞击摩擦上股钢轨,上股钢轨侧磨逐渐形成。其五,轨枕预留轨底坡是1/40,用于直线地段是合适的,而在曲线地段,由于超高的作用,使车轮踏面与钢轨顶面未全部接触,车体荷载就集中于钢轨内顶接触面,形成偏载,有时轮缘挤压钢轨头部内侧面,对钢轨破坏很大,容易形成磨耗。只有增大轨底坡,方可消除偏载作用。其六,车轮踏面对钢轨的冲击摩擦,使其踏面形成不均匀磨耗,从而使列车进行蛇形运动,冲击钢轨,助长磨耗的形成。另外,车体与车体、车体与轮对之间连接不牢固,增加列车的晃动,也会助长磨耗的形成。从造成曲线病害的诸多因素分析,运营条件和轨道结构属于客观因素,在一定条件下不易改变。造成小半径曲线病害的最直接因素是机车车辆作用在小半径曲线上的附加力。曲线状态好,附加力小,对曲线的破坏就小;曲线状态差,附加力大,对曲线的破坏越大。因此,保持曲线良好的状态,减少机车车辆作用在轨道上的附加力,是延长曲线维修周期、降低维修成本的关键。

2.3 轨道几何尺寸易超限

小半径曲线上高低、轨距、超高、正矢相对其它线路容易发生变化,保持的周期短,特别是轨距扩大病害相当普遍,并且随着钢轨侧磨的增加,而逐渐加剧。

2.4 联接零件易松动,且破损率高

小半径曲线上联接零件承受的垂直冲击力和横向作用力都比较大,在相同扭力矩的情况,小半径曲线联接零件容易松动,而且当冲击力和横向力达到一定值,造成夹板及接头螺栓折断,轨枕螺栓失效,枕木道钉浮离,轨距杆折断,轨撑压裂,尼龙座挤劈,轨枕挡肩破损等病害。

2.5 会出现曲线“鹅头”

所谓曲线“鹅头”就是直缓点(或缓直点)曲线向切线外突出,远看像“鹅头颈”形状,现场称为曲线“鹅头”。、在缓圆点(或圆缓点)处曲线方向超限向上股突出,也会形成“鹅头”。

(1)列车通过小半径曲线时,由于机车车辆在强大的牵引作用下由直线进入曲线强大的惯性和离心力致使车辆的轮对沿着曲线的切线方向前进,而曲线的自身弧度导向使列车车体转向,由此产生两个反方向的作用力,致使轨道变形,发生方向不良,小半径曲线的头尾出现反弯、“鹅头”,曲线下股轨枕压溃,钢轨外倾,外股轨距扩大等现象尤为突出。

(2)使用的曲线一端向另一端拨道的简易拨道法,易将曲线的拨道误差积累于曲线的另一端,或目测粗拨缓和曲线,或将缓和曲线长期上挑或者下压造成曲线首尾不良。

(3)在曲线整治过程中只注重了目测粗拨和“绳正法”拨道,而忽略了矫直钢轨硬弯、改正轨距不及时,不注重枕下捣固质量和道床宽度不足,拨道的成果很难巩固。

2.6 钢轨接头“支嘴”

产生“支嘴”的原因主要是1、产生钢轨接头子嘴的原因钢轨子嘴接头的产生,除人为因素外,还有自然因素。人为因素主要是:卸下或堆放钢轨不及时上架(立放),两端与中部立放时高低不一,受力不均,未拨直拨正。自然因素:主要表现在小半径曲线相对式接头处由于钢轨硬弯和钢轨弹性引起的。通过运营后,受列车横向力的冲击,夹板弯曲,螺栓不紧,轨缝顶严。线路道床夯拍不实纵横向阻力不足,轨枕失效。枕木底接触面积小,有吊板、暗坑以及路基松软与基床病害都会造

成或加剧子嘴接头的发生与发展。

(1)钢轨小腰有硬弯,接头夹板有变形现象,小半径曲线在列车横向水平力的作用下,由圆弧状变为“支嘴”或小腰有硬弯。钢轨在外界力的长期作用下,极易造成接头夹板的变形,加之钢轨变形及设备欠修造成的夹板压弯,致使接头支嘴现象不断恶化。然而曲线维修过程中,只注重于起、拨、改、捣,而忽视了钢轨硬弯的整治、接头变形压弯夹板的更换。

(2)短轨地段接头轨缝不均匀,历史最高、最低轨温不精确,导致预留的轨缝不符合要求,在高温天气下膨胀受力后致使接头处的两根钢轨有外挤现象。

(3)道床宽度不足、联结零件松动、失效轨枕、空吊板、道床翻浆等病害日常养护不及时,设备超期服役现象造成接头“支嘴”持续恶化。

(4)联结零件损坏率高

小半径曲线在长期强大的横向水平力作用下,夹板折段,混凝土轨枕挡肩破损,尼龙挡板座压溃、胶垫压坏、混凝土轨枕承轨槽压陷造成内股钢轨小反,螺栓扣压力不足等现象。

3 防止小半径曲线产生病害的主要对策

随着铁路现代化的发展,线路上部建筑已经步入了由轻到重,逐步加强的趋势,但在特定的历史背景和地理及自然条件下,修筑的普通山区小半径曲线铁路依然存在,例如山区铁路的普通线路其三大薄弱环节之一的小半径曲线,是工务部门重点防控的设备,其在横向,竖向及纵向等错综复杂的外界力的相互作用下及易造成变形、累计病害加剧和材料的损耗,逐渐降低线路设备的质量和稳定性,甚至危及行车安全,因此,要提高线路设备质量,确保行车安全和延长设备使用寿命,就必须要对小半径曲线进行整治和精细养护。

3.1调整好小半径曲线各部尺寸是基础

日常养护维修中要做好小半径曲线范围内的长平,消灭漫坑、小坑及低接头。对于超高应设置合理。对于小半径曲线轨距根据《铁路线路维修规则》规定的加宽值调整,调整应注意轨距变化率不得大于1‰。圆顺度较好的曲线可用绳正法进行拨道,为加强曲线圆顺度检查,在R≤350米曲线上增设副矢点的办法(也就我们平常说的副点),对控制曲线圆顺度效果很好,它缩短了检弯距离,加密了曲线控制测量点,具体办法是在现有10米间距中间增设一点副矢,其正矢在缓和曲线上为两相邻正矢点之和的一半,圆曲线上为圆曲线计划正矢,检测工具仍为20米弦线。在曲线养护中要切实注意缓和曲线的养护,缓和曲线是超高、轨距递减段,是正矢渐变段,也是机车车辆脱轨多发段,因此,超高、轨距递减是否均匀,正矢变化是否符合规定,是缓和曲线养护的关键。曲线范围内联接零件要经常保持全、紧、靠、密、正、无失效、扭力矩符合《铁路线路维修规则》规定,挡肩破损的轨枕要及时修复,失效的要及时更换,道床不洁要及时清筛,道床要饱满,上股按规定加宽到0.4米。在弯道上设置超高,能提高行车安全性,增强驾驶员驾车的信心。因此,改建平曲线都应设置超高。

设置超高是提高交通安全的一种措施,不能用设置超高来代替增大弯道半径。超高尽管重要,但毕竟只是一种辅助措施。在设置超高弯道上提高行车速度,必须保证与之相适应的平面视距。设置超高时,其过渡方式主要有:

车辆在弯道上行驶时,前轴左侧车轮和后轴的右侧车轮行驶的轨迹不同,后轴的右侧车轮常行驶在路肩或路肩以外的路面上,容易发生翻车等事故。故在改建曲线时须加宽内侧路面。

当曲线内侧路面加宽遇到困难时,可采用曲线内外侧同时加宽的办法,以合适的方法选择缓和曲线和圆曲线的参数,最大限度地利用现有路面。不论是设置超高或加宽,都必须设有一段超高缓和段和加宽缓和段,不允许突变。

3.2 对小半径曲线加强防范是保证

小半径曲线受列车车辆附加力较大,采取与其它线路相同的轨道结构,显然是不行,因此除按《铁路线路维修规则》规定安装轨距杆,可根据曲线的实际情况采用增加轨距杆给于加强。在对小半径曲线技术性能改进中铺设Ⅲ型轨枕及相应的扣件是延长曲线养护及换轨周期最佳选择。对轨检车检查病害较多,动态添乘晃车严重,静态检查超限较多,且曲线上股轨枕外侧挡肩挤坏严重的曲线应换铺Ⅲ型轨枕,Ⅲ型轨枕挡肩为预埋铁件,强度大,易保持轨距,且Ⅲ型枕体积大,抗横向力、纵向力能力大,使曲线状态较稳定,养护维修的工作量减少,其经济效益提高。

3.3 整治重点病害是关键

对小半径曲线病害每年要有计划的进行整治,整治中要坚持标本兼治的原则,大力采取“四新”技术,“四新”技术即新技术,新工艺,新材料,新设备。来确保整治的效果。

(1)轨距病害是小半径曲线最普遍的病害,应根据实际轨距的大小计算里外股扣板的号数的公式来改正轨距,P50的里外股扣板和为16,内侧扣板号码=(轨距-1423)/2、外股=16-里股扣板号码、但应注意它们的扣板和应是相应的值如P50kg/m钢轨每股内外扣板和是16,P43kg/m钢轨每股内外扣板和是34。轨距病害是小半径曲线最普遍的病害,可用加宽尼龙座0~6号、0~8号、0~10号,特制6号、10号轨距挡板,可调轨撑等进行整治。特制6号、10号挡板座对改正轨距作用比较好,但需根据侧磨不断的变化和轨距的增大,经常调整轨距挡板,更换轨距挡板工作量大,且成本比较高;可调轨撑不但可调整轨距,而且可以增加钢轨抵抗横向的能力,效果颇佳,但在高冻害地段因冬季垫板造成轨撑后座高出挡肩,失去作用,反而减弱了钢轨抵抗横向力的能力,因此应慎用。钢轨支嘴也是小半径曲线常见病害,尤其P60钢轨比P50钢轨支嘴更普遍,除调整好轨缝、防止接头顶死外,采取用接头夹板里外口互换的办法,简单易行,效果甚好。对一些顽固支嘴接头,可在支嘴处增设曲线稳定桩。

(2)曲线“鹅头”和钢轨“支嘴”也是小半径曲线最常见病,除调整好轨缝,防止接头顶死,采取用接头夹板里外口互换的办法,简单易行,效果直接,该办法主要依据是“支嘴”接头的夹板已形成变曲,里外口倒换后,其弯曲与“支嘴”方向相反,上紧夹板后,可使“支嘴”回收,或在接头夹板与钢轨的轨头下额增加铁片,然后上紧接头螺栓,上紧接头螺栓时应从接头的中间螺栓向接头的两边上紧,然后用道钉锤敲击两夹板,再对接头螺栓进行加固,对一些顽固的“支嘴”,可在“支嘴”处增设曲线稳定桩,对由于钢轨硬弯造成“支嘴”,因接头处矫正因难,应用换轨办法整治;对压伤的接头,坚持“焊早、焊小”的原则,如果伤损长度大,焊补平整度不易掌握,形成新的不平顺,且对钢轨探伤极为不利;有条件要对波磨和肥边进行打磨,对减缓机车、车辆对小半径曲线冲击力有一定的作用,实行曲线定期涂油,对减缓曲线侧磨也有一定的效果。曲线“鹅头”的整治同样要引起重视,在全面调查测定正矢前,先拨好曲线两端的直线方向,用目测或用简化计算方法消除“鹅头”,然后再测正矢,计算拨道;对缓和曲线应按规定计算正矢,将直缓、缓圆、圆缓、缓直各点固定在正确位置上;曲线拨道必须经过精确的计算后彻底拨好,防止单纯为了减少拨道量,不考虑曲线原设计条件,不根据计算数值,盲目进行小调整,任意改变计划正矢,上挑或下压的作业;避免拨道作业中产生的误差赶向一头,可分别从曲线的两端拨起,逐渐拨到圆曲线中点汇合。根据支嘴程度,适当增加外股道床宽度,并分层次夯拍,增加道床阻力。调换支嘴处里外口夹板,利用夹板的反弯控制接头支嘴。同时拨道作业中,对支嘴接头只能压,不能挑。如必须上挑时要用拨动小腰带动接头的方法,不要直接拨动接头,防止支嘴扩大。

3.4强化小半径曲线防范是细节

按《修规》规定安装轨距杆或轨撑时,可根据曲线的实际情况采用增加轨距杆,或采取轨距杆与轨撑配合使用的方法加强。

在小半径曲线上铺设淬火轨和Ⅲ型轨枕及相应的扣件是小半径曲线技术加强的发展方向。淬火钢轨具有较高耐磨强度和足够的硬度。对曲线上股轨枕外侧挡肩挤坏严重、动静态检查病害较多的曲线换铺Ⅲ型轨枕及相应的扣件。坚持钢轨涂油。在曲线上利用钢轨侧面涂油的办法可以减缓钢轨磨耗特别是侧磨,这在国内外已是成熟的经验。我国有的小半径曲线经涂油后可以延长钢轨使用寿命1/3或更长一些。涂油的方法有两种,一种是装在列车上的叫做车载涂油器,一种是安装在地面

上的涂油器,叫做地面涂油器(或称路旁涂油器)。

加强对钢轨的养护工作。钢轨在通过一定运量后,在其顶面可能出现两大类病害:一类为有规律的周期性病害,叫做波形磨耗,简称波磨;另一类为无规律的非周期性病害,如擦伤、龟裂、剥落掉块、压溃、接头坍塌等。整治波磨钢轨,一般为使用大功率的钢轨打磨列车,有效地消灭波磨轨。为延缓波磨的产生或发展,对钢轨表面的擦伤、坍低接头、马鞍形磨耗等进行喷焊,以整平轨面。除采取以上直接措施外,在日常养护中还应加强捣固、消灭接头病害,清筛道床并应铺设坡形胶垫以改善轮轨接触条件,减少或延缓波磨的发生。

巩固拨道成果,位了更好的使曲线良好状况保持完好和稳定还需采取“起、拨、改、捣”及超高、轨距、正矢递增(减)相结合的全面整治,矫直硬弯钢轨,更换失效轨枕,伤损钢轨和轨下胶垫等,并且曲线地段应彻底挖除翻浆冒泥,保持道床整洁饱满,外股还应有道床的加宽和碴肩堆高,增强道床的横向阻力。

可利用地锚来张拉外界力的方法,缓解和控制水平力的作用,地锚拉杆在很大的程度上能延长小半径曲线的整正周期,具体方法在曲线整治之后在路肩上、按曲线半径及变化情况按需要设置,据实践证实,地锚有控制小半径曲线方向和线路横移、爬行,减少曲线外股钢轨的磨耗等诸多作用。

曲线外股超高是为了平衡离心力和向心力作用,超高太小会使列车高速通过曲线时容易脱轨或者倾覆。超高过大时低速或者停车时在其作用下易发生倾覆,因此应使用测速仪精确测定出通过该曲线列车的最高、最低速度及平均速率,根据公式计算,调整曲线的超高。

3.5 建立科学的养护技术资料是完善

建立健全的铁路小半径曲线的科学养护技术资料是获得曲线技术状态信息,掌握曲线设备变化规律,编制曲线作业计划和分析研究病害的的基础及可靠依据。因此在日常工作中应当认真执行各项定期检查制度,各项定期拨道制度等,全面做好曲线超高,正矢,磨耗值等技术资料的统计,分析与归档工作。一旦发现曲线病害,便可依据这些原始资料来查找病害发生的原因,并采取行之有效的对策进行整治。

4 对提高小半径曲线养护效果的几点建议

随着铁路轨道现代化和高速的发展,逐渐步入了由轻到重、逐步加强的趋势。但在特定的历史背景、人文地理及自然条件下修筑的普通铁路依然存在着一些病害顽症。作为普通铁路三大薄弱环节之一的小半径曲线,是铁路工务部门向来重点防控的设备,而养护的效果毫无疑问是很重要的,没有好的养护效果,就会出现越来越多的病害,会恶性循环下去,因此提高小半径曲线养护效果是很有必要的。

(1)经常摸索自己管内曲线变化规律,做好曲线苗头性病害的预防工作,可起到事半功倍的效果,每一条周期也不同。就一条曲线而言,其轨道结构各部分变化周期也不相同,因此在日常养护中注意摸索每条曲线及曲线各部分变化周期,有计划的进行预防性修理,可减少维修工作量,而且可以避免曲线状态的恶化。

(2)对小半径曲线进行大修和技术改造时,在钢轨和轨枕的选型上,应优先选用合金轨和Ⅲ型轨枕,虽然大修或技术改造费用会增大,但从长远看,曲线状态稳定,安全保证性强,运营成本低,间接效益好。

(3)加大对钢轨修理的投入。目前钢轨修理仅局限于接头焊补,对波磨和肥边打磨机具的限制,基本上没有进行此项工作,因此,应考虑增加钢轨修理方面机具的投入,“欲先善其事,必先利其器”。

(4)曲线养护中的技术管理在曲线养护中要坚持做到“落实十项措施”一是清理路肩。整修排水设备,使路基排水畅通。二是保持道床弹性和排水良好,根据曲线半径或线路横移情况,适当加宽曲线外侧碴肩宽度。无缝线路地段可根据需要堆高碴肩。三是更换接头失效轨枕,接头的四根轨枕下垫高弹胶垫。四是整修钢轨坍低接头,对马鞍形磨耗、波形磨耗等要进行打磨,侧面磨耗曲线应定期涂油。五是根据具体情况,增设轨距杆及轨撑,必要时增加防爬器及支撑,杜绝线路爬行。六是绝缘接头采用高强绝缘螺栓(扭力矩保持700N·m)。七是加强捣固及时消灭空吊板、三角坑等,补足道碴填满夯实。八是按规定做好超高及其顺坡,使超高顺坡均匀曲线圆顺。九是对变化较快的曲线应埋设永久性拨道桩。十是小半径曲线要更换耐磨淬火轨。

结论

以上所述适用于目前我国铁路的小半径曲线,以及对于小半径曲线的产生,为什么要设置小半径曲线,小半径曲线的病害以及整治,还有养护以及建议。首先,关于小半径曲线常见病害及成因分析,小半径曲线成因分析. 钢轨损伤病害轨道几何尺寸易超限。联接零件易松动,且破损率高。易出现曲线的病害的整治。防止小半径曲线产生病害的主要对策。调整好小半径曲线各部尺寸是基础,对小半径曲线加强技术防范是保证,整治重点病害是关键,要重点整治“鹅头”和“支嘴”,强化小半径曲线技术细节,对提高小半径曲线养护效果的几点建议。同时我认为要治本,要从根本上的解决问题,要抱着格物致知的精神去研究,去整治,问题自然就会得到好的解决。我也认为线路的养护与维修是线路上每天都要干的工作,重复的工作,它是确保线路质量,从根本上消除铁路病害和增加线路寿命的重要环节。钢轨接头、曲线地段、岔后正失是线路养护与维修的重要地段之一。铁路线路的正常运行直接关系着铁路的运量,和效益直接挂钩。所以我们要把铁路的这些重点维修地段保养好,线路的养护与维修要加强管理,使用机械化工作,提高职工们的素质,提高生产效率和施工质量。在线路的养护与维修中应该探讨和研究更有利于线路平稳的对策来保证线路是正常运行和减小工人们的工作量,我认为建立健全的曲线养护资料是获得曲线养护信息掌握期限变化规律,编制曲线作业计划和分析研究曲线病害的基本依据,为此应认真执行各项检测制度,定期对小半径曲线进行分析和整正。

小半径曲线在我们山区铁路网中还有很多,在铁路运输中也是不可缺少的组成部分,为了保持它的良好作用,我们仍需不断的研究和探索,为之付出努力。我相信随之我学习与工作能力的不断加强,不断的深入探讨这个命题,我会对小半径曲线越来越熟悉的,为我国的铁路事业奉献一份我的力量。

参考文献

[1] 何奎元主编,《铁路轨道与修理》,中国铁道出版社,2008-08-01版

[2] 铁道部,《铁路线路修理规则》,中国铁道出版社,2006年版

[3] 铁道部,《铁路线路设计规范》,中国铁道出版社,2006年版

[4] 王其昌主编,《线路大修》,北京,中国铁道出版社

[5]《铁路工程设计技术手册线路》,北京,铁道出版社

[6] 郝瀛主编,《铁道工程》,北京,中国铁道出版社,2000

[7]《铁路技术管理规程》,北京,中国铁道出版社1999

[8]《铁路主要技术政策》,北京,中国铁路2000

[9] 荣佑范主编,《铁路线路维修与大修》,北京,中国铁道出版社, 2004。

[10] 严健主编,《线路养护维修存在的问题及其解决办法》,中国铁路, 2004

[11] 罗乃娟主编.钢轨伤损原因及防治[J].西铁科技,2004(1):47~47

致谢

时光荏苒,犹如白驹过隙。三年的大学生活已近尾声,三年多的努力与付出,随着本次论文(设计)的完成,将要划下圆满的句号。

这次毕业论文能够得以顺利完成,是所有曾经指导过我的老师,感谢指导老师陈老师和辛老师,对我的帮助,我的同学对我的教诲、和鼓励的结果。我要在这里对他们表示深深的谢意!

再次要感谢我的各位指导老师。各位指导老师在我毕业论文的撰写过程中,给我提供了极大的帮助和指导。从开始选题到中期修正,再到最终定稿,老师给我提供了许多宝贵建议,他们教会我的不仅仅是专业知识,更多的是对待学习、对待生活的态度,没有这样的帮助和熏陶,我不会这么顺利的完成毕业设计。在此向各位指导老师表示真挚的感谢和崇高的敬意

邻近毕业之际,我还要借此机会向在这三年中给予我诸多教诲和帮助的学院领导、各位老师表示由衷的谢意,感谢你们三年来的辛勤栽培。梅花香自苦寒来,在各位任课老师的悉心帮助和支持下,在三年坚持不懈的努力下,我学到了很多专业知识,掌握了一定的专业技能,培养了实践研究能力,对我以后的人生打下了坚实的基础。

我还要感谢同组的各位同学,我们相互探讨、共同进步的过程,给予我诸多启迪,对于你们帮助和支持,在此我表示深深地感谢!

在论文写作过程中,我还参考了相关的书籍和论文,在这里一并向有关的作者表示谢意。

最后,我要感谢母校对我的培养,这份深厚的恩情我永远不会忘记

最小曲线半径

最小曲线半径 | [<<][>>] 最小曲线半径(minim um ra diu s of cu rve)铁路全线或某一路段内规定的圆曲线半径的最小值。最小曲线半径对运营条件影响较大,且影响程度随运量和行车速度的增大而增大。若半径过小,不仅会限制速度,加剧轮轨磨耗,增加维修工作量,增大运营支出,影响旅客舒适,甚至危及行车安全。从工程方面看,若选项用的曲线半径偏大不适应地形,甚至危及行车安全。从工程方面看,若选用的曲线半径偏大不适应地形,则会增加桥、隧和路基工程数量,增大工程费;过小的半径对工程也会产生不利影响,如增加线路长度,需要加强轨道,增加接触导线的支柱数量(对于电力牵引线路),导致粘着系数降低及在紧坡地段因曲线阻力和黏着系数降低导致坡度折减增大而 展长线路等。 影响最小曲线半径标准的因素可归纳为以下五个方面。①行车速度。曲线半径是限制列车在曲线上的运行速度的主要因素之一,因此,最小曲线半径应满足设计线的旅客列车最高行车速度(或路段设计速度)的要求,同时还应考虑客、货列车或高、低速度列车共线运行时的速度差的影响。②设计线的运输性质。客运专线主要保证旅客舒适度,重载运输线重视轮轨磨耗均匀,客货列车共线运行线路则需两者兼顾。③运行安全。为保证机车车辆在曲线上的运行安全,保

证轮轨间的正常接触,车辆上所受的力应保持在安全范围内。最小曲线半径应保证车辆通过曲线的安全性、稳定性及客车平稳性的评价指标符合相关规定。还应保证列车在曲线上运行时不倾覆。抗倾覆安全系数与曲线半径、行车速度、曲线超高、风力大小、车辆类型、装载情况与重心高度、振动性能等因素有关,在其他条件一定的情况下,最小曲线半径决定于最小的抗倾覆安全系数。④地形条件。在保证运营安全的前提下,曲线半径应与沿线的地形条件相适应。山区地形复杂,坡陡弯急,采用较小半径的曲线既可避免破坏山体,影响环境,也可减少工程,节约投资。⑤经济因素。小半径曲线可更大程度地适应地形,从而减少工程及投资,但增大运营支出,在一定的地形条件和运输需求下,存在经济合理的最小曲线半径,故应全面权衡得失,经技术经济比选确定最小曲线半径标准。 计算条件与公式最小曲线半径的计算主要考虑旅客舒适度要求和轮轨磨耗均匀两种条件。 旅客舒适条件要求的最小曲线半径曲线设置最大超高,且旅客列车以最高行车速度通过曲线时所产生的欠超高不大于允许值时,最小曲线半径为 (m)(1) 式中,R m i n1为旅客列车最高行车速度要求的最小曲线半径(m);

曲线计算公式

一、曲线要素计算 已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长) 1、求ZH 点(或ZY 点)坐标及方位角 ?? ? ??-=-=-=11sin cos A T JDY ZHY A T JDX ZHX T JDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角 ?? ? ??+=+=+-=22sin cos A T JDY HZY A T JDX HZX L T JDZH HZZH H 3、求解切线长T 、外距E 、曲线长L (1)圆曲线 ?? ? ??=-==180/)1)2/cos(/1()2/tan( απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan( )(02 0R l l l Rl l R p R E l R L q p R T s s s H s H H ===?????-+=+?-=+?+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ??? ??+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=??-==-=-=1111121132 125cos sin sin cos /180)2/() 6/()40/(A y i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π 四、圆曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=?+?-=?? ???=-==++-=-++=--=11111212311102 1123 1111 cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(A y i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中 五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ??????--=?+-=??+==-=-=222222223 2 225cos sin sin cos /180)2/()6/() 40/(A y i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZH HZZH L s s s π 六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负) ?? ? ??-=-=+=T N Y BDY T N X BDX T T sin cos α 七、纵断面高程计算 (1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ) )(*ZH DZH i H DH -+= (2) 竖曲线上高程计算 已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) ) 2/(2 R l k il H DH ZH DZH l ?-+=-= 注: JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标 R 、L S1、L S2:半径、缓和曲线1、缓和曲线2 LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。 DLJJ :道路交角(右夹角α)。 BZJL :边桩距中桩距离:左为正值,右为负值 DZH 、DX 、DY 、DH 、BDX 、BDY :被求解点桩号、点X 值、点Y 值、点高程值、边桩点X 值、边桩点Y 值 i (Z+1Y-1):JD 处道路转向:左转时+1,右转时为-1

平曲线要素计算

拉坡后,坡度差已知,变坡点高程已知,切线上各点和高程也就知道了。选定竖曲线半径R ,用竖距计算公式求出切线上各点的竖距,切线高程减竖距就是竖曲线高程。竖距公式如下: 一、路线转角、交点间距的计算 (一)在地形图上量出路线起终点及各路线交点的坐标: ()()()21Q 23810,27180JD 2399626977JD 2468426591D 、,、,、()3JD 24848025885,、()4JD 2535025204,、()ZD 2606225783, (二)计算公式及方法 设起点坐标为()00,QD X Y ,第i 个交点坐标为(),,1,2,3,4,i i i JD X Y i =则坐标增量11,i i i i DX X X DY Y Y --=-=- 交点间距D =象限角 arctan DY DX θ= 方位角A 是由象限角推算的: 转角1i i i A A α-=- 1.1JD QD 与之间: 坐标增量10=2396623810=1860DX X X =--> 1026977271802030DY Y Y =-=-=-<

交点间距275.33D m === 象限角 203 arctan arctan 47.502186 DY DX θ-=== 方位角036036047.502312.498A θ=-=-= 2.12JD JD 与之间: 坐标增量21X =2468423966=6880DX X =--> 21Y 26591269773860DY Y =-=-=-< 交点间距788.89D m === 象限角 386 arctan arctan 29.294688 DY DX θ-=== 方位角136036029.294330.706A θ=-=-= 转角110=330.706312.49818.208A A α-=-= 3. 23JD JD 与之间: 坐标增量32X =2484024684=1560DX X =--> 32Y 25885265917060DY Y =-=-=-< 交点间距723.03D m === 象限角 706 arctan arctan 77.54156 DY DX θ-=== 方位角236036077.54282.46A θ=-=-= 转角221=282.46330.70648.246A A α-=-=- 4. 34JD JD 与之间: 坐标增量43X =2535024840=5100DX X =--> 43Y 25204258856810DY Y =-=-=-< 交点间距850.8D m === 象限角 510 arctan arctan 53.171681 DY DX θ===- 方位角336036053.171306.829A θ=-=-= 转角332=306.829282.4624.369A A α-=-=

小半径曲线

小半径曲线病害原因及整治 铁路曲线选型由于受到地形、特殊地物的影响,采用半径小于300米的曲线来绕避障碍,这类曲线在日常工作中称为小半径曲线。小半径曲线多出现与山区铁路、部分专用线等。 一、小半径曲线病害原因分析 1、离心力平衡难以实现 小半径曲线运用于正常线路,在行车速度不变的情况下,小半径曲线的离心力随着半径的减小而增大。见公式(1) R mv F 2 = (1) F ——离心力 m ——列车质量 V ——列车行驶速度 R ——曲线半径 我们知道,在曲线上行驶列车的离心力由重力的一个分力来进行平衡,因此当行车速度v 不变时,半径越小曲线外轨的抬高量要求越大,内外轨轨面形成的斜面越陡,离心力得以平衡。而我国采用公式(2)计算外轨超高。 R v H 2 8.11= (2) 其中v 为速度的加权平均值,它综合考虑了列车的质量、对数和每列车的行车速度得出的平均值。

∑∑=i i i i i m N v m N v (3) v ——速度的加权平均值 H ——外轨超高量 N i ——列车对数 由于列车正常行驶速度与v 存在差别,因此实际所需的外轨超高量与实际设置的超高量不一致,存在未被平衡的离心力。特别列车以v max 、v min 通过曲线时,列车所受的离心力更是难以平衡。 2、横向力较大 列车在轨道上运行,其方向由钢轨控制。列车能够转弯是由于曲线外轨对车轮的挤压作用。车轮与外轨的挤压、碰撞,曲线外轨作用于车轮一法向向(动)量,曲线半径越小,瞬时碰撞所产生的法向向量越大,外轨对车轮作用的力越大。根据作用力与反作用力相等原理,我们知道车轮作用于外轨的法向力也越大。 3、轮轨之间运动复杂 由于曲线半径较小,内外侧车轮与钢轨之间运动、摩擦方式既不是单一方式,也不是完全相同方式,难以描述。 4、线路实际线型与理论线型不一致。 对于曲线,曲线半径越大,实际线型与理论线型越趋于一致。小半径曲线由于曲线半径较小,弧弦差较大,线路的圆顺性较差,线路实际线型与理论线型不一致。 二、小半径曲线的常见病害 1、外轨磨耗量大

道路坐标计算公式(简单实用)

曲线坐标计算 1、曲线要素计算 (1)缓和曲线常数计算 移距R l 24/p 2 s = 切垂距 23 s 240/2/m R l l s -= 缓和曲线角R l R l s s πβ/902/0??== (2)曲线要素计算 切线长 m R T ++=2/tan )p (α 曲线长 ?+=?-+=180/]180/)2([20απβαπR l R l L s s 外矢距 R R E -+=)]2/cos(/)p [(0α 切曲差 L T q -=2 2、主要点的里程推算

s s s S l YH HZ )/22l -(L QZ YH )/22l -(L HY QZ l +=+=+=+=-=ZH HY T JD ZH 检核: HZ T JD =-+q 3、方位角计算 根据已知JD1和JD2的坐标计算出 21JD JD -α 偏角βαα±=--211JD JD JD ZH ?±-=-18011JD ZH ZH JD αα 4、计算直线中桩坐标 (1)计算ZH 点坐标: ZH JD JD ZH ZH JD JD ZH T y y T x x --?+=?+=1111sin cos αα (2)计算HZ 点坐标: 2 11211cos cos JD JD JD HZ JD JD JD HZ T y y T x x --?+=?+=αα (3)计算直线上任意点中桩坐标 待求点到JD1的距离为i L 2 112 11sin cos -JD JD i JD i JD JD i JD i i L y y L x x HZ T L --?+=?+=+=αα里程 待求点里程 5、计算缓和曲线中桩坐标 (1)第一缓和曲线上任意点中桩坐标 在切线坐标系中的坐标为: s i s i Rl l y Rl l l x 6/)(40/3 25=-= ZH 到所求点方位角:

小半径曲线盾构始发和到达施工技术

小半径曲线盾构始发和到达施工技术 摘要:为解决盾构在小半径曲线内始发、到达的难点和风险,文章以广佛线地铁某盾构标段盾构在320 m小半径曲线内始发和到达的施工为研究背景,对盾构在小半径曲线内盾构始发和到达施工的风险进行了系统研究,并提出了相应的控制措施、取得了较好的效果,为今后类似工程的施工提供了借鉴。 关键词:小半径曲线;盾构机;铰接;曲线始发;曲线到达 随着城市高速的发展,带引了地下轨道交通建设的飞速发展,但在城市轨道交通线路的选择上,由于受规划及建(构)筑物的制约,使得城市轨道交通的线形设计越来越复杂。不可避免的出现存在小半径曲线的规划线路。小半径曲线盾构法施工技术与常规盾构法施工技术相比存在一定的特殊性,施工难度大、风险大。因此,研究小半径曲线盾构法施工技术,针对盾构在小半径曲线始发、到达以及掘进过程中的风险,提出科学、合理的应对措施,可有效的避免盾构在小半径曲线内施工容易超限、管片容易出现错台、漏水等质量事故。相信对以后类似的小半径曲线盾构法施工具有一定的借鉴作用,可以很好地解决设计线型对盾构施工的影响。 1盾构机的选型 盾构机在曲线内始发或是到达掘进时,首先盾构机必须能够满足曲线内掘进的参数要求,也就是说所选用盾构机的最小转弯半径必须满足小于盾构始发或到达曲线的曲率半径,通常盾构机的最小转弯半径的大小取决于盾构机的长度、是否启用铰接、铰接的开启量等因素,盾构机选取尺寸尽量短。对盾构机选型还要验算盾构机的最小转弯半径,计算方法如下: Rmin=÷sin 式中:LA为盾构机前体长度,mm;LB为刀盘的厚度,mm;􀱺为铰接可开启最大值。 例如广佛线[桂~雷区间]320 m的小转弯半径始发和到达,本工程盾构机采用了日本三菱的泥水平衡盾构机,盾构机总长度(刀盘面至盾尾)为8 420 mm,盾构机筒体的直径为6 260 mm,刀盘的开挖直径为6 280.5 mm,盾构机前体(刀盘面到铰接中心)的长度为 5 028 mm,后体(铰接中心到盾尾)的长度为3 392 mm。盾构机具备中折装置,中折角度最大1.5 ̊,盾构机刀盘面到铰接中心的长度为5 028 mm。根据上面公式,可计算本工程所采用盾构机,在打开铰接后,其能转弯的最小转弯半径为160.81 mm,能满足区间曲线掘进的要求。 2管片的设计 曲线段隧道每掘进一环,管片端面与该处轴线的法线方向在平面上将产生一定的角度θ,为了更好的使得盾构机沿着计划曲线掘进,在管片选型时尽可能选

地铁小半径曲线的养护维修与病害整治

小半径曲线的养护维修与病害整治 铁道线路不间断地受到机车、车辆的碾压和冲击,所以线路状态处在不断的变化当中。曲线地段特别是小半径曲线较直线地段所受到的冲击、碾压和推挤更为突出,不但线路状态变化较快、较大,而且轨件的磨损也比较严重,因此小半径曲线的养护维修与病害整治成为线路养护维修工作的一个重要环节,其养护任务的好坏直接关系着维修投入与行车安全。 1曲线轨道的受力分析 小半径曲线病害的产生与钢轨受力有着直接关系。当列车在曲线地段运行时,产生的力十分复杂。通过力的分析,可将列车作用于钢轨上的力分为3个方向,即竖直方向、水平横向以及水平纵向。 1.1作用于钢轨上竖直方向分力的构成 机车和车辆在轨道上运行时,作用于钢轨上车轮的静压力(即分配到该车轮上的车辆重量——轴重)随着铁路运输的发展将不断增加,而加强轨道结构,首先是增加钢轨的重量,这样才有可能满足轴重不断增加的要求。列车通过轨道不平顺地段以及不平顺车轮运行时会产生附加力。轨道不平顺分为长不平顺和短不平顺两种。长不平顺通常因捣固不良、枕木腐朽、三角坑以及轨道弹性不均匀而形成;短不平顺的形成与钢轨波浪形磨耗、车轮空转有关。在曲线地段还有因外轨超高以及车架对车轮横向压力而引起的附加垂直力。 1.2作用于钢轨上横向水平力的构成 横向水平力主要指车轮对钢轨的侧压力和曲线上的附加横向力。 以上力由轮缘对轨头的压力(传递车架压力)和车轮在钢轨上横向滑动时产生的摩擦力组成,因此车轮对钢轨的侧压力可以取上述两力之和或两力之差。曲线地段产生的横向水平力比较大。曲线半径愈小,横向水平力愈大。曲线上产生的离心力和因外轨超高使车辆倾斜而产生的机车车辆重力分力有关。这些横向力(导向力、侧向力及车架压力)的大小取决于离心力、行车速度、曲线半径和外轮超高。当在压应力和横向力的共同作用下超过了钢轨的屈服强度时,在钢轨作用边产生碾堆(即塑性变形),在踏面形成局部压陷特征,压陷处不易和车轮踏面接触(即短不平顺)而形成暗斑,最终形成疲劳裂纹。 当钢轨的磨耗速度小于疲劳裂纹的扩展速度时,最终将发展成剥离掉块。曲线半径越小,出现掉块的情况就越严重。 1.3纵向水平力 产生纵向水平力的主要原因是轨道爬行和温度作用,在曲线地段,钢轨上还作用着滑动引起的摩擦力。轨道爬行主要是在车轮滚动下钢轨的蛇形起伏而产生的,在列车制动地段尤其明显。 如钢轨和轨枕之间连接不够牢固,弹性道床抵抗轨枕纵向位移的阻力大于钢轨在支座上滑动的阻力,此时钢轨可能纵向移动,而轨枕则仍然留在原地。轨道爬行实质上取决于轨下基础刚度,刚度愈大,因钢轨扭曲及其断面转动而引起的爬行也愈大;钢轨扭曲增大也将使爬行增加。 2曲线病害产生的原因及危害 小半径曲线在以上各种力的作用下,导致钢轨、线路几何尺寸、轨枕、道床等设备产生变化,经过一段时间的列车运行,各种残余变形进一步扩大,线路各种病害逐步显现出来。 2.1主要病害 一是钢轨伤损病害:钢轨侧磨、波磨及接头伤损是小半径曲线常见的病害,尤其是侧磨,是小半径曲线最突出的伤损类型。二是轨道几何尺寸易超限:小半径曲线上高低、轨距、超高、正矢相对其它线路容易发生变化,保持的周期短,特别是轨距扩大病害相当普遍,并且随着钢轨侧磨的增加而逐渐加剧。三是连接零件易松动且破损率高:小半径曲线上连接零件承受的冲击力和横向作用力都比较大,在相同扭力矩的情况下,小半径曲线连接零件容易松

曲线公式

建立环境:Pro/E软件、笛卡尔坐标系 x=50*t y=10*sin(t*360) z=0 名称:螺旋线(Helical curve) 建立环境:PRO/E;圆柱坐标(cylindrical) r=t theta=10+t*(20*360) z=t*3 蝴蝶曲线 球坐标PRO/E 方程:rho = 8 * t theta = 360 * t * 4 phi = -360 * t * 8 Rhodonea 曲线 采用笛卡尔坐标系 theta=t*360*4 x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta) ********************************* 圆内螺旋线 采用柱座标系 theta=t*360 r=10+10*sin(6*theta) z=2*sin(6*theta) 渐开线的方程 r=1 ang=360*t s=2*pi*r*t x0=s*cos(ang) y0=s*sin(ang) x=x0+s*sin(ang) y=y0-s*cos(ang) z=0 对数曲线 z=0

y = log(10*t+0.0001) 球面螺旋线(采用球坐标系) rho=4 theta=t*180 phi=t*360*20 名称:双弧外摆线 卡迪尔坐标 方程:l=2.5 b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360) 名称:星行线 卡迪尔坐标 方程: a=5 x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 名稱:心脏线 建立環境:pro/e,圓柱坐標 a=10 r=a*(1+cos(theta)) theta=t*360 名稱:葉形線 建立環境:笛卡儿坐標 a=10 x=3*a*t/(1+(t^3)) y=3*a*(t^2)/(1+(t^3)) 笛卡儿坐标下的螺旋线 x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360)) z = 10*t

小半径曲线施工方法

轨道小半径曲线施工方法 1.前言 随着我国城市轨道交通的蓬勃发展,在城市的特殊环境下的轨道铺设不可避免的要用到小半径曲线。这种在300米以下的小半径曲线上的钢轨弯曲量很大,靠人工自然弯是很难的。所以在轨道铺设前要提前进行预弯。 2.过程控制、精度控制 钢轨预弯中以正矢控制弯曲量。限于弯轨机的长度,为了确保弯轨精度最好是以3米弦长控制正矢。 3.小半径曲线施工流程 4.操作要点

①内业资料准备 根据曲线要素计算正矢,算法如下 1)正矢计算公式圆曲线正矢R L F C 82 = 式中L-----弦长, C F -----圆曲线正矢(mm ) R------曲线半径(m ) 2)对于带有缓和曲线的的正矢一般用递增法计算递增率N F F C S = 式中C F -----圆曲线正矢(mm ) N---------缓和曲线分段数,其值为n L L N =(0L 为缓和曲线长,n L 为各测点间距离) 缓和曲线各点计划正矢 缓和曲线起点ZH 点正矢6 S 0F F = 缓和曲线第一点正矢S F F F +=01 缓和曲线第二点正矢S F F F +=12 缓和曲线第三点正矢S F F F +=23 ……………………………………. 缓和曲线终点正矢HY 0F F F C N -= 3)例: 以沈阳有轨电车2号线浑南四路K14+595为例,曲线长84.085米,曲线半径45米,一端缓和曲线长15米。弯轨以3米弦长控制正矢 则根据公式mm 25360 9 == C F (圆曲线正矢) mm 5.210 25 == S F (递增率) 缓和曲线起点正矢mm 4.06 5 .20==F (ZH 点正矢)

各种曲线计算公式

一、公路平曲线坐标计算公式 1、缓和曲线: Lb1 0 {K,D} ①T=A2/R ②L=J(K-O)+T ③B=T2 /2/A2 *180/π④M=(L-T)-(L5-T5)/40/A4+(L9-T9)/3456/A8-(L13-T13)/599040/A12+(L17-T17)/17542600/A16 5.N=(L3-T3)/6/A2-(L7-T7)/336/A6+(L11-T11)/42240/A10-(L15-T15) /9676800/A14+(L19-T19)/3530097000/A18 ⑥I=(L2-T2)*180/2/A2/π ⑦X=C+Mcos(Q-ZB)-ZNsin(Q-ZB)+Dcon(Q+ZI+S)◢ ⑧Y=F+Msin(Q-ZB)+ZNcos(Q-ZB)+Dsin(Q+ZI+S)◢ Goto 0 注:A:缘和曲线参数 R:起点半径 J:曲率半径判定值(当曲率半径由小到大取1,否则取-1)(当起点半径到终点半径是由大或无穷大到小取+1,反之则取-1) K:欲求点里程 O:缘和曲线起点里程 C:缘和曲线起点X坐标Q:起始方位角(当J=-1时,方位角应+180。) Z:偏角判定值(当J=1时,左偏为-1,右偏为1;当J=-1时,左偏

为1,右偏为-1) D:距中桩的距离 S:斜交角度 F:缘和曲线起点Y坐标 2、圆曲线 Lb1 0 {K,D} ①L=K-0 ②X=C+R[sin(Q+L/R*180/π)-sinQ]+Dcos(Q+L/R*180/π+S)◢ ③Y=F-R[cos(Q+L/R*180/π)-cosQ]+Dsin(Q+L/R*180/π+S)◢ Goto 0 注:K:欲求点里程 O:圆曲线起点里程 C:圆曲线起点X坐标 R:圆曲线半径 (左偏为负) Q:起始方位角 D:距中桩的距离 S:斜交角度 F:圆曲线起点Y坐标 3、直线 Lb1 0 {K,D} ①L=K-0 ②X=C+LcosQ+Dcos(Q+S)◢

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类: |字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。 (一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量(center line survey) 、测纵断面图(profile) 、横断面图(cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量(road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。 本章主要论述中线测量和纵、横断面测量。 二、中线测量(center line survey)

小半径曲线隧道盾构施工工艺

小半径曲线隧道盾构施工工艺 1 前言 1.1工艺工法概况 小半径曲线盾构隧道是指曲线半径在250~400米的曲线隧道,由于施工采用盾构法施工,盾构机的设计转弯能力直接影响到隧道的施工难易程度,目前使用较多的德国海瑞克Φ6280mm的土压平衡盾构机的最小水平转弯半径为200米、日本小松TM625PMD盾构机最小水平转弯半径为150米,可以满足小半径曲线的施工要求。但施工过程中需采用相应的辅助措施及加强施工各个方面的控制才能有力确保小半径曲线隧道施工质量。 1.2工艺原理 1.2.1盾构掘进过程中通过刀盘的超挖刀,推进油缸的压力、行程差、铰接油缸的行程差使盾构机根据隧道的设计曲线前行以完成曲线段的隧道施工 1.2.2通过增大每环管片的楔型量、减少环宽以增大管片转弯的能力来拟合隧道较小的设计曲线。 2 工艺工法特点 有效减小了建筑物密集区等特殊条件下隧道选线的难度,适用于较小半径曲线盾构隧道的施工,施工具有安全、经济、高效的特点。 3 适用范围 适用于小半径曲线盾构隧道。 4 主要引用标准 4.1《地铁设计规范》(GB50157) 4.2《地下铁道工程施工及验收规范》(GB50299) 4.3《混凝土结构设计规范》(GB50010) 4.4《混凝土结构工程施工质量验收规范》(GB50204) 4.5《地下防水工程质量验收规范》(GB50208) 4.6《建筑防腐蚀工程施工及验收规范》(GB50212) 5 施工方法

小半径曲线盾构隧道施工是在土压平衡的前提下,采用VMT导向系统控制掘进方向、通过刀盘的超挖刀扩挖掌子面、推进油缸压力差使盾构机沿曲线方向前行、盾构铰接油缸行程差使盾体与盾尾有效的拟合曲线,最后通过楔型量较大的管片拼装来拟合盾构机开挖的曲线形成小半径曲线隧道。 6 工艺流程及操作要点 6.1施工工艺流程 图1 施工工艺流程图 6.2操作要点 6.2.1施工准备 工程开工前了解隧道地质情况、地面建筑物情况,做好盾构机的选型工作,确保使用盾构机满足小半径曲线的施工能力。进入小半径曲线掘进前2个月前做好施工的各项准备工作,准备工作的重点为小半径曲线使用管片的生产。 6.2.2掘进控制 1进入小半径曲线启用超挖刀、仿形刀,使开挖空间满足盾构机转弯的能力。掘进过程中根据掘进参数选择合适的超挖量,一般超挖量20~50mm。装有超挖刀的刀盘如图2所示: 2在小半径曲线隧道中盾构机每推进一环,由于推进油缸与管片受力面不垂直,在油缸的推力作用下产生一个水平分力,使管片拖出盾尾后,受到侧向分力

道路工程测量(圆曲线缓和曲线计算公式)

道路工程测量(圆曲线缓和曲线计算公式) 时间:2009-12-09 19:04:30 来源:广州交通技术学院作者:未知我要投稿我要收藏投稿指南 第九章道路工程测量 (road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设 一、道路工程测量概述 分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。 (一)勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey) 1、初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone) 和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量 (road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。

道路曲线计算公式

高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式 时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南 高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n的取值如下:

当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 x Z,y Z为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 x Z,y Z为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径

各种曲线计算公式

一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标

切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标

三、曲线要素计算公式 公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值

四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ ④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: 五、超高缓和过渡段的横坡计算

列车类型、线路坡度、最小曲线半径-线间距与设计速度的关系

最近铁路建设的力度大大加强,许多新线的设计速度达到了250km/h甚至350km/h,各种针对铁路速度的争吵日益剧烈,似乎是非250不要,最好一步上350……所以,有必要了解一下铁路速度的秘密,减少无谓的争吵,加深对铁路的了解。 ) i9 B& T2 y# d2 Y7 ]/ X8 z 个人认为,今后主要建设的铁路有以下三种类型: 1.最高设计速度300~350km/h的客运专线线路,肯定是电气化,采用无碴轨道,精度要求高、承重能力低,一般不走机车牵引的客车,更不走货车。这样的线路,只会建在经济条件好、既有铁路网密集的地区,一句话,沿线地区的货运任务必须由其他线路承担。不运货发展不了地区经济! 2.最高设计速度200~250km/h的高等级客货混运线路,肯定是电气化,采用有碴轨道,允许货车运行,今后将大量建设以完善铁路网,因此,原先没有铁路的地区,摊到这样的一条线路,是很幸运的,别瞧不起200~250km/h的速度!这样的线路,如果今后有平行货运通道分流速度低的货车,具有提速到300km/h的潜力。 3.最高速度120~160km/h的次要型线路,在陡峭山区可能一次性电气化,大部分为单线,主要用于向边疆延伸,以及某些区域内部的路网完善。即使有这样的铁路,一天之内,也能从最遥远的边疆走到繁华的大都市。 " u: n7 P4 `7 ]% r 、 ※至于最近炒得很火的“城际铁路”,受到京津城际的影响,设计速度也越拔越高。关于城际铁路的问题,由于站点密集,需要结合动车加速性能来研究 第二节.简述列车速度与线路坡度的关系:

写一段列车速度与坡度的关系,为的是明确什么样的车型/机车能够跑出什么样的速度: 并不是说设计速度120km/h就不管拉什么车、不管什么线路都能跑出这样的速度。现在论坛中这方面的知识非常欠缺! " c, D3 aC$ O+ ~; g 在没有限速因素的线路上,列车能达到的速度与线路坡度密切相关,列车匀速爬坡时,发出的牵引力必须能克服摩擦阻力、空气阻力,以及自身重力在沿下坡方向的下滑分力——这正是坡道导致的。 一般货车运行时,摩擦和空气阻力之和(即为基本阻力)只相当于列车在2~3?上坡道上的下滑分力;120~160km/h客车的基本阻力相当于5~7?上坡道的下滑分力;因此,对于机车牵引的列车,哪怕是6?这么小的上坡道,都能显著改变列车的受力情况,直接结果就是列车受到减速度,速度逐渐降低。在平原地区,坡道有起有伏,问题不大;在山区,往往会遇到很长的坡道,列车速度必然受到影响。 % t7 Y* i- K+ x5 Y' z$ `1.动车组。 现有的A型动车组,具体型号为CRH — 1、CRH 2A、CRH 2B、CRH 2E、CRH5,最高速度250km/h(CRH1被做了手脚只跑200km/h是例外),在相应的无限长上坡道上可以达到的速度: ( \/ |) d+ X9 [7 C2 N! T6?——250km/h; 12?——不小于200km/h;) : 18?——CRH1和CRH2约170~180km/h,CRH5约165km/h;

竖曲线计算公式

第三节竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。可采用抛物线或圆曲线。 一、竖曲线要素的计算公式 相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距:

例题4-3 ω=-0.09 凸形; L=Rω=2000*0.09=180m T=L/2=90m E=T2/2R=2.03m 起点桩号=k5+030 - T =K4+940 起始高程=427.68 - 5%*90=423.18m 桩号k5+000处: x1=k5+000-k4+940=60m 切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m 设计高程=426.18 - 0.90=425.28m 桩号k5+100处: x2=k5+100-k4+940=160m 切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=40米m 设计高程=431.18 - 6.40=424.78m

1、在桩号k1+575处,引黄渠提水站一级动力电缆埋设电缆一趟。其工程做法为: 采用3*16加1加k电缆,长70米;外套2寸塑料管70米;现浇C20砼包封30*30cm。两端接头设1000mm砖砌检查井,井壁厚240mm,钢筋砼圈盖两套。 2、根据运城市规划设计院《关于振西大街设计变更申请的答复意见》第4条,经与建设单 位,当地村委会协商,分别在k0+150,k0+320,k0+930四处增设灌渠倒虹吸管,工程做法为:DN600钢筋砼承插口管,橡胶胶圈接口,长54米,四周C20砼封包,厚度30cm,进出水口井为1000cm,深4.1米,收口70cm圆形井,加盖钢筋砼圈盖各一套,内外1:2水泥砂浆抹面,四周3:7灰土夯填,引渠长40米,(梯形(45+30)*40/2cm,现浇砼厚5cm);C20现浇砼澄泥池70*70*70cm,壁厚20cm。 3、在两条路的交汇口处W37#检查井,不在清单以内,我项目部已施做,其内径为1250mm, 井高6.5 米(其中井室高为5.9米,井筒高0.6米),1650mm钢筋砼井口盖板1块,钢筋砼圈盖1套。

轨道交通中小半径曲线问题探讨

摘要】简述小半径曲线对列车运行安全影响,对工程影响以及对运营中钢轨的磨耗的影响,并就相关问题提出建议及改善措施。 【关键词】城市轨道交通; 小半径曲线; 最小曲线半径; 影响; 磨耗; 直线电机? 城市轨道交通是大城市公共客运交通的骨干,是大众化、大运量的城市客运系统。同时又是城市的大型基建工程,所以它在城市建设中占有十分重要的地位。目前,国内许多城市正在进行轨道交通的建设或前期准备工作,基本上都进行了各种形式的轨道交通线网规划。最小平曲线半径是城市轨道交通线路设计主要技术标准之一。它对地下铁道线路的造价、运行速度、养护维修量和运营支出有很大的影响。平曲线半径过小,不能满足高速列车行车舒适性的要求;平曲线半径过大,又会大大增加建设工程投资。本文就从轨道交通中的小半径曲线出发,讨论其对工程和运营的影响以及如何改善这些问题。 1 小半径曲线的选择 ????? 小半径曲线是在轨道交通设计过程中为了照顾客流走廊,绕避严重不良地质地段、文物古迹、高层建筑、地下管线,减少工程投资等而不得不采用的半径较小的曲线。 2 小半径曲线的影响 ????? 以下浅谈小半径曲线在列车运行安全、对工程影响以及运营中钢轨的磨耗等三个方面的影响。 2.1 小半径曲线对运营安全的影响 ????? 列车在小半径曲线地段下坡道上运行时,引起地铁车辆的剧烈振动,在振动很剧烈的地段特别要用瞬时舒适度水平(2s舒适度水平),舒适度水平表达式为: Lr=20lgα/αref(1) ????? 其中αref为标准加速度,α为测定的加速度。由该式可知舒适度水平与振动加速度相关,振动加速度大,舒适度水平大,从而乘客舒适度差。舒适度等级越小,舒适度评价越好,舒适度等级在1以下,振动舒适度评价非常好。旅客乘车舒适度是衡量列车通过曲线时运营质量好坏的一个最直观的指标。另外,小半径曲线上视距较短,司机瞭望线路条件差,严重时会威胁到列车安全。 ????? 地铁列车在通过小半径曲线时,车轮相对于钢轨产生横向滑动,往往要发出尖啸的噪声。2001年8月22日,德国SIEMENS公司在广州地铁一号线对地铁车辆的振动进行检测,结果表明,上行线长寿路~陈家祠区间小半径曲线垂向振动加速度最大值约达37m/S2,而无波磨地段垂向振动加速度最大值约达15m/S2。严重的波磨引起地铁车辆的剧烈运动,发出尖啸的噪声,大大降低了乘客的舒适度。 2.2 小半径曲线对工程的影响 ????? 在困难地段,采用较小的曲线半径能够更好地适应地形变化,可减少路基、挡墙的工程数量,对降低工程造价有显著效果,但也会由于增加线路长度、降低粘着系数,而引起工程费用增大。 2.3 小半径曲线对钢轨磨耗的影响 ????? 轮轨间的摩擦包括滚动摩擦和滑动摩擦,据有关资料介绍,单纯的滚动摩擦使钢轨磨耗甚微,而车轮只有0 2%的滑动,磨耗就会显著增加。列车在曲线上运行时,附加动压力及轮轨间的相对滑动与曲线半径成反比,半径越小滑动磨耗越大。 ????? 钢轨磨耗主要是指小半径曲线上钢轨的侧面磨耗和波浪型磨耗,主要是由于轮轨之间发生摩擦造成的。 从广州地铁一号线运营情况来看,最小曲线半径为300m,有些地段磨耗较严重;二号线最小曲线半径350m,磨耗情况尚可,曲线半径R 400m的曲线尚未发现不正常磨耗现象。 曲线半径越小,钢轨磨耗越严重,钢轨更换周期越短。

相关主题
文本预览
相关文档 最新文档