当前位置:文档之家› 二维超声磨削纳米复相陶瓷的磨削特性研究(1)

二维超声磨削纳米复相陶瓷的磨削特性研究(1)

陶瓷研磨

陶瓷研磨 随着陶瓷元件在工程上的广泛应用,如切削工具汽车阀包装(密封)元素轴承活塞转子等,使得先进陶瓷磨削在磨削加工中的作用已经加重。陶瓷组件在相应的金属方面的改进的性能和更好的效率有许多的优势。然而,有利的特性在加工过程中都伴随着困难,与磨削主要相关的原因是这些先进的陶瓷和要求所需的精度和表面质量地面组件有高硬度和刚度。对于脆性材料获得良好的表面光洁度和高尺寸的精度磨削是一种重要的工艺成型。它是一个复杂的过程,包含复杂的之间的交互大量的变量,如机床,砂轮、工件材料和操作对位米。精密陶瓷组件需要严格遵守关闭公差和表面光洁度的性能,在活泼表面抛光研磨过程中这些对组件的可靠性有很大的影响。有各种各样的因素,控制尺寸精度和在磨削表面光洁度,因此,发展分析或经验模型的可靠预测加工性能成为一个关键问题。 一个一致连续的建模必须首先从最基本的物理过程,它给出了个体研磨颗粒与工件相互作用的过程。然后,必须将这一过程扩展到整个砂轮的运动过程中。单一砂砾工件相互作用可以使用未变形的芯片厚度来显示其特性。这个未变形的芯片厚度是一个变量,通常用来形容地面表面的质量以及评估整体磨削系统竞争力。然而,没有一个这样的综合模型可以在大范围的操作条件下预测未变形的芯片测厚范围。原因在于事实上,许多变量的影响这一过程。许多这些变量是非线性的,相互依存的,或者是很难量化的。因此,到目前为止还没有完全可行的和实验调查可以非常详尽但有限的适用性[3]的可用模型。所以,尝试为磨削的碳化硅和金刚石磨料开发一个理论模型来预测未变形的芯片厚度。 尽管不同的研究努力在陶瓷磨削方面超过去年二十年来,更需要建立规范理论模型进行预测未变形的芯片厚度,来提高产品质量,增加减少加工成本创造。因为表面产生的大量的切削刃的表面的砂轮、工件表面上产生凹槽由单个颗粒紧密地反映了几何颗粒的显示。因此,从考虑颗粒提示几何来看它是可能用来评估未变形的芯片厚度。因为这些切削刃的大小在轮子表面随机性质,对未变形的芯片厚度无法预测在一个确定的方式。由于这种不确定性,一个概率方法评价的未变形的芯片厚度是更合适的,因此任何试图估计未变形的芯片厚度应该是自然的概率。 另外,磨削过程的砂轮和工件之间的接触行为的性质是有助于地面工件的质量的主要因素之一。原先的接触变形量在磨削方面的重要性被研究和行业从业者都认识到了。几何上,局部接触的挠度可以影响工件和接地组件的尺寸精度的表面光洁度的[4]。然而,仍有许多行业中使用的“经验法则”或火花精磨技术操作产生良好的表面质量和关闭空间的公差组件。这些操作可以耗费时间和减少设备生产率。.因此,在研磨作业中开发一个新的未变形的芯片厚度模型来可靠预测未变形的芯片厚度影响原先的接触变形量也必须被考虑在内。

超声振动辅助磨削技术的现状与新进展

第31卷第11期2010年11月 兵工学报ACTA ARMAMENTARII Vol.31No.11Nov. 2010 超声振动辅助磨削技术的现状与新进展 梁志强1,2,王西彬1,吴勇波2,栗勇1,赵文祥1,庞思勤 1 (1.北京理工大学先进加工技术国防重点学科实验室,北京100081; 2.秋田県立大学系统科学技术学部,秋田290014,日本) 摘要:如何实现硬脆性材料的高效率、高质量、高精度加工是现代精密制造领域的技术难题,为解决这一难题超声波振动磨削技术被引入到硬脆性材料的加工中。综述了超声振动磨削技术的现状,基于现有的一维振动磨削与二维振动磨削技术,着重分析了不同超声振动施加方式对磨削 力、 加工表面完整性、砂轮磨损等加工特性的影响。作为二维振动磨削技术的最新进展,对垂直型椭圆振动磨削技术的加工原理以及加工特性进行初步介绍。 关键词:机械制造工艺与设备;超声辅助磨削;椭圆振动;硬脆材料;磨削力;粗糙度 中图分类号:TG156文献标志码:A 文章编号:1000- 1093(2010)11-1530-06Status and Progress of Ultrasonic Assisted Grinding Technique LIANG Zhi-qiang 1,2 ,WANG Xi-bin 1,WU Yong-bo 2,LI Yong 1,ZHAO Wen-xiang 1,PANG Si-qin 1 (1.Key Laboratory of Fundamental Science for Advanced Machining ,Beijing Institute of Technology ,Beijing 100081,China ; 2.Faculty of Systems Science and Technology ,Akita Prefectural University ,Akita 290014,Japan ) Abstract :In current precision machining field ,there is a critical problem to achieve high efficiency ,high-quality and high-precision machining for hard brittle material.Based on this background ,the ultra-sonic assisted grinding machining is widely introduced as a promising processing technology.In this pa-per ,the machining characteristics ,especially grinding forces ,ground surface integrality and wheel wear ,of both one-dimensional and two-dimensional ultrasonic assisted grinding techniques are analyzed.As a new progress ,the principle and fundamental characteristics of vertical elliptical ultrasonic assisted grind-ing method are introduced. Key words :machinofacturing technique and equipment ;ultrasonic assisted grinding ;elliptical vibra-tion ;hard brittle material ;grinding force ;surface roughness 收稿日期:2009-11-13 基金项目:国家自然科学基金资助项目(50935001);国防科研资助项目(62301090103)作者简介:梁志强(1984—),男,博士研究生。E-mail :liangdjx@yahoo.com ;王西彬(1958—),男,教授,博士生导师。E- mail :cutting0@bit.edu.cn 随着科技的发展对硬脆性材料、难加工材料和 新型先进材料的需求日益增多,对关键零件的加工效率、加工质量和加工精度提出了更高的要求。传统磨削方法因不可避免的产生较大的磨削力以及磨削热,引起工件表面/亚表面损伤以及砂轮寿命低等一系列问题。尤其在精密与超精密加工领域,这些加工缺陷的存在严重制约着零件加工精度及加工效 率的提高。为解决这些问题,超声振动被引入到磨 削加工中。国内外广泛研究证实超声振动磨削在提高材料去除率、提高加工表面质量与加工精度、降低工件表面损伤以及延长砂轮寿命等方面具有显著优势。 一维超声振动磨削技术较早应用到工业领域,近年在超精密加工领域,日本和中国的学者又

新型材料的机械加工

新型材料的机械加工
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.陶瓷材料的加工原理及方法
l. 陶瓷材料切屑形成机理及表面缺陷的形成 陶瓷材料在刀具或磨粒的切削刃挤压作用下,会在刀刃附近 产生裂纹,它先向下前方扩展,并沿着与最大主应力垂直的方向 的包络线成长,如图 1 中裂纹扩展的路径从Ⅰ经Ⅱ、Ⅲ至Ⅳ,最 终穿过自由表面形成粒状或片状的切屑。由此在切削表面 Ⅱ-Ⅲ-Ⅳ的区内留下凹痕,并在刀刃的后面已加工表面内因位应 力而引起与表面大体垂直的裂纹等缺陷。 如果切削条件合理,裂纹将能被控制不作延伸扩展,而只在 刀刃前方的部分材料中形成破碎的切属, 如图 1 中 A、 所示的破 B 碎状态,它不深入到加工表面上,由此可获得良好质量的加工表 面。 2.陶瓷材料加工的基本方法 陶瓷材料通常需经过坯料切割、磨削、研磨和抛光等工序制成所需的零件。 (l)切割 常用的机械切割方法有以下三类: 1)固定磨料切割。用金刚石锯片或带锯进行切割。 2)游离摩料切割。用盘锯、带锯加金刚石磨料或用高速磨料喷射冲击进行切割。 3)单刃切割。采用单粒金刚石切割。 为了提高切割的效率和质量,尤其对一些形状较复杂的坯件,则宜用水力切割来替代机械切割。 (2)磨削 磨削几乎均应用金刚石砂轮,与磨削金属材料相比,其最大的特征是法向磨削力远大 于切向磨削力,一般要大 5~10 倍,在用砂轮端面磨削时,甚至可大 20~30 倍。因此,磨床要有足够的 刚性,并需保持磨粒的锐利性,同时砂轮与工件之间的压力要超过临界压力值(2~5MPa)才能保证正常 的磨削。 # # ,半精磨 0.125~0.9mm 磨削陶瓷时所用的金刚石磨粉的粒度为:粗磨 0.25~0.125mm(60 ~120 ) # # # 。 (240 ~W40) 通常砂轮速度选用 15~25m/s 。 (金属结合剂) 20~ 或 (120 ~180 ) 精磨 0.075~0.04mm 30m/s( 树脂结合剂) 。工件送给速度 1.15m/min,吃刀量为 1~2μm。磨削时应使用水溶性乳化液或低 粘度的油类切削液,以防止粉状切屑或脱落的磨粒残留在工件表面上而导致表面很伤和加速砂轮磨损。 (3)研磨和抛光 它是陶瓷材料精密和超精密加工的主要方法。通过研具和工件之间的机械摩擦或 机械化学作用去除余量,它使工件表面产生微小龟裂,逐渐扩展并从母体材料上剥除,达到所要求的尺 寸精度和表面粗糙度。当采用细的粒度、软的研具、低的研磨压力和小的相对速度时,可获得高的表面 质量和精度,但将使加工效率降低。 超精密研磨和抛光时,所用的磨粒径一般在数微米以下。为价止波加工件的氧化或因研磨液中的杂 质引起表面划伤,一般要使用蒸馏水或去离子水。研磨盘的主轴应有高的回转精度和刚度,且转速不宜 太高,以免振动对加工表面产生不利的影响。 采用化学机械研磨和抛光由于伴随化学反应和水合反应, 因而比纯机械研磨和抛光有高的加工效率。 2.陶瓷材料高效、高精加工方法 1.ELID 超精磨削 ELID 是电解在线修整磨削法的简称。它应用由金属结合剂和超硬微细金刚石(或 CBN)磨料组成的 砂轮,并在磨削过程中同时用电解法修锐砂轮,使砂轮始终保持锋利,从而保证在高效条件下进行超精

微细超声加工的发展及应用

微细超声加工的发展现状及应用 摘要:对微细超声加工的加工原理、材料去除机理和特点进行了阐述,重点在于对国内外微细超声加工的发展和应用进行总结和举例,包括旋转超声加工、成形加工和分层扫描超声加工及微细超声复合加工,最后总结了微细超声加工未来发展趋势 关键词:微细超声加工;旋转超声加工;成形加工;分层扫描;微细超声复合加工 Current Situation and application of micro ultrasonic machining Abstract:Through describing the machining principle、material removal mechanism and characteristics of micro-ultrasonic machining, this paper emphasize on the development and application of micro ultrasonic machining at home and abroad. And the application includes rotary ultrasonic machining, molding process and layered scanning ultrasonic machining and micro-ultrasonic composite processing. Finally the future development trend of micro ultrasonic machining is summarized. Key words:micro-ultrasonic machining rotary ultrasonic machining molding process layered scanning micro-ultrasonic composite processing 前言 科技的日新月异不仅对材料的性能提出了更高的要求,同时对具有微小特征的精密零件有了越来越多的需求。尤其在电子、光学、医疗、生物科技、通信以及航天等领域,零件的小型化和精密化已经成为当前的发展趋势[1,2]。随着微机械(Micro Electro Mechanical System)技术的发展,高新技术产品呈现微型化、精确化,晶体硅、陶瓷和光学玻璃等非金属材料得到广泛应用,微细加工成为现代制造技术重要的发展方向。 MEMs技术具有集成度高、便于大批量生产等优点。但是这种方法难以加工具有特殊性质的金属材料,例如一些极限作业环境下所要求的高强度、高韧性、耐磨、耐高温、抗疲劳等性能的材料。微细切削与某些特种加工相比,生产率高、容易保证加工精度。但是,这类加工方法都存在宏观切削力,而且不能加工比刀具硬的材料。 特种加工方法采用各种物理、化学及其各种理化效应,直接去除材料以达到所要求的形状和尺寸。它们多属于非接触加工,一般没有宏观切削力作用。因此它们在加工微小尺度的零件时具有独特的优越性。目前适合硬脆材料的材料加工手段有光刻加工、电火花加工、激光加工和超声加工等特种加工技术。但是对于晶体硅和陶瓷等非金属材料,材料本身不导电,所以无法用电火花和电化学等方法加工;材料的耐高温和导热性不好,激光加工时加工区域会受热影响作用而开裂;光刻加工虽然可以加工非金属材料同时不受导热性的影响,但是在加工高深径比和复杂三维型腔时难度依然很大。而超声波加工既不受材料导电性和导热性的限制,又可以加工出深径比很大且形状复杂的三维型腔,尤其适用于硬脆性材料的加工。所以超声加工在加工陶瓷和半导体硅等非金属硬脆材料上有得天独厚的优势。随着压电材料及电子技术的发展,微细超声、旋转超声、超声复合等加工技术成为了当前超声加工研究的热点。 1微细超声加工的特点和原理 声波是人耳能感受的一种纵波,频率在16Hz-16kHz。“超声波”,用来描述频率高于人

超声振动磨削机构的建模与仿真

摘要: 超声波加工是一门重要的特种加工技术,超声加工的总概述:其分为超声车、铣、磨、钻等。超声振动磨削是一种特殊的切削加工的方法,这种加工技术对于加工陶瓷、高强度复合材料以及硬脆材料具有独到的优势。本文从超声振动声学子系统设计超声振动磨削机构。从声学角度和波动方程角度分别介绍了变幅杆设计的理论基础。设计了机构与工件相连接以及机构与机床相连接装置。这个超声振动磨削机构,可以直接装配到一般普通机床上直接使用,因此非常方便。这种新型机构可以作为一种机床附件,它具有体积小、结构简单、成本低、可加工大型工件的优点,对超声波加工以及机床的发展具有十分重要的意义。 关键词:超声波发生器,换能器,变幅杆,珩磨头。

ABSTRACT: The ultrasonic machining is an important special machining technology, is the supersonic processing total outline: It divides into the supersonic vehicle, the mill, to rub, to drill and so on. The ultrasonic vibration grinding is one special machining method, this kind of process technology regarding the ceramics, the high strength compound materials as well as the hard crisp material has the original superiority. This article from ultrasonic vibration acoustics system design organization. Introduced the amplitude pole design rationale from acoustics angle and the wave equation angle. Has designed the organization and the work piece connects as well as the organization and the engine bed junction device. Designs this ultrasonic vibration grinding organization, may assemble directly to the engine bed on the direct use. This kind of new organization may take one kind of engine bed appendix, has the volume to be small, the structure is simple, the cost low merit, has the vital significance to the ultrasonic machining as well as engine bed‘s development. Key words:Ultrasonic generator, transducer, amplitude pole, top horizontal jade piece wheel head.

小型超声波切割机毕业设计翻译中文

利用旋转超声加工技术加工陶器 旋转超声加工技术为陶瓷和玻璃的加工应用上提供快速的高质量的加工途径。 旋转超声加工技术是一种混合了利用钻石磨削超声机械来切削材料的工艺,和那些单独利用钻石磨削或者超声加工技术相比,它可以提供一个更高的材料切削速率。通过利用钙、铝、硅酸盐和稳定的氧化镁、氧化锆来做实验可以得出在同样的条件下利用旋转超声加工技术加工材料的切削速率是利用惯例的磨削加工工艺的六到十倍,是超声加工技术的十倍。利用旋转超声加工技术来打很深的洞比超声加工技术更容易,而且洞的精确性更高。这种工艺的其他好处包括有一个更好的表面光洁度和刀具所受到的压力也会更小。 图1 在超声加工中,刀具的形状正好和工件表面的洞或腔的形状一致,在两万赫兹的高速频率中摆动,利用一个恒定的压力插入工件表面(见图1)。在刀尖和工件表面加上一种由水和小磨粒组成的磨粉浆。当磨粒悬浮在刀具和工件表面的

泥浆中时,工件表面的材料被切削掉了,利用震动刀具往下走来作用在工件表面。 图2 在旋转超声加工中,当机器的轴在一个恒定的压力下被动的靠近工件表面是,一个用金属黏合带腐蚀性的钻石做成的空心旋转钻头在轴向做超声震动(见图2)。空心的钻头中喷出冷却液冲走切削垃圾,同时防止切削垃圾干扰钻头,并且让它冷却。通过刀具上直接黏合的腐蚀物,并且结合同时发生的转动和震动,旋转超声加工技术为多种玻璃和陶瓷生产应用提供了一个更快,更高质量的加工途径。 旋转超声加工的历史 尽管超声加工的原理在1927年被认识到,超声加工技术的第一次使用没有在工业文明中被描述直到1940年。自从那是以后,超声加工被引起很大的注意,并被运用在工业中相对很大的领域。在1953年到1954年,第一代超声加工工具的发明,很大程度上是依据钻头和压磨机。到1960年,可以看到各种类型和尺寸的超声加工工具运用在各种运用上,同时很多模型开始进行批量生产。 在陶瓷的应用中,超声加工和普通机械加工相比有很多的优势。导体和绝缘体材料都可以被加工,同时加工复杂的三维立体外形可以像加工简单的外形一样

浅谈工程陶瓷材料加工

浅谈工程陶瓷材料加工 摘要:工程陶瓷材料以其优良的物理和化学性能,在航空、航天、电力、冶金、通信、石油化工、机械以及现代生物医学等领域得到了广泛的应用,已成为新材料的发展中 心而受到广泛的关注。本文主要论述了工程陶瓷材料的加工技术现状和一些先进的加 工方法,希望能为研究工程陶瓷提供一些帮助。 关键词:工程陶瓷材料加工电加工超声波加工激光加工国外先进加工技术 0 引言 随着材料科学技术的进步,金属间化合物、工程陶瓷、石英、光学玻璃等硬脆材料以及各种增韧、增强的新型复合材料已成为航空航天、国防科技、生物工程、计算机 工程等尖端领域中应用日益广泛的材料.由于这些材料的超精密表面成形十分困难,且传统加工方法已不能满足现代科技的需求,因此有关其精密、超精密磨削加工技术和材料表面成形技术便成为当今世界各国研究的热点。 工程陶瓷材料是由粉状原材料在高温高压下烧结而成。由于烧结时收缩率较大,无法保证烧结后尺寸精度,而作为工件使用的工程陶瓷件都有一定的形位尺寸精度和表面质量要求,因此需要进行再加工。由于工程陶瓷材料硬度高、脆性大,属难加工材料,一 般加工方法有机械加工、电加工、光加工、超声波加工等。 1 陶瓷材料的结构与特性 陶瓷是典型的硬脆材料,一般定义为由氧、碳、硅、硼等元素烧结而成的无机非金属材料。 1.1陶瓷的结构 陶瓷的特性主要是由它的原子存在状态、原子的构造机理以及它们的晶体结构所决定的.相对于具有晶体高对称度结构的金属来说,陶瓷的晶体结构属于低对称结构,晶体是由共价键和离子键或两者结合的方式形成的。 1.2 陶瓷的力学特 陶瓷材料在室温下不具有塑性.其主要原因是由于陶瓷材料的晶体结构具有很强的方向性,高的晶格能使陶瓷晶体中的空穴和位错迁移十分困难,从而形成了陶瓷

超声磨削装置设计

学校代码: 本科毕业设计题目:超声磨削装置设计 学院: 姓名: 学号: 专业: 年级: 指导教师:

摘要 旋转超声磨削是在传统机械磨削的基础上,将超声振动加入到磨削工具上的一种新型的复合加工方法。该方法不仅保留了传统机械磨削的一些优良特性,又因加入超声振动后,能较大地提高加工效率,有效地改善工程陶瓷、复合材料等难加工材料磨削表面质量。本文旨在研制出旋转超声磨削装置,该装置能以附件的形式安装在数控机床上或普通机床上,进行常见表面、甚至一些较复杂型面的旋转超声磨削加工。 关键词:旋转超声磨削,工程陶瓷,碳刷,

ultrasonic machining design Abstract:Rotary ultrasonic grinding (RUG) is a new machining method which integrates rotary movement of traditional grinding with ultrasonic oscillation. This method can keep down some excellent grinding characters of Mechanical grinding, greatly enhance process rate and effectively improve the effect of grinding surface of difficult-to-cut materials (stainless steel and composite material and the like). The aim of this paper is that we design and manufacture the grinding device of rotary ultrasonic machining, This device can be installed on numerical control machine or common machine tool as an accessory and can carry out rotary ultrasonic grinding for usual surface and even some complicated surface. Keyword:rotary ultrasonic grinding, engineering chinaware, carbon brush,

超声振动切削加工

超声振动切削加工的研究现状及进展 摘要:简述了超声振动切削技术的发展、优点及应用领域。通过将超声振动切削与普通切削比较以及对振动切削过程特点的描述,探讨了超声振动切削的切削机理。文章还分析了振动切削技术的最新发展, 认为超声振动切削是一项有发展前途的新型技术。 关键词:超声振动切削;难加工材料:切削机理 Research of vibration assisted turning cutting technology and

Its development Abstract:Introduces the history, advantages and application field of the ultrasonic cutting technology(UCT). By compared with ordinary cutting and the characteristics description of the ultrasonic vibration cutting process, explored Ultrasonic vibration cutting of the cutting mechanism. The paper also analyzes an up- to- date vibrating cutting technology and summarizes that the ultrasonic vibration cutting is a promising new technology. Key Words: Ultrasonically vibrating cutting; Difficult - to - machine materials; Cutting Mechanism 0 前言 超声振动切削技术是把超声波振动的力有规律地加在刀具上,使刀具周期性地切削和离开工件的加工技术, 是结合超声波技术和传统切削工艺的一种新型切削技术。在20 世纪60 年代,日本隈部淳一郎先生就对该项技术做了大量的研究工作。

超声波振动切削原理

超声波振动切削原理 一、超声波振动切削原理 超声振动切削,是使刀具以20-40KHz的频率,沿切削方向高速振动的一种特种切削技术。超声振动切削从微观上看是一种脉冲切削,在一个振动周期中,刀具的有效切削时间很短,一个振动周期内绝大部分时间里刀具与工件切屑完全分离,刀具与工件切屑断续接触,切削热量大大减少,并且没有普通切削时的“让刀”现象。?利用这种振动切削,在普通机床上就可以进行精密加工,圆度、圆柱度、平面度、平行度、直线度等形位公差主要取决于机床主轴及导轨精度,最高可达到接近零误差,使以车代磨、以钻代铰、以铣代磨成为可能。与高速硬切削相比,不需要过高的机床刚性,并且不破坏工件表面组织,在曲线轮廓零件的精加工中,可以借助数控车床、加工中心等进行仿形加工,可以节约高昂的数控磨床购置费用。 超声波振动切削用于各种难以磨削而对表面质量及精度要求较高的零件的精加工,具有很大的优越性。超声波振动切削装置由超声波发生器、换能器、变幅杆及刀具等四部分组成,由超声波发生器发出的高频电讯号经换能器转化为高频机械振动,再由变幅杆将振动的振幅放大并施加到道具上,一般将换能器与变幅杆组成的部件称为声学头。 二、超声振动切削的优势特点 1.切削力小,约为普通刀具切削力的1/3—1/10; 2.加工精度高; 3.切削温度低,工件保持室温状态; 4.不产生积屑瘤,工件变形小,没有毛刺; 5.粗糙度低,可接近理论粗糙度值; 6.被加工零件的“刚性化”,即与普通切削相比,相当于工件刚性提高;

7.加工过程稳定,有效消除颤振; 8.切削液的冷却,润滑作用提高; 9.刀具耐用度呈几倍到几十倍提高; 10.工件表面呈压应力状态,耐磨性、耐腐蚀性提高; 11.切削后的工件表面呈彩虹效果。 三、超声振动切削的应用范围 (一)难切削材料的加工 不锈钢、淬硬钢、高速钢、钛合金、高温合金、冷硬铸铁以及陶瓷、玻璃、石材等非金属材料,由于力学、物理、化学等特性而难以加工,如采用超声振动切削则可化难为易。 (二)难加工零件的切削加工 如易弯曲变形的细长轴类零件、小径深孔、薄壁零件、薄盘类零件与小径精密螺纹以及形状复杂、加工精度与表面质量要求又较高的零件。 (三)高精度、高表面质量工件的切削加工 (四)排屑、断屑比较困难的切削加工 四、超声振动切屑的应用领域 广泛应用于航空、航天、军工等领域。

先进陶瓷材料精密件加工工艺方法介绍

先进陶瓷材料精密件加工方法 -机械加工、电加工、超声波加工、激光加工及复合加工介绍 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 陶瓷材料根据性能要求不同有不同加工方法。目前主要加更方法包括机械加工、电加工、超声波加工、激光加工及复合加工几大类。下面简要介绍下几种陶瓷材料加工方法。 1、陶瓷材料的机械加工 陶瓷材料机械加工主要包括车削加工、磨削加工、钻削加工、研磨和抛光等。

(1)陶瓷材料的车削加工 车削加工主要是用金刚石刀具切削高硬度、高耐磨性的陶瓷材料。多晶金刚石刀具难以产生光滑的切削刃,一般只用于粗加工;对陶瓷材料精车削时,使用天然单晶金刚石刀具,切削时采用微切削方式。由于陶瓷材料硬度和脆性非常大,车削加工难以保证其精度要求,故车削加工应用不多,基本上还处于研究阶段。 (2)陶瓷材料的磨削加工 陶瓷材料的磨削加工是目前已有加工方法中应用最多的一种。磨削加工所用砂轮一般选用金刚石砂轮。对金刚石砂轮磨削机理不同学者有不同的解释,但总的来看有一点是共同的,即脆性断裂是形成材料去除的主要原因。磨削加工中,切屑的清除是一大问题,一般采用冷却工作液清洗。冷却液不仅起到冲洗切屑粉末的作用,而且可以降低磨削区温度,提高磨削质量,减少磨粒周围粘结剂的热分解等。磨削液一般选用清洗性能好、粘度低的磨削液。金刚石砂轮因其选用结合剂种类、磨粒浓度的不同有不同的磨削特性。金刚石颗粒大小是影响陶瓷工件表面质量的又一主要原因。颗粒愈大,所加工表面粗糙度愈大,但加工效率愈高。 (3)陶瓷材料的钻削加工

超声磨削装置结构设计

超声磨削装置 摘要 带有旋转的超声磨削加工是在原有机械加工磨削的根本原理上,将超声加工的振动和磨削器械混合到一起的新型式加工的方法。该方式保存了原有机械磨削的某些好的特点,有了超声振动的参与,能极大地提升加工时的工作效率,更能对难加工材料磨削表面质量有所改善。这篇论文的意义是研究出旋转超声磨削装置结构,使用这个装置从事一些加工实验。全文主要内容概括如下: 探讨分析旋转超声磨削机构这个装置,材料如何除去的原理。这个装置中去除材料的原理有相同时间具备冲击(磨具上的磨粒对工作件表面的高快速撞击)和磨蚀(旋转的磨削加工工具和进给中的运动可以变为模型化为磨削加工的过程)的作用。 研究并制作一种新型式的旋转超声磨削装置。该结构装置能安装在不同种类的机床上,进行旋转超声磨削加工对常规表面和某些较多样型面的材料。 关键词超声加工意义;旋转超声磨削;结构设计与校核

Ultrasonic grinding device Abstract Rotary ultrasonic grinding is a new machining method that combines ultrasonic vibration with grinding tools in the basic principle of the original mechanical grinding. This method saves some of the good features of the original mechanical grinding. With the participation of ultrasonic vibration, it can greatly improve the working efficiency and improve the quality of the grinding surface of difficult to machine materials. The significance of this paper is to study the structure of a rotating ultrasonic grinding device and to do some machining experiments with this device. The main contents are summarized as follows: The principle of how to remove material of rotary ultrasonic grinding mechanism is discussed. The material removal principle of this device in the same time (with the impact of abrasive abrasive on the work piece surface high impact and abrasion (fast) rotating grinding tool and feed movement in can be modeled as process of grinding) role. A new type of rotary ultrasonic grinding device is studied and fabricated. The structure can be installed on different kinds of machine tools, and rotary ultrasonic grinding is applied to conventional surfaces and some kinds of materials with various shapes. Keywords Ultrasound processing significance,Rotate ultrasound grind,Structure design and checking

超声振动钻床的设计开题报告

毕业设计(论文)开题报告题目:超声振动钻床的设计 学院:机械工程学院 专业:机械设计制造与自动化 学生: XXX 学号: 0

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见及所在专业审查后生效。 2.开题报告容必须用黑墨水笔工整书写或按此电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目,学生写文献综述的参考文献应不少于10篇(不包括辞典、手册),其中至少应包括1篇外文资料;对于重要的参考文献应附原件复印件,作为附件装订在开题报告的最后。 4.统一用A4纸,并装订单独成册,随《毕业设计(论文)说明书》等资料装入文件袋中。

毕业设计(论文)开题报告 1.文献综述:结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2500字以上的文献综述,文后应列出所查阅的文献资料。 文献综述 引言 1 超声振动系统的研究进展及其应用 超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。在传统应用中,超声振动系统大都采用一维纵向振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的进展和在不同领域实际应用的特殊需要,对振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展。 日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。 日本还研制成一种新型“纵-弯”型振动系统,并已在手持式超声复合振动研磨机上成功应用。该系统压电换能器也采用半圆形压电瓷片产生“纵-弯”型复合振动。 日本金泽工业学院的研究人员研制了加工硬脆材料的超声低频振动组合钻孔系统。将金刚石中心钻的超声振动与工件的低频振动相结合,制造了一台组合振动钻孔设备,该设备能检测钻孔力的变化以及钻孔精度和孔的表面质量,并用该组合设备在不同的振动条件下进行了一系列实验。实验结果表明,将金刚石中心钻的超声振动与工件的低频振动相结合是加工硬脆材料的一种有效方法。 东南大学研制了一种新型超声振动切削系统。该系统采用压电换能器,由超声波发生器、匹配电路、级联压电晶体、谐振刀杆、支承调节机构及刀具等部分组成。当发生器输出超声电压时,它将使级联晶体产生超声机械伸缩,直接驱动谐振刀杆实现超声振动。该装置的特点是:能量传递环节少,能量泄漏减小,机电转换效率高达90%左右,而且结构简单、体积小,便于操作。 航空工业学院建立了镗孔用超声扭转振动系统,采用磁致伸缩换能器,将超声波

应用压痕断裂力学分析陶瓷材料的磨削加工_于爱兵

应用压痕断裂力学分析陶瓷材料的磨削加工 于爱兵 田欣利3 韩建华 林彬 刘家臣 (天津大学高温结构陶瓷与工程陶瓷加工技术教育部重点实验室,天津 300072; 3 装甲兵工程学院材料科学与工程系,北京 100072) 摘 要 应用压痕断裂力学分析陶瓷材料的磨削加工过程,根据陶瓷材料的脆性指数确定临界 磨削力,分别建立了磨削主应力极值与泊松比和磨削分力比之间的回归方程,此简单函数便于计算最大磨削主应力和分析磨削裂纹。脆性指数和泊松比反映陶瓷材料的磨削加工性,磨削方式影响陶瓷材料的去除,通过陶瓷磨削实验证明分析结果。研究结果为陶瓷材料磨削参数的选择和磨削方式的确定提供了理论依据。 关键词  陶瓷 压痕 磨削 应力1 引言 脆性固体的压痕断裂现象一直是材料学者的研究内容之一[1~6]。经历了从早期的准静态压痕断裂[2,3]到移动压头作用下的裂纹扩展[4],从疲劳压痕断裂[5]到动态压痕[6]等研究过程。磨削加 工作为烧结后陶瓷制品的常用机械加工手段之一,是砂轮上锋利的金刚石磨粒与陶瓷表面相互作用,与脆性固体的压痕断裂过程有着共同之处。因此,脆性固体的压痕断裂力学为陶瓷材料的磨削加工提供了丰富的理论基础[7]。本文在研究磨削裂纹形成[8]基础上,进一步分析材料参数和磨削方式对陶瓷磨削加工的影响。 2 磨削应力 陶瓷材料受到金刚石磨粒的法向磨削分力P 和切向磨削分力F 的共同作用,如图1。陶瓷材料内任一点处的应力状态可表示为[4,8]: σrr =P πR 2[(1-2μ2(1+cos φ)-32sin 2φcos φ)+λcos θ(1-2μ2?sin φ(1+cos φ)2 -3sin 3φ2)]σθθ=P πR 2 1-2μ2 [(cos φ-11+cos φ)+λcos θsin φ(1-1 (1+cos φ)2)]σzz =-P πR 232cos 2φ(cos φ+λcos θsin φ) (1) σr θ=P πR 2 λsin θ1-2μ2sin φ(1+cos φ)2σrz =-P πR 23 2cos φsin φ(cos φ+λcos θsin φ)σz θ=0教育部科学技术研究重点项目,高温结构陶瓷与工程陶瓷加工技术教育部重点实验项目1作者简介:于爱兵(1968~),男,博士,副教授1主要从事陶瓷冷加工技术及表面处理方面的研究1 其中,R 为磨削应力场中任一点与磨粒间的距离;θ为R 在oxy 平面的投影r 与x 轴之间的夹角;φ为R 与z 轴之间的夹角;λ为切向磨削分力与法 向磨削分力之比,即λ=F/P;μ为陶瓷材料的泊松比(P oiss on ′s ratio )。磨粒在陶瓷材料表面接触点附近产生局部塑性变形区域,以特征尺寸a 表 8 5

轴类零件工艺分析及抛光装置设计

轴类零件工艺分析及抛光装置设计 摘要:轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零 部件,传递扭矩和承受载荷。在本文中对轴类零件从材料等各个方面对工艺做出了 具体的分析,通过对轴类加工工艺的分析,对主要轴类零件的加工工艺有了基本的 了解,并在本文中做出了具体的阐述。. 通过国内外发展和应用的现状的了解,现阶段轴类类零件的抛光大都采用机械 抛光,传统的抛光主要是依靠人工进行,不仅费时费力,效率低下,而且要求操作 人员有教高的技能,操作人员稍有失误,就会对加工表面造成致命的损伤,甚至导 致整个零件报废,目前使用的机械抛光多是使用砂轮磨削进行抛光 ,当表面精度要 求高时,使用它达不到理想的要求。而砂带抛光,与砂轮磨削相比,其径向抗力小, 磨削温度低,所以工件不易变形,表面不易出现过烧、裂纹等缺陷,具有较好的表 面质量。在本文中阐述了砂带磨削的原理、特点及砂带机床的主要机构,结合各机 床的特点,对所做的轴类抛光装置做了详细的介绍。 关键词:轴类加工工艺,轴类抛光,砂带磨削装置 Abstract: Machine shaft is frequently encountered one of the typical components.It is

mainly used to support transmission parts, transmission torque and load to bear.This article on the shaft parts from materials made in all aspects of technology specific analysis,Shaft processing by the analysis of the main shaft of the machining process with a basic understanding of, andmade in this article specifically addressed. Through the development and application of the status of domestic and international understanding at this stage of the polishing shaft parts mostly mechanical polishing, conventional polishing carried out mainly by man, not only time consuming, inefficient, and requires operators to have to teach high skills,slightly operator errors on the machined surface will cause fatal damage, even leading to scrap the entire part, are using more than is the use of mechanical polishing wheel grinding, polishing, when the surface of high precision, the use of it is not ideal requirements.The belt polishing, and grinding wheel grinding compared to the radial resistance of small, low grinding temperature, it is not easy deformation of the workpiece surface, there have been difficult to burn, crack and other defects, has a good surface finish.In this article, the principles expounded belt grinding, abrasive belt machine features and the main body, combining the characteristics of the machine, the shaft of the polishing device made a detailed introduction. Key words:shaft machining process, Shaft Polishing, Belt grinding installment 前言

相关主题
文本预览
相关文档 最新文档