基于PLC控制的热水锅炉控制系统设计
- 格式:doc
- 大小:1.21 MB
- 文档页数:31
基于PLC的锅炉电加热控制系统设计摘要本文针对锅炉电加热控制系统的实际需求,基于PLC,设计了一种可靠的电加热控制系统。
该系统通过PLC的控制,实现了对电加热器的开启、关闭、电流的调节等功能。
同时,系统还通过人机界面进行了参数设置和异常报警等功能。
实验结果表明,该系统具有高可靠性、稳定性,能够满足锅炉电加热的实际需求。
关键词:PLC、锅炉、电加热、控制系统一、引言锅炉是工业生产中常用的一种设备,其主要作用是将水加热为蒸汽,并通过蒸汽驱动液体或气体来完成工业生产流程。
而锅炉的加热方式一般有煤、油、气、电等多种方式,其中电加热由于其无污染、易控制等优点,被广泛应用于各种工业生产环节中。
然而,锅炉电加热控制系统的设计存在一些问题,如控制精度低、容易出现故障等。
这些问题给锅炉电加热操作带来了很大的不便,因此,需要设计一种基于PLC的锅炉电加热控制系统,以提高其可靠性和稳定性。
二、设计思路和方法1.设计思路基于以上问题,本文设计了一种基于PLC的锅炉电加热控制系统。
该系统采用西门子S7-200 PLC作为主控制器,通过PLC与电加热装置进行连接,实现对电加热装置的开关控制和电流调节。
同时,本文还设计了人机界面,以便进行参数设置和异常报警等功能。
通过该系统,可以实现对电加热的精确控制,从而提高锅炉的加热效率和生产稳定性。
2.设计方法(1)硬件部分设计系统硬件包含主要的PLC、电加热器、人机界面等几个部分。
PLC:采用西门子S7-200 PLC作为主控制器,通过该控制器,实现对电加热设备的精确控制。
电加热器:采用模块化的电加热器,可以根据实际需求进行扩展和修改。
人机界面:设计了触摸屏人机界面,以便进行电加热控制和参数设置等功能。
(2)软件部分设计软件部分主要包含PLC程序和人机界面程序两部分。
PLC程序:由于锅炉电加热主要是控制电加热的开关和电流调节,因此,PLC程序中主要包含电加热开关控制、电流调节等基本功能。
1 设计任务设计一个基于PLC的锅炉水温PID控制系统,要现锅炉水温为80度,稳态误差1度,最大超调1度。
当锅炉的水温低于或者高于80度时,可以通过外部端子的开关或者远程监控,使系统自动进行PID运算,保证最后锅炉的水温能够维持在80度左右。
2 系统硬件设计2.1 器件选择本温度控制系统采用德国西门子S7-200 PLC。
S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测与控制的自动化。
S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。
因此S7-200系列具有极高的性能/价格比。
S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。
此系统选用的S7-200 CPU226,CPU 226集成24输入/16输出共40个数字量I/O 点。
可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点。
13K字节程序和数据存储空间。
6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。
2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。
I/O端子排可很容易地整体拆卸。
在温度控制系统中,传感器将检测到的温度转换成4-20mA的电流信号,系统需要配置模拟量的输入模块把电流信号转换成数字信号再送入PLC中进行处理。
在这里我们选择西门子的EM235 模拟量输入/输出模块。
EM235 模块具有4路模拟量输入/一路模拟量的输出。
它允许S7-200连接微小的模拟量信号,±80mV围。
用户必须用DIP开关来选择热电偶的类型,断线检查,测量单位,冷端补偿和开路故障方向:SW1~SW3用于选择热电偶的类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量方向,SW8用于选择是否进行冷端补偿。
所有连到模块上的热电偶必须是一样类型。
摘要本设计论述了基于PLC和组态技术的锅炉内胆水温和夹套水温构成的串级控制系统的设计过程。
下位机编程软件采用SIEMENS公司的STEP 7软件,选用西门子S7-400PLC控制锅炉温度的控制系统,介绍了西门子S7-400PLC和系统硬件及软件的具体设计过程。
上位机组态画面软件采用SIMATIC WINCC,对其进行了简单介绍,并详细介绍了项目的创建、变量的新建、画面的组态。
上位机进行程序编写实现控制,下位机组态画面,建立人机界面,进行远程控制。
锅炉水温具有非线性、时变性、大滞后和不对称性等特点,采用传统的控制方法所得到的控制量的控制品质不高。
锅炉内胆与夹套构成串级控制。
由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果。
串级控制中的主副回路是控制夹套和内胆的温度,温度是一个多变且不易控制的量,而PID控制在这方面具有突出的优点,很适合采用PID控制技术。
综合以上得到一个品质比较高的控制系统。
关键词PLC;组态技术;串级控制;锅炉水温;PID控制ABSTRACTThis design is discussed based on PLC and configuration technology of water temperature and clip boiler water tank consists of cascade control system design process. Lower level computer programming software using the SIEMENS company's STEP 7 software, choose SIEMENS s7-400plc control boiler temperature control system, introduces SIEMENS s7-400plc and system hardware and software, and the specific design process. Upper unit used in the software configuration screen WINCC, the SIMATIC simply introduced, and introduces the creation, variable of project construction, picture configuration. PC for programming realize control, lower frame) unit, establish normal screen man-machine interface, carries on the remote control.Boiler water temperature with nonlinearness, time delay and asymmetry wait for a characteristic, USES the traditional control method can get control portion control quality is not high. Boiler of the bladder and clip constitutes a cascade control. Due to the cascade control has effectively improve the dynamic characteristics, improve process working frequency, reducing the time constant and accelerate equivalent process characteristic, the response speed of the controlled system in overcome delay to the good result is achieved. Cascade control the principal deputy loop is control of the temperature of the clamping and bladder, temperature is a variable and not easy to control, and the amount of PID control in this respect has outstanding advantages, very suitable PID control technology. Comprehensive above gets a quality higher control system.Key words plc;configuration technology;cascade control;boiler water temperature;pid control目录1 引言 (4)1.1 系统的设计背景 (4)1.2 系统设计内容及技术要求 (5)1.3 系统的设计原理 (5)1.4 系统的整体设计方案 (6)2 串级控制系统设计 (7)2.1 串级控制系统的概述 (7)2.2 PID控制系统的简介 (8)2.3 PID控制器的参数整定 (10)3 硬件系统设计 (13)3.1 PLC的基本介绍 (13)3.2 S7-400简介 (14)3.3 其它器件介绍 (16)4 STEP 7简介及组态硬件、程序编写 (18)4.1 STEP 7简介 (18)4.2 STEP 7项目的创建 (20)4.3 组态硬件 (22)4.4 SETP 7编程介绍 (25)4.5 变量及系统程序 (26)5 WINCC简介及人机界面组态 (33)5.1 WinCC简介 (33)5.2 WinCC系统功能 (34)5.3 WinCC的项目创建及组态方法 (35)6 控制系统整体调试 (46)6.1 系统整体测试 (46)6.2 系统测试的结果 (47)结束语 (48)参考文献 (49)致谢 (51)1 引言1.1 系统的设计背景自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
摘要温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, PLC 在这方面却是公认的最佳选择。
加热炉温度是一个大惯性系统,一般采用PID调节进行控制。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。
本设计是利用西门子S7-300PLC控制加热炉温度的控制系统。
首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-300PLC和系统硬件及软件的具体设计过程。
关键词:西门子S7-300PLC,PID,温度传感器,固态继电器目录摘要 (I)Abstract .......................................... 错误!未定义书签。
第一章引言 . (1)1.1 系统设计背景 (IV)1.2 系统工作原理 (IV)1.3 系统设计目标及技术要求 (IV)1.4 技术综述 (IV)第二章系统设计 (V)2.1 控制原理与数学模型 (V)2.1.1 PID控制原理 (V)2.1.2 PID指令的使用注意事项 (VIII)2.2 采样信号和控制量分析 (IX)2.3 系统组成 (IX)第三章硬件设计 ................................................... X I3.1 PLC的基本概念 (XI)3.1.1 模块式PLC的基本结构 (XII)3.1.2 PLC的特点 (XIII)3.2 PLC的工作原理 (XIV)3.2.1 PLC的循环处理过程 (XIV)3.2.2 用户程序的执行过程 (XVI)3.3 S7-300 简介 (XVI)3.3.1 数字量输入模块 (XVII)3.3.2 数字量输出模块 (XVII)3.3.3 数字量输入/输出模块 (XVII)3.3.4 模拟量输入模块 (XVII)3.3.5 模拟量输出模块 (XVIII)3.4 温度传感器 (XVIII)3.4.1 热电偶 (16)3.4.2 热电阻 (17)3.5 固态继电器 (XX)3.5.1 概述 (18)3.5.2 固态继电器的组成 (18)3.5.3 固态继电器的优缺点 (19)第四章软件设计 ................................................. X XII4.1 STEP7编程软件简介 (XXII)4.1.1 STEP7概述 (XXII)4.1.2 STEP7的硬件接口 .......................... .. (XXII)4.1.3 STEP7的编程功能 (XXII)4.1.4 STEP7的硬件组态与诊断功能 (XXIII)4.2 STEP7项目的创建 (XXIV)4.2.1 使用向导创建项目 (XXIV)4.2.2 直接创建项目 (XXIV)4.2.3 硬件组态与参数设置 (XXIV)4.3 用变量表调试程序 (XXVI)4.3.1 系统调试的基本步骤 (XXVI)4.3.2 变量表的基本功能 (XXVII)4.3.3 变量表的生成 (XXVIII)4.3.4 变量表的使用 (XXVIII)4.4 S7-300的编程语言 (XXIX)4.4.1 PLC编程语言的国际标准 (XXIX)4.4.2 STEP7中的编程技术 (XXX)结束语 ......................................................... X XXIV 致谢 (33)参考文献 (34)附录 (35)1.1系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。
基于PLC的锅炉供热控制系统的设计的开题报告一、选题背景锅炉供热是现代化社会产生的重要现象之一,锅炉燃烧的煤、天然气等燃料产生的热能,通过管道传送至供暖设施中进行供暖。
而这一过程中,锅炉供热控制是关键之一,影响着供暖设施的温度、舒适度、能耗等问题。
因此,本文选题基于PLC的锅炉供热控制系统设计。
二、研究目的和意义本文的研究目的是设计和实现基于PLC的锅炉供热控制系统,以提高供热系统的自动化程度、减少运行成本、提高供暖设施的温度稳定性、实现省电等效果。
在实际运用中,这样的系统在保障供热设施安全、提高人民生活品质方面具有重要的现实意义。
同时,又能较好地体现PLC控制技术在供热领域中的应用,为相关领域的控制策略优化、工程实施提供参考。
三、主要任务和内容本文基于PLC的锅炉供热控制系统设计的任务包括以下几个方面:系统的功率调节控制、系统的供水温度调节控制、炉体膨胀控制和模拟灰仓检测控制等。
其内容涵盖PLC编程、硬件接线、参数配置、控制算法设计等方面。
具体来说,主要包括以下内容:1、系统的框架设计:将传感器控制器、触摸屏、PLC等设备联系起来,构建完整的控制系统,建立控制系统的设计模型。
2、传感器设备的选择:选择在锅炉供热领域中经常应用的控制器,包括温度传感器、压力传感器等各种传感器设备。
3、PLC编程:基于PLC软件平台,采用逻辑控制程序、语言等,设计功率调节控制、供水温度调节控制、炉体膨胀控制等程序代码。
4、参数配置:为PLC编程设定控制参数,包括控制时序和控制范围等关键参数;同时设计参数调节程序,通过丰富参数调节方式,实现定制化控制方案。
5、控制算法设计:从系统的高级控制角度出发,采用现代化控制算法,设计稳态控制、过程控制、最优控制等各种算法,优化系统的整体控制效果。
四、研究成果预期设计出基于PLC的锅炉供热控制系统,掌握了供热领域常用的传感器设备和控制器,建立了一个完整的控制系统。
实验结果也体现出该系统的优异性能,具体体现在系统的控制精度、控制响应速度、稳定性等方面。
论文基于PLC的加热水炉实时恒温控制系统的设计基于PLC(可编程逻辑控制器)的加热水炉实时恒温控制系统的设计可以按照以下步骤进行:1. 系统硬件设计:- 选择适宜的PLC设备,根据实际需求选择I/O模块和通信模块等。
- 连接传感器和执行器,如温度传感器、电磁阀等,确保能够实时感知水温和控制加热。
2. 确定控温策略:- 确定恒温控制的目标温度范围和波动范围。
- 设置上下温度阈值,当温度超过或低于阈值时触发相应的控制措施。
3. 编写PLC程序:- 根据控温策略编写PLC程序,包括数据采集、控制逻辑和输出控制。
- 采集温度数据,并与设定温度进行比较,判断是否需要调整加热控制。
- 控制加热元件,如电磁阀或电热丝,通过开关控制加热或停止加热。
4. 实现实时控制:- PLC具有实时性能,可以按照设定的周期执行控制循环。
- 在每个控制周期内,读取温度传感器数据,与设定温度进行比较,并控制加热元件的工作状态。
5. 实现安全保护功能:- 添加安全保护功能,如超温保护和过热保护。
当温度超过安全阈值时,立即停止加热,并触发报警。
6. 可视化界面:- 开发人机界面(HMI)以便于操作和监控系统状态。
- 显示实时温度、设定温度和加热状态等信息,并提供手动控制和设定温度的功能。
7. 调试和测试:- 对系统进行调试和测试,确保控温系统的可靠性和稳定性。
- 在实际运行过程中进行验证,对系统进行进一步调整和优化。
需要注意的是,此处提供的是基本的设计步骤,具体的实施和细节会根据具体的加热水炉的要求和PLC设备的特点有所不同。
在设计过程中,应遵循相关的安全准则和标准,确保系统的可靠性和安全性。
同时,建议寻求专业工程师的指导和支持,并对系统进行全面的测试和验证。
基于PLC控制的电锅炉控制系统电锅炉控制系统是现代工业制造中常见的一种设备,它通过PLC(可编程逻辑控制器)来实现对电锅炉的精确控制。
PLC控制技术具有灵活、方便、可靠等优点,能够实现复杂的逻辑控制和自动化控制功能。
本文将从PLC控制系统的原理、功能及特点入手,结合电锅炉的工作原理,详细介绍基于PLC控制的电锅炉控制系统的设计与实现。
1. PLC控制系统原理PLC控制系统是一种专门设计用于工业自动化控制的设备,其核心是一个可编程的CPU,通过不同的输入/输出模块和通信模块,与外部传感器、执行器等设备连接,实现对生产过程的控制。
PLC控制系统通过预先编写好的程序,根据不同的输入信号执行相应的逻辑控制,以达到自动化控制的目的。
2. 电锅炉工作原理电锅炉是一种利用电能进行加热的设备,通常由加热元件、控制系统、水泵等部件组成。
在工作过程中,电能被加热元件转换为热能,将水加热至设定的温度,为生产或生活提供热水或蒸汽。
电锅炉的控制系统通常包括温度传感器、压力传感器、水位传感器等,用于监测和控制锅炉的工作状态。
3. 基于PLC控制的电锅炉控制系统设计基于PLC控制的电锅炉控制系统主要由PLC控制器、传感器、执行器、人机界面等部件组成。
在设计过程中,首先需要根据电锅炉的工作原理和需求确定系统的功能要求和控制策略,然后编写PLC程序实现相应的逻辑控制。
通过合理的硬件布局和接线连接,将各部件连接到PLC控制器上,实现信号的采集和输出。
4. 控制系统功能与特点基于PLC控制的电锅炉控制系统具有如下功能与特点:1)灵活性:PLC控制系统可根据需要进行程序修改,实现不同的控制策略;2)可靠性:PLC控制器具有较高的稳定性和可靠性,可以长时间稳定运行;3)精确性:通过PLC控制系统可以实现对电锅炉的精确控制,提高生产效率和产品质量;4)扩展性:PLC控制系统可根据需要扩展输入/输出模块和功能模块,实现系统的功能扩展。
5. 控制系统优化与应用为了进一步优化电锅炉控制系统的性能,可以采用PID控制算法、模糊控制算法等先进的控制技术,提高系统的响应速度和稳定性。
基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
摘要摘要也称内容提要,概括研究题目的主要内容、特点,文字要精练。
中文摘要一般不少于400字,外文摘要的内容应与中文摘要相对应。
关键词:关键词1;关键词2;关键词3;关键词4锅炉是工业生产中的重要动力设备之一,它的主要作用是在工业生产过程中作为热源和动力源,例如为蒸馏、化学反应、干燥蒸发等提供热能,为风机、压缩机、泵类提供动力。
随着工业的不断发展、规模不断扩大,生产过程不断的改革和强化,作为生产动力源的锅炉,也随着这些发展的需要而发展与改革,例如大容量多参数、高效率方向发展,以及从节能出发进行各种设备的改革。
同时,为了保证安全、稳定生产和节能,对锅炉的自动控制就成为非常不要。
循环流化床(CFB)锅炉由于其高效低污染、煤种适应性好、调负荷能力强、造价相对便宜、技术相对容易掌握等特点,已成为目前最为实际的煤清洁燃烧技术之一,得到了较快的发展。
国内外应用实践表明,与常规煤粉锅炉相比,采用这种技术可使燃煤电站锅炉排烟中S02和N0x等有害气体含量减少80%一90%左右,可有效减轻燃煤发电对于大气环境的污染,将对我国国民经济的发展和生态环境的保护均起到积极的作用可编程序控制器(Programmable logic contoroller) 简称PLC ,是以微处理器为核心,用于工业控制的计算机,由于PLC 广泛采用微机技术,使得PLC不仅具有逻辑控制功能,而且还具有了运算、数据处理和数据传送等功能。
目前城市供暖的锅炉在启停和运行的过程中都需要精确的实时控制,大多数锅炉系统的控制还采用继电器逻辑控制。
这类系统自动化程序很低,大部分操作还是由手动来完成,只能处理一些开关量问题,无法处理系统的模拟量,即使控制一些开关量,其电气线路复杂,可靠性不高,不便维护,实际锅炉系统控制中每台炉就需要一套继电器控制系统,而采用西门子S7 -200系列可编程控制器设计的控制系统实现了循环流化床汽锅炉的自动控制,并实现了整个系统的优化控制。
毕业设计(论文)_基于PLC的锅炉出水温度控制系统的研究与设计毕业设计锅炉出水温度控制系统的研究与设计总计毕业设计(论文)61页表格2表插图16幅I摘 要随着我国经济的发展,资源和环境矛盾同趋尖锐,使我国的现代化建设面临严峻挑战。
作为温度控制系统重要能源转换设备的锅炉能耗巨大,占我国原煤产量的三分之一左右。
然而,我国目前运行的很多锅炉控制系统自动化水平不高、安全性低,工作效率和环境污染普遍低于国家标准,因此实现锅炉的计算机自动控制具有重要的意义。
随着科学技术的不断发展人们开始利用各种先进的仪器和技术组成计算机控制系统来代替人工复杂的控制操作,直接数字控制DDC 系统(Direct Control ),便是其中之一。
直接数字控制DDC 系统,它是工业生产计算机控制系统中用的最广泛的一种系统应用形式,在这类系统中的计算机,除了经过输入通道对多个工业过程参数进行巡回检测采集外,它还代替了模拟调节系统中的模拟调节气,按预定的调节规则进行调解运算,然后将运算结果通过过程输出通道输出并作用于执行机构,以实现多回路调节的目的。
本设计设计了基于PLC 的锅炉温度控制系统,该系统包括下位机控制和上位机控制两部分。
文中给出了通过时间和室外温度相结合的控制策略对系统温度进行调节控制。
关键字:锅炉;计算机控制; PLCAbstractWith China’s economic development,resources and the environment has become increasingly acute contradictions,so that the modernization of our country is facing a formidable challenge.As an important energy source conversion equipment,heating system of the industrial boiler consumes about one-third of China’s coal.However,the majori ty of China’s current operating boiler system’s security and efficiency is generally lower than the national standard.So it's great significance to achieve automatic control for boiler with computer.Along with science technical develop continuously people start making use of every kind of advanced instrument constituting the calculator control system with the technique to the control operation that replace the artificial complicacy, direct arithmetic figure control DDC system( Direct Control), just one of them Direct arithmetic figure control DDC system, it is an industry to produce convenient and the most extensive a kind of system in system of control of calculator application form, in addition to through importation passage to several industries process parameter proceeding cruising to return to examination to collect, it returned to replace the emulation regulates the emulation in the system regulates the spirit, at the set regulate rule proceed the intermediation carries to calculate, then will carry to calculate result pass process output passage output combine function in carry out the organization, to realize many the purpose that back track regulate.the paper presents a overall control thinking,the system designed to heating in winter includes superordinate computer control system and the subordinate system.To meet all the campus’s winter heating,it gives a complete control strategy which combined with time and outdoor’s temperature.IIKey Words:Boiler;Computer Control; PLCIII目录摘要 (I)ABSTRACT (II)第1章绪论 (6)1.1锅炉温度控制系统现状 (6)1.2锅炉自动控制的发展历史 (7)1.4课题意义 (9)第2章锅炉温度控制系统的总体介绍 (11)2.1锅炉温度控制系统的组成 (11)2.2交流电机的变频调速系统介绍 (13)2.2.1变频器驱动的特点 (13)2.2.2变频调速的基本原理 (14)2.2.3变频器基本结构 (15)2.3燃煤锅炉的工作过程 (17)2.3.1 燃煤锅炉的组成 (17)2.3.2燃煤锅炉的工作过程 (18)2.4燃煤锅炉的自动调节任务 (19)第3章控制系统下位机的设计 (22)3.1PLC软件介绍 (22)3.1.1 模块式PLC的基本结构 (23)3.1.2 PLC的特点 (24)3.2STEP7软件简介 (25)3.3控制系统所用功能块 (27)3.4锅炉控制系统的硬件组态 (29)3.5锅炉系统下位机程序设计 (31)3.5.1 系统下位机控制程序实现 (31)3.6本章小结 (41)第4章控制系统上位机设计 (42)IV4.1WINCC软件介绍 (42)4.2WINCC的特点 (43)4.3WINCC主要控制模块 (43)4.4项目组态 (45)4.5系统监控界面设计 (46)4.6I NTERNET远程监控 (52)4.6.1 WEB Navigator简介 (52)4.6.2 WEB Navigator的优点 (53)4.6.3 远程WEB发布与浏览 (55)4.6.4 使用WEB Navigator 过程中遇到的问题及解决办法 (55)4.7本章小结 (57)第5章系统的抗干扰设计 (58)5.1PLC系统的抗干扰性 (58)5.1.1 电磁干扰源及对系统的影响 (59)5.1.2 系统外引线的干扰 (59)5.1.3 PLC系统内部的干扰 (60)5.1.4 PLC控制系统工程应用的抗干扰设计 (61)5.2控制系统主要抗干扰措施 (61)第6章结论与展望 (63)6.1总结 (63)6.2展望 (64)致谢 (65)参考文献 (66)V第1章绪论1.1锅炉温度控制系统现状锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。
基于PLC的电热锅炉控制系统的设计【摘要】本文以PLC程序控制的高性能电热锅炉为例,来阐明PLC在工业控制领域中发挥的巨大作用。
其硬件系统采用的是SIEMENS公司的的S7-200PLC以及其相应的控制模块,实现电热锅炉系统的控制。
【关键词】PLC;电热锅炉1.概述20世纪60年代末,70年代初出现并得到迅猛发展的可编程程序为工业自动化领域带来了深刻的变革。
以其高可靠性,低价位迅速占领了中低端控制系统的市场。
同时电热锅炉的应用领域非常广泛,它的性能优劣决定了产品的质量好坏。
因此如何利用PLC技术控制锅炉温度成为关键。
通过对电热锅炉的控制,使系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制很有意义。
2.系统硬件配置及其功能主机采用CPU224,EM231为热电偶输入模块,外接锅炉的入水口和出水口温度信号,TD200是一个低价的文本设定显示单元,当电热管多于六组时,可再增加EM222继电器输出扩展模块。
此系统选用的CPU224集成了14点输入/10点输出,共有24个数字量I/O。
它可连接7个扩展模块,最大扩展至168点数字量I/O点或35路模拟量I/O点。
CPU224有13K字节程序和数据存贮空间,6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器。
CPU224配有1个RS-485通讯/编程口,具有PPI通讯、MPI通讯和自由方式通讯能力,是具有较强控制能力的小型控制器。
系统的原理框图如图所示。
该系统需要的传感器是将温度转化为电流,且水温最高是100℃,所以选择Pt100铂热电阻传感器,其阻值会随着温度的变化而改变;为了方便接线,CPU224机型采用可插拔整体端子;EM231热电偶模块可用于J、K、E、N、S、T和R型热电偶,用户用模块下方的DIP开关来选择热电偶的类型;TD200键盘共有9个键:5个命令键和4个功能键,用来显示信息,在信息中可以内嵌数据,数据既可以显示,也可以由操作人员进行设置;电加热管是专门将电能转化为热能的电器元件,由于其价格便宜,使用方便,安装方便,无污染,被广泛使用在各种加热场合;水暖供热管道中的热水是靠循环泵循环起来的循环泵的工作原理要将水循环起来所用的泵就叫循环泵;保护程序是必不可少的部分,报警处理,用以防止非法操作所引起的程序混乱。
xxxxxxx机电工程系毕业设计论文电热锅炉供热系统的PLC控制程序设计题目专业名称学生姓名指导教师毕业时间绪论现在生产线控制的主流品种是以继电器、接触器为主的控制装置。
继电器、接触器是一些电磁开关。
由励磁线圈、铁心磁路、触点等部件组成。
通过继电器接触器等其它控制元件的线路连接,可以实现一定的控制逻辑,从而实现设备的各种操作控制。
人们将由导线连接决定器件间的逻辑关系的控制方式称为接线逻辑。
随着工业自动化的程度的不断提高,使用继电器电路构成工业控制系统的缺陷不断暴露出来。
首先是复杂的系统使用成百上千个各种各样的继电器,成千上万根导线连接的密如蛛网。
只要有一个电器,一根导线出现故障,系统就不能工作,这就大大降低了这种接线逻辑的可靠性。
其次是这样的系统维修机改造很不容易,特别是技术改造,当试图改造工作设备的工作过程以改善设备各功能时,人们宁愿重新生产一套控制设备都不愿将继电器控制柜中的线路重接。
而PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采用了先进的抗干扰技术,具有很高的可靠性。
同时PLC用存储逻辑代替接线逻辑,大大减小了控制设备的外部接线,是控制系统设计及建造的周期大大缩短了。
同时维护也变得容易起来。
更重要的是同一设备经过改变程序改变生产过程成为可能。
本文以PLC技术在锅炉多功能供热系统为例,来阐明PLC在工业控制中发挥的巨大作用关键词:锅炉多功能供热;PLC;目录1 绪论 (2)1.1 PLC的基本概念 (5)1.2 PLC的诞生 (5)1.3 PLC的特点 (6)2 PLC的介绍 (7)2.1 PLC的流派 (7)2.2 PLC的结构和工作原理 (8)3 PLC的应用领域 (11)3.1开关量的逻辑控制 (11)3.2模拟量控制 (11).3.3运动控制 (12)3.4过程控制 (12)3.5数据控制 (12)4 PLC的基本结构 (12)4.1中央处理单元 (13)4.2 存储器 (13)4.3I/O模块 (14)4.4 电源 (15)4.5 底板或机架 (16)4.6 PLC系统的基本设备 (16)5 PLC的基本工作原理 (16)5.1 扫描技术 (16)5.2 PLC与继电器控制与系统微机区别 (18)5.3 基本指令系统特点 (18)5.4编程语言的形式 (19)5.5 PLC控制系统的设计基本原则 (20)5.6 PLC程序的内容和质量评价指标 (21)5.7 PLC程序的调试方法及步骤 (22)5.8 PLC的造型方法 (23)5.9经济性考虑 (27)6 基于PLC的电热锅炉供热控制系统设计 (28)6.1电热锅炉供热控制系统设计要求 (29)6.2电热锅炉供热控制系统设计方案 (30)6.3电热锅炉供热控制系统设计的程序部分的介绍 (34)致谢 (37)参考文献 (38)1.1 PLC的基本概念PLC即可编程控制器(Programmable logic Controller),是指以计算机技术为基础的新型工业控制装置。
基于PLC系统的锅炉内胆水温控制系统设计————————————————————————————————作者:————————————————————————————————日期:1 PLC构成及WinCC的组态采用WinCC组态技术设计多机联网运行的实时监控系统,核心思想是通过计算机超强的处理能力,以软件实现实际生产过程变化,把传统控制中进行人工操作或数据分析与处理、数据输出与表达的硬件,利用方便的PC机软硬件代替.建立WinCC组态监控系统.首先启动WinCC,建立一个单用户项目——添加通讯驱动程序--选择通道单元-—输入逻辑连接名,确定与S7—300端口的通讯连接。
然后在驱动程序连接下建立结构类型和元素,给过程变量分配一个在PLC中的对应地址(地址类型与通讯对象相关),给除二进制变量外的过程变量和内部变量设定上限值和下限值(当过程值超出上限值和下限值的范围时,数值将变为灰色,并且不可以再对其进行任何处理).接着创建和编辑主导航画面、单台空压机组态画面、远程监控画面、分析诊断画面、数据归档画面、报警显示画面、报警在线限制值画面、报表打印画面、用户登录方式画面等.对画面中添加的按钮、窗口和静态文本等,进行组态变量连接、状态显示设置等等.再对远程控制画面中的启动/停止按钮进行变量连接,设置手动控制和自动控制两种方式,并且手动控制为高级控制方式。
通过设置随变量值的变化范围而改变颜色的比功率棒图进行故障诊断分析;通过对过程值的归档,建立历史和当前的表格与曲线两种状态的监控界面;利用报警和报表打印等,实现信息上报、及时反馈的功能,实现最佳的生产状态监测控制。
还可通过用户管理权限的设置,为不同级别的用户设置权限和等待空闲时间,以更好地安全防护。
1。
1 PLC控制柜的组成(1)电源部分(2) CPU模块西门子S7-300PLC,型号为CPU315-2 DP,它集成了MPI接口,可以很方便的在PLC站点、操作站OS、编程器PG、操作员面板建立较小规模的通讯。
1 绪论锅炉是供热设备中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。
目前,大多数锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。
锅炉作为一个设备总体,有许多被控制量与控制量,许多参数之间明显地存在着复杂的关系。
对于锅炉这个复杂的系统,由于其部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。
可编程逻辑控制器(PLC)既能代替传统的继电器接触器控制系统,又具有扩展各种输入输出模块,如A/D模块、热电偶热电阻模块,构成多功能控制系统。
现代PLC集成度高、功能强、抗干扰能力强、组态灵活、工作稳定。
在传统工业的现代化改造中发挥着越来越重要的作用。
目前供暖锅炉大都采用人工监控,一方面浪费人力;另一方面在出现事故隐患时,操作人员难以及时发现,很容易造成运行中设备的事故。
在各种工业企业的动力设备中,锅炉是重要的组成部分,所以锅炉的性能至关重要。
要设计一套完整的、性能良好的工业燃烧锅炉,首先就必须了解一般燃烧锅炉的基本构造和燃烧过程。
1.1 锅炉的基本构造锅炉是一种产生蒸汽或热水的热交换设备。
它通过燃料的燃烧释放大量热能,并通过热传递把能量传递给水,把水变成蒸汽或热水,蒸汽或热水直接供给工业和生活中所需要的热能。
所以锅炉的中心任务是把燃料中的化学能有效的转化为蒸汽的热能。
图1.1为简单锅炉的大体组成部分。
锅炉的主要设备包括气锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧设备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃料供给设备以及除灰除尘设备等。
气锅:由上下锅筒和三簇沸水管组成。
水在管受管外烟气加热,因而管簇发生自然的循环流动,并逐渐气化,产生的饱和蒸汽积聚在上锅筒里面。
炉子:是使燃烧从充分燃烧并释放出热量的设备。
炉膛:保证燃料的充分燃烧,并使水流受热面积达到规定的数值。
word图书分类号:密级:基于PLC的锅炉加热温度控制系统设计DESIGN OF BOILER TEMPERATURE CONTROL SYSTEM学生学号学生某某学院名称专业名称指导教师摘要本文主要介绍了工业温度控制的发展前景、S7-200系列PLC的基本知识以及锅炉温度控制系统的工作流程、基本原理和组成结构。
通过对锅炉温度控制系统设计要求的分析,给出锅炉温度控制系统的I/O口分配表和系统原理图并且以可编程控制器(PLC)为核心,根据系统的控制要求利用STEP 7编程软件设计系统的梯形图。
该系统以电热锅炉加热管为被控对象,锅炉水温为被控参数同时兼顾锅炉内压力及水位等条件,以PLC为控制器,锅炉加热管通电时间为控制参数设计了一个温度控制系统。
其中调用了西门子公司PLC中自带的PID模块,以更简洁更方便的方法完成了锅炉温度的自动控制设计。
本文从系统的工作原理、系统硬件选型、系统软件编程以及组态监控画面设计等方面进行阐述。
关键词电热锅炉;温度控制;PLC;PID;固态继电器AbstractThis article focuses on the industrial development prospects of temperature control, basicknowledge of S7-200 series PLC as well as the boiler temperature control system made up of work processes, principles, and structure.Through the analysis of boiler temperature control system design, I/O port allocation table of temperature control system of the boiler,system schematics and a programmable logic controller (PLC) as the core, according to the control system requires the use of STEP 7 programming software system design of ladder diagram.The system to electric boiler heating tubes to a charged object, parameters of boiler water temperature to be controlled both the pressure and the water level in the boiler and other conditions, the PLC controller, boiler heating power parameter design of a temperature control system for control.Whichis calledtheSiemensPLCes withPIDmodules,andamoreconciseandmore convenientwaytopletetheautomatic control system designoftheboilertemperature.This paperdescribedtheworking principleofthesystem, system hardwareselection, system softwareprogrammingandconfiguration ofthe monitor screendesign.Keywords Electric boiler Temperature control PLC PID Solid State Relays目录1 绪论11.1 课题背景及意义11.2 国内外研究现状11.3 本文研究内容22 温度控制系统设计22.1 温度控制系统工作原理22.2 PID控制及参数整定32.2.1 PID控制原理32.2.2 PID参数的整定43 系统硬件设计63.1 PLC的产生和特点63.1.1 PLC的产生与应用63.1.2 PLC的特点63.2 PLC控制系统设计的基本原则和步骤63.2.1 PLC控制系统设计的基本原则63.2.2 PLC控制系统设计的一般步骤73.3 系统整体设计方案73.4 PLC选型83.4.1 PLC的主机模块83.4.2 PLC的I/O扩展模块83.4.3 PLC的选择93.5 传感器选型93.5.1 温度传感器选型93.5.2 PT100温度变送器选型103.5.3 压力传感器选型103.5.4 液位传感器选型103.6 固态继电器113.6.1固态继电器的原理分析113.6.2固态继电器的组成113.6.3 固态继电器的优缺点113.7数码管123.8系统工作流程及硬件接线123.8.1系统工作流程123.8.3系统主电路图133.8.4系统控制电路图133.8.5PLC硬件连接图143.8.6I/O端口分配164 软件设计164.1系统流程图164.2PID控制器的参数整定174.3PLC程序梯形图设计215 人机界面设计315.1 组态软件基础315.1.1 组态定义315.1.2 组态王软件的特点315.1.3 组态王软件仿真的基本方法31 5.2组态变量的建立及设备连接315.2.1 新建项目315.2.1 新建设备325.2.3 新建变量335.2.4 变量与PLC的传输345.3创建组态画面355.3.1 新建主画面355.3.2 新建PID参数设定窗口365.3.3 新建实时曲线365.3.4 新建历史曲线375.3.5 新建报警窗口376 系统仿真及测试386.1系统运行386.2 运行结果386.2.1 参数设定画面396.2.2 实时趋势曲线396.2.3 历史趋势曲线396.2.4 报警窗口40结论40致谢错误!未定义书签。
基于PLC控制的锅炉供热控制系统设计1 引言1.1 技术综述自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表,在各行业广泛应用。
目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。
温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。
目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。
成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。
现在,我国在温度等控制仪表业与国外还有着一定的差距。
温度控制系统大致可分别用3种方式实现,一种是用仪器仪表来控制温度,这种方法控制的精度不高。
另一种是基于单片机进行PID控制,然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC 在这方面却是公认的最佳选择。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能。
因此本设计选用西门子S7-300PLC来控制加热炉的温度。
1.2 系统工作原理加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。
PLC主控系统图1-1 加热炉温度控制系统基本组成加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后 PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。
引言目前我国供暖锅炉以燃煤链条锅炉为主,燃用的主要是中低质煤,而且锅炉房管理水平不高,一直沿用间断运行方式,锅炉技术含量低,锅炉的自动化控制技术落后,造成了严重的浪费和环境污染,据了解我国目前拥有工业锅炉50万台,每年消耗的燃煤占全国原煤产量的三分之一约4亿吨,锅炉每年排放烟尘约620万吨,CO2约510万吨,此外还有大量的NO2有害气体,成为我国大气烟煤型污染的主要来源之一,尤其是燃煤排放的CO2气体所引起的温室效应,早已引起国际关注,所以使用清洁能源已势在必行。
中国的锅炉产业,它既不是“朝阳产业”,也不是“夕阳产业”,而是与人类共存的永恒产业,且在中国还是一个不断发展的产业。
20世纪80年代以后,中国的经济发生了突飞猛进的变化,锅炉行业更加突出,全国锅炉制造企业增加近二分之一,并形成了独立开发研制一代又一代新产品的能力,产品的技术性能已接近发达国家水平。
锅炉是经济发展时代不可缺少的商品,未来将如何发展,是非常值得研究的。
关键词:锅炉燃气燃烧机自动化PLC 温度控制触摸屏目录1概述................................................................... (01)1.1 燃气热水锅炉特点 (03)1.2锅炉自动化的意义 (03)2.锅炉PLC自动控制系统设计........................................................04~28 2.1 锅炉外观示意图. (04)2.2 锅炉控制流程图 (05)2.3 热水锅炉控制要求.......................................................06~08 2.4 PLC、模块、触摸屏的选型. (09)2.5 硬件分配表 (10)2.6 I/O地址分配表 (11)2.7 PLC接线图 (12)2.8 PLC程序说明...........................................................................12~22 2.9 触摸屏说明...............................................................................23~28 3小结.. (29)4 参考文献 (30)5附件说明 (31)1概述1.1燃气热水锅炉特点燃油燃气锅炉不同于燃煤锅炉,它需要使用燃烧器将燃料喷入锅炉炉膛,采用火室燃烧而无须使用炉排设施。
由于燃油燃气锅炉燃烧后均不产生燃料灰渣,故燃油燃气锅炉无须排渣设施。
喷入炉内的油气如果与空气在一定范围内混合或熄灭,就容易爆炸。
因此燃油燃气锅炉均需采用自动化的燃烧与控制系统。
1.2燃气锅炉进行自动化设计的意义1应用自动化运行,安全有保障,有可靠的自控和保护装置。
2锅炉性能需与用户用热用汽特性一致,适应性好。
用户负荷有较大变化时,敏感性要高,追踪性要快、稳定等。
2.锅炉PLC自动控制系统设计2.1锅炉外观示意图2.3 热水锅炉控制要求为了锅炉可靠安全自动运行,本系统具有失电自锁保护,点火失败保护,异常熄火保护,电机过载保护,风道无风保护,燃气压力低保护,燃气泄漏联锁保护,水温超高联锁保护,可根据锅炉负荷变化自动启停燃烧设备,可根据锅筒水位变化自动进行给水控制,具有声光报警功能。
2.3.1基本控制功能和说明2.3.1.1失电自锁保护。
当锅炉在自动运行状态下工作突然断电锅炉停止工作,当电源再次恢复时PLC程序自动检测外围各保护措施,如果一切正常恢复重新自动运行,不正常报警。
(具体看初始化程序)2.3.1.2点火失败保护。
按下触摸屏锅炉启动按钮,PLC延时5秒输出(外围其它的保护都正常),K1(启动继电器)得电燃烧机程控器工作控制燃烧机转到点火位置,程控器控制燃气电磁阀打开,开始点火,失败,燃烧机程控器报警输出到K13(熄火保护继电器),继电器K13吸合PLC输入通,锅炉停止工作,PLC输出,蜂鸣器H10得电讯响,故障指示灯H3亮。
2.3.1.3异常熄火保护。
例如:外部连锁、燃气压力过低、燃气泄漏、水温超高、水位过低,当以上条件发生时,锅炉在燃烧过程中会熄火并报警。
2.3.1.4外部连锁保护外部连锁是锅炉和循环泵连锁信号,当循环泵启动接点信号通PLC导通延时5秒保持燃烧运行,当循环泵停止接点信号断PLC 输入断开延时5秒复位PLC输出,中断燃烧控制,燃烧停止并报警。
2.3.1.5燃气压力低保护当燃气低压时PLC输入导通延时5秒保持PLC内部继电器,PLC 输出,蜂鸣器H10得电讯响,故障指示灯H3亮,报警并保持。
2.3.1.6燃气泄漏联锁保护外部检漏开关通,PLC输入通延时5秒保持PLC内部继电器通锅炉停止运行,PLC报警输出,蜂鸣器H10得电讯响,故障指示灯H3亮。
2.3.1.7水温超高联锁保护当实际水温高于设定超高温度时报警停炉,即比较PLC锅水设定值与水温实际值,大于复位,锅炉停止燃烧,PLC报警输出,蜂鸣器H10得电讯响,故障指示灯H3亮。
2.3.1.8水位过低保护当水位继电器N1触点断开PLC报警输入通延时10秒,PLC报警输出,蜂鸣器H10得电讯响,故障指示灯H3亮。
2.3.1.9可根据锅炉负荷变化自动启停燃烧设备。
此功能通过PLC编程来完成具体看燃烧控制程序说明2.3.1.10具有声光报警功能。
任何外部报警都会在触摸屏上显示,蜂鸣器报警声响后报警信息自动保持在触摸屏上。
2.4 PLC温度模块触摸屏的选型跟据客户要求,本系统采用日本欧姆龙CPM2A系列的PLC、TS101的温度模块和三菱F930GOT系列触摸屏。
日本的小型PLC很有特色,在小型机领域中颇具盛名,在开发较复杂的控制系统方面明显优于欧美的小型机,欧姆龙公司是世界上生产PLC的著名厂商之一,至今已经有50多年的历史,该公司的PLC产品以其门类齐、型号多、功能强和适应面广等特点占据了我国PLC 市场的较大份额。
三菱触摸屏来到中国有20多年的历史,现在市场上主要使用的有以下系列:三菱触摸屏:GT1150系列、GT1155系列、G T1175系列、GT1575系列、GT1585系列、GT1595系列、A9 70GOT系列、A975GOT系列、A985GOT系列、F930GOT系列、F940GOT系列;为了操作上的方便,人们用触摸屏来代替鼠标或键盘。
工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。
触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。
注:PLC与触摸屏为RS232串行通讯,波特率19600bit/s .2.5硬件分配表注:K1为控制燃烧中间继电器,K2为控制燃烧中间继电器,K11为燃烧反馈中间继电器,K13为熄火反馈中间继电器,K14为燃气低压反馈中间继电器,K15为燃气泄露反馈中间继电器。
2.6 I/O地址分配表2.7PLC接线图2.8PLC程序说明为了方便记忆和编辑程序,欧姆龙编程软件可以分段编程,根据锅炉的使用要求程序分为以下几段:2.4.1初始化利用PLC特殊辅助继电器AR10.01功能块FUN49系统全部归零,即“失电保护”。
PLC运行,特殊辅助继电器253.13通,比较(CMP)DM234与#01F4(十六进制数)里的数,如果255.07(小于)通,传送(MOV)#01F4到DM234,以上为锅水超温设定卡位。
253.13通,比较(CMP)DM235与#01F4(十六进制数)里的数,如果255.07(小于)通,传送(MOV)#01F4到DM235,以上为出水超温设定“卡位”。
253.13(初始脉冲)通,传送(MOV)#0(十六进制数)到21(输出段号),传送(MOV)#0(十六进制数)到22(输出段号),传送(MOV)#0(十六进制数)到30(输出段号),以上为输出、指令、故障标记的传送。
比较(CMP)DM2047与#1000(十六进制数)255.07(小于)通,传送(MOV)#1000到DM2047,传送(MOV)#2238到DM88,传送(MOV)#64到DM89。
HR0.00(断电保持)通,保持(SET)22.11(单控)。
2.4.2输入转换0.07(紧急停止)通,TIM000延时5秒KEEP(保持)20.00,0.07不通,TIM020延时5秒复位20.00。
0.08(外部连锁)通,TIM001延时5秒KEEP(保持)20.01,0.08不通,TIM021延时5秒复位20.01。
0.10(低水位)通,TIM004延时10秒KEEP(保持)20.04,0.10不通,TIM024延时10秒复位20.04。
1.00(真空开关)通,TIM005延时5秒KEEP(保持)20.05(低真空),1.00不通,TIM025延时5秒复位20.05。
0.01(燃烧)通,TIM006延时5秒KEEP(保持)20.06(一段火),0.01不通TIM026延时5秒复位20.06。
0.02(高负荷)通,TIM007延时5秒KEEP(保持)20.07(大火),0.02(高负荷)不通,TIM027延时5秒复位20.07。
1.04(熄火)通,TIM009延时5秒复位20.07KEEP(保持)20.09,1.04不通TIM029延时5秒复位20.09。
1.03(泄露)通,TIM010延时5秒KEEP(保持)20.10,1.03不通,TIM030延时5秒复位20.10。
1.02(燃气低压)通,TIM011延时5秒KEEP(保持)20.11,1.02不通,TIM031延时5秒复位20.11。
0.00(启动)通,TIM012延时5秒KEEP(保持)20.12(风机开),0.00不通,TIM032延时5秒复位20.12。
253.13(初始脉冲)通,传送2到DM232,比较DM232与#FF00,255.05(大于)通传送#0到DM232。
255.05不通,比较DM232与#FFF,再255.05通传送#7FFF到DM232(锅水暂存数据)。
253.13(初始脉冲)通,传送3到DM233,比较DM233与#FF00, 255.05 (大于)通传送#0到DM233。
255.05不通,比较DM232与#FFF,再255.05通传送#7FFF到DM233(出水暂存数据)。
253.13(初始脉冲)通,A VG(取平均值)DM232与#64D到M0,A VG(取平均值)DM233与#64到DM100。