当前位置:文档之家› b光纤类型

b光纤类型

b光纤类型
b光纤类型

中国通信建设信息中心https://www.doczj.com/doc/d59892864.html,

光纤类型、标准和发展趋势

https://www.doczj.com/doc/d59892864.html, 来源:日期:2003-06-09

引言

传输容量需求的增加继续驱动传输技术领域的进步,随着密集波分复用(DWDM)技术、光纤放大技术,包括掺铒光纤放大器(EDFA)、分布喇曼光纤放大器(DRFA)、半导体放大器(SOA)和光时分复用(OTDM)技术的发展和广泛应用,光纤通信技术不断向着更高速率、更大容量的通信系统发展,并且逐步向全光网络演进。2002年OFC会议上报道了速率高达10.92Tbps的273×40Gbps和10.2Tbps的DWDM系统。DWDM、OTDM、EDFA、DRFA、SOA以及与各种新型光纤和先进信号处理技术的结合将把光纤通信传输容量推向一个更高的水平。在如此高速率,特别是超长距离系统中,系统传输容量和距离是关键的技术衡量标准。而先进的光纤对超长距离系统是得到高容量传输最有效的途径之一,既具有能保持稳定可靠传输足够的富余度,又能支持宽带工作,减少非线性损伤,具有高的分布喇曼增益,简化网络管理。

多模光纤由于芯径和数值孔径比单模光纤大,具有较强的集光能力和抗弯曲能力,特别适合于多接头的短距离应用场合,并因多模光纤的系统费用仅为单模系统费用的1/4。近年来,多模光纤的应用呈逐年上升趋势,这主要是因为世界光纤通信技术将逐步转向纵深发展,并行光互联元件的实用化也大大推动短程多模光缆市场的快速增长,从而使多模光纤的市场份额持续上升。随着千兆比特以大网的建立,以大网还将从Gbps向10Gbps的超高速率升级,新一代适合激光系统使用的多模光纤将会随之研制并得到广泛应用。

本文简要回顾光纤类型和标准发展的历史,介绍光纤的性能要求、类型和发展趋势。

2 光纤类型标准和发展趋势

1966年高锟博士提出用光纤作为通信介质的设想,1970年美国康宁公司首先研制出衰减为20dB/km的单模光纤,从此以后,世界各国纷纷开展光纤研制和光纤通信的研究,形成了如今的通信革命的伟大局面。

通信用光纤的研制先后经历了0.85μm短波长多模光纤和 1.30μm长波长多模光纤(ITU-TG.651)、1.31μm普通单模光纤(IT-TG.652)、1.55μm色散位移单模光纤(ITU-T G.653)、1.55μm非零色散位移单模光纤(ITU-T G.655)等重要发展阶段。

2.1 单模光纤

2.1.1 发展回顾

通信用传输光纤的进步从降低损耗和降低色散开始,不断减少线性效应和非线性效应影响,提升和改进产品质量。20世纪70年代末到80年代初,普通单模光纤(ITU-T G.652)研制成功;1983年,普通单模光纤商用化,色散位移单模光纤(ITU-T G.653)研制出来;1985年以后,色散位移单模光纤商用化,大量用于长距离、大容量的通信干线系统。为了适应新一代使用掺铒光纤放大器(EDFA)和密集波分复用(DWDM)通信系统的需要。1993年以后,先后研制出了色散补偿光纤和非零色散位移单模光纤(ITU-T G.655),并很快投入商业使用。1995年前后;开拓了1565~1625nm的L带,称为第四窗口。1998年,朗讯公司推出了全波光纤(All Wave Fiber),该光纤几乎完全消除了OH离子吸收峰,打开了1360~1460nm的第五窗口。1999年以后,又陆续推出了许多新型光纤品种。

2.1.2 单模光纤标准及分类

单模光纤标准新版本有:

ITU-T建议G.652:2000《单模光纤光缆特性人ITU-T建议G.653:2000《色散位移单

模光纤光缆特性》;ITU-T建议G.654:2000《截止波长位移型单模光纤光缆特性》;ITU-T 建议G.655:2000《非零色散位移单模光纤光缆特性》。

IEC 60793-2:2001《光纤第2部分:产品规范》。该标准包括B1.1、B1.2、B1.3、B2、B4类单模光纤,分别相应于G.652A和G.652B光纤、G.654类光纤、G.652C光纤(又称为低水峰光纤)、G.653类光纤、G.655A和G.655B光纤。

国标GB/T 9771.1~GB/T 9771.5-2000《通信用单模光纤系列》。该标准第l部分是B1.l类光纤,相应于G.652A和G652B光纤;第2部分是B1.2类光纤,相应于G.654类光纤;第3部分是B1.3类光纤,相应于G.652C光纤(又称为低水峰光纤);第4部分是B2类光纤,相应于G.653类光纤;第5部分是B4类光纤,相应于G.655A和G.655B光纤。每一部分在主要技术内容上都参照了国际标准的规定,某些特性要求也参照了国际上同类产品的先进技术指标。

光纤类别按ITU-T分为:G.652A、G.652B G.652C G.653 G.654、G.655B;按IEC分为:B1.1、B1.2、B1.3、B2、B4;我国光纤型号命名等效采用了IEC规定。

G.652和G.655类光纤是国内常用的单模光纤,G.653和G.654类光纤在国内很少使用。

由于IEC 60793-2:2001和国标GB/T 9771.l~GB/T9771.5-2000对单模光纤规定的技术指标基本上与ITU-T建议G.652、G.653、G.654和G.655的规定是协调一致的。因此仅将ITU-T建议新版本的主要内容介绍如下。

ITU-T建议G.652

G.652类光纤分为G.652A、G.652B、G.652C三个子类。G.652A光纤主要适用于ITU-T G.957规定的SDH传输系统和G.691规定的带光放大的单通道直到STM-16的SDH传输系统;G.652B光纤主要适用于ITU-T G.957规定的SDH传输系统和G.691规定的带光放大的单通道SDH传输系统及直到STM-64的ITU-T G.692带光放大的波分复用传输系统;G.652C 光纤(即波长段扩展的非色散位移单模光纤,又称为低水峰光纤,例如Lucent的全波光纤。)主要适用于ITU-T G.957规定的SDH传输系统和G.691规定的带光放大的单通道SDH传输系统和直到STM-64的ITU-TG.692带光放大的波分复用传输系统,这类光纤允许G.957传输系统使用在1360~1530nm之间的扩展波段,增加了可用波长范围,使可复用的波长数大大增加,是未来城域网新敷光纤的理想选择。

ITU-T建议G.655

.G.655类光纤分为了G.655A、G.655B两个子类。G.655A光纤主要适用于ITU-T G.691规定的带光放大的单通道SDH系统和直到具有通道间隔不小于200GHz的STM-64的ITU-T G.692带光放大的波分复用传输系统;G.655B光纤主要适用于通道间隔不大干100GHz的

G.692密集波分复用传输系统。

2.1.3 单模光纤发展趋势

随着更大传输容量的需求和DWDM的继续发展,要求光纤工作在更宽的频率范围,从C波段发展到L波段和S波段;消除1383nm衰减水峰,从O波段扩展到E波段,实现全波段传输。为了适应这种情况,ITU-T对石英玻璃单模光纤的工作波长范围作出了定义,如表6。长距离DWDM用的光纤还应具有适宜的色散值、合适色散符号和小的色散斜率,适宜大的有效面积,很低的PMD值和衰减值,并通过不同光纤配置实现色散管理、减少线性影响和非线性损伤、最佳噪声特性等来达到超长距离、超大容量传输。喇曼光纤放大器(EDFA)的出现和推广应用,进一步改善了光信噪比(OSNR)和扩展了光纤放大器之间的距离,喇曼放大要求设计出在泵埔波段低衰减光纤,以得到高的喇曼效率。

与长途网相比,城域网面临更加复杂多变的业务环境,直接支持大用户,需要服务的人口众多、密集,网络节点分布集中,信息量大,业务密度高,网络的物理半径(相对长途而言)较小,即通信距高较短,地下管道拥挤,网络动态变化幅度大,需要频繁的业务量疏导

和带宽管理能力。因此,提高网络运行效率、降低建设成本和运行费用十分关键。采用密集波分复用(DWDM)技术是一个很有前途的解决方案。而城域网用光纤类型的选择是运营商和网络设计者应慎重考虑的问题。为了克服信道间隔不能无限变窄对于扩大系统容量的限制,利用具有更宽工作波长范围的单模光纤自然更理想。已经开发了低水峰单模光纤,也称全波光纤,这种新型光纤属于ITU-T G.652C类型,它在C、L波段的色散太大,不是理想光纤。康宁、阿尔卡特、住友均推出了城域网用非零色散位移光纤,但是,这些光纤不适于包括在S波段的传输,人们又在开发S-C-L三波段传输的城域网用新型光纤。

2.2 多模光纤

2.2.1 发展历史回顾

世界上第一根衰减低于20dB/km的石英玻璃光纤,是一根0.63μm短波长的单模光纤,芯径仅几微米,用如此细的单模光纤来构成通信系统,非常困难,首先是连接、耦合问题不好解决。在这种情况下,人们将主要研究目标转向了多模光纤,并取得了成功。

1971~1980年期间,是多模光纤研究开发的第一个活跃期,70年代末到80年代初长波长多模光纤(ITU-T G.651)商用化,建立了50/125μm梯度多模光纤工业标准。1981~1995年期间,是多模光纤增加品种、投入规模生产的稳定应用期。国际上纷纷利用50/125μm 梯度多模光纤建立了实用化的局间干线光纤通信系统。但在1983~1984年,单模光纤(G.652光纤)技术成熟,50/125μm光纤在干线光纤通信系统中的地位迅速地被单模光纤取代,同时,50/125μm光纤转向局域网(LAN)数据传输领域。为了降低LAN系统成本,普遍采用价格低廉的发光二极管(LED)作光源,而不用昂贵的半导体激光器(LD),LED的发散角比LD的大得多,而当时已有的50/125μm光纤,其芯径和数值孔径都比较小,不利于与LED的高效耦合。为使连接耦合容易,使耦合入光纤的光功率更大,国际上开发了具有较大芯径和较大数值孔径的梯度多模光纤,例如62.5/125μm,80/125μm,100/140μm等,芯径从50μm增加到100μm,数值孔径从0.2增加到0.3以上,为多模光纤在LAN 系统中的推广应用创造了条件。此后不久,50/125μm光纤的大部分市场份额就被新兴起的62.5/125μm梯度多模光纤所取代。80/125μm,100/140μm等多模光纤则由于弯曲损耗较高、制造成本较高、外包层直径特殊等种种原因没有得到广泛应用。

自20世纪90年代中期以来,多模光纤研究与开发进入了一个新阶段。由于计算机信息处理容量的增加和因特网的迅速发展,使信息速率呈指数增长趋势。在北美、西欧等发达国家,以前建立的几十、几百Mbps的数据LAN系统已经落伍,向Gbps(千兆比特/秒)以上的超高速率发展。IEEE于1998年6月通过了IEEE 802.3zGigabit以太网标准。1999年2月,国际上有关标准化组织开始考虑10Gbps以太网标准(IEE 802.3ae),该标准已于2002年上半年出台。技术的进步,促进了多模光纤的发展,必须提高原来光纤的性能,开发新一代多模光纤(NGMMF),以满足Gigabit以太网应用(1~10G)的需要。

2.2.2多模光纤发展趋势

本地网络(LAN)中,包括校园网络,采用的都是多模光纤。常用的多模光纤中主要有Ala类50/125μm和Alb类62.5/125μm两种类型。对本地网络,在发展吉比特(Gigabit)以太网(Ethernet)标准以前,没有更多安装那种多模光纤的讨论。由于62.5/125μm光纤芯径大、数值孔径大,具有较强的集光能力,是最普遍的多模选择。62.5/125μm光纤一直主宰多模光纤市场。其中,北美应用的62.5/125μm光纤最多,而日本、西欧则较多地采用50/125μm光纤。由于62.5/125μm光纤固有的性质,在850nm的模式带宽小于200MHz·km,使用上受到限制。目前的这两种多模光纤都能提供支持如以太网(Ethernet)、令牌环(Token Ring)和FDDI协议在标准规定的距离内所需的带宽,其性能已被过去十几年的应用所证明,二者具有同样的包层直径和机械性能,在1300nm能提供类似的带宽,二者都能升级到Gigabit的速率,标准组织接受了这两种光纤。当速率提高时,就存在使用

那种光纤好的问题。62.5μm与50μm多模光纤有那些差别,那种光纤更适合于用户使用,选择光纤时应考虑那些因素。答案是:具体情况具体分析。一方面,主要取决于网络的要求,即该网络在今后几年将需要支持那些应用和需要多长的链路长度;另一方面,也取决于是安装新线路,还是老线路升级。

一些短程光纤通信应用部门也在考虑应用多模光纤的10Gbps系统标准。这种超高速率LAN系统,必须采用激光器做光源,并配用高性能多模光纤和其它新技术。其目标之一。就是建立采用多模光纤的850nm波长串行速率10Gbps传输300m的系统标准。于是,美国康宁、朗讯等公司联合向各个标准体提出了新一代多模光纤,国际上开始了关于新一代多模光纤的研究与开发,包括标准研究(技术规范、测量程序)。新一代多模光纤是针对激光器为光源的情况优化的多模光纤,也称新型50μm多模光纤。这种光纤的主要特点如下:这是一种工作波长为850nm的新型50/125μm梯度型多模光纤;

其纤芯的梯度折射率分布精确程度远比传统的50/125μm光纤的高,主要是消除折射率分布的中心缺陷;

这种光纤是专为配用850nm的VCSEL光源而设计制造的;

该光纤应确保在850nm波长以10Gbps速率串行传输至少300m距离。因此要求光纤的“激光器带宽”为2000MHz·kin,用DMD测量技术进行检测来保障该指标。IEEE 802.3ae标准中规范了新一代多模光纤(光缆)特性。IEC和TIA也定义了新一代多模光纤的限模注入带宽或激光器带宽为2000MHz·km。

光缆的种类及型号

GYXTW中心束管式室外光缆,内装4-12根光纤芯,并充满油膏,松套管外纵包阻水带和轧纹钢带、外护套采用优质黑色聚乙烯,在护套内平行对称设置两根圆钢丝。该光缆全截面阻水,结构紧密、外径小、重量轻、具有良好的机械性能,低损耗、低色散、适用于数字或模拟传输通信系统的架空、管道和直埋敷设。产品优点:1、尺寸小、重量轻、使光缆具有优越的抗弯性能,方便施工作业;2、钢带铠装层增强了光缆抗侧压,防潮性能;3、两根钢丝加强件,抗拉性能好; 4、双面涂塑钢带(PSP)提高光缆的防透潮能力独特的工艺控制与优质材料的选配,使光缆具有卓越的机械性能和环境性能. 光缆技术参数: 1、参数项目参数:光缆芯数 4-12芯,光缆外径 8.5-9.5 mm 2、光纤纤芯直径单模9/125um;多模62/125um或50/125um,抗拉力(N)短期≥1500 ,抗侧压≥1000 ,允许弯曲半径(动态) 20倍光缆外径 3、温度特性 -40℃~+60℃,重量(kg/km) 100-120 4、纵向阻水性能 1米高水柱24h后3m试样无水渗出 5、特征重量轻、适用于架空、管道敷设。 光缆敷设方式(主要): 架空、管道 ■ 适用温度范围 -40℃~+60℃ ■ 技术参数

常用光缆规格:光缆内光纤规格分为单模与多模。单模光缆和多模光缆中还可以分为2芯光缆,4芯光缆、6芯光缆、8芯光缆、12芯光缆、24芯光缆、36芯光缆,48芯光缆、56芯光缆,72芯光缆、96芯光缆、144芯光缆等可以根据客户的需求选用不同芯数的光缆。

光缆选用的参考要点:光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用来选择光缆的外护套、结构,在选用时应该注意以下几点:

各类光纤接口类型的区别与图示

各类光纤接口类型的区别与图示 光纤的接口比较复杂,在项目的过程中有时候确实很容易弄错,为了方便自己和大家的工作,特整理了以下资料: 光纤接头类型主要可以分为以下几种: FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(光纤收发器用的较多) LC 卡接式方形,比SC略小(光纤交换机用的较多) MT-RJ 方型,一头光纤收发一体 如下图所示: 光纤模块主要分为以下两种,一般都支持热插拔: GBIC(Giga Bitrate Interface Converter)使用的光纤接口多为SC或ST型 SFP小型封装GBIC,使用的光纤为LC型 光纤单模和多模的标识: L:表示单模,波长1310纳米; LH:表示单模长距,波长1310纳米,1550纳米; SM:表示多模,波长850纳米;

SX/LH :表示可以使用单模或多模光纤; 单模光纤的传输距离要比多模光纤远。 下面,是一些接线图,方便大家查看: 另外,如下图所示,在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/APC”等,其含义如下:

“/”前面部分表示尾纤的连接器型号: “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC 接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 “/”后面表明光纤接头截面工艺,即研磨方式: “PC” 微球面研磨抛光,在电信运营商的设备中应用得最为广泛,其接头截面是平的,。 “UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。 “APC”呈8度角并做微球面研磨抛光,可改善电视信号的质量。 版权所有? mcsrainbow,保留所有原创日志的权利。转载请注明出处:https://www.doczj.com/doc/d59892864.html, 。 这篇文章发表于2010/01/25 15:49,属于Network分类。你可以通过RSS 2.0来跟踪这篇文章。你还可以对它进行评论。

光纤参数

常用光纤附件 总结了一下光网络的常见附件及基础知识,跟大家共享一下,希望能对大家工作带来帮助一、光纤跳线及接口类型 1.FC-FC:常用于法兰箱对接,跟ST类似,但要注意区别,FC是螺丝口的 2.ST-ST:常用于尾纤或与光纤盒对接,跟FC类似,但ST是挂口的 3.ST-ST单模跳线:单、多模的主要外观区别就是颜色不同,多模为橙色,单模为黄色

4.SC-SC:常用于设备对接,GBIC模块用这种跳线 5.LC-LC:常用于设备对接,SFP模块用这种跳线

6.MTRJ-MTRJ:常用于设备对接,现在基本上已经不用了 二、常见适配器(法兰) 1.ST适配器

2.FC适配器 3.SC适配器 三、光纤盒 放置熔接好的尾线

四、光纤收发器 用于“光――电”互联

二、光纤分类 (一)按照制造光纤所用的材料分:石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤。 塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。目前通信中普遍使用的是石英系光纤。 (二)按光在光纤中的传输模式分:单模光纤和多模光纤。 多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为 0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。 多模光纤 多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。 单模光纤 单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。这就是说在1.31μm波长处,单模光纤的总色散为零。从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

光纤接口类型(附图)

光纤接口大全 l各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型 SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤

l在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC” 等,其含义如下 l“/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 l连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,具体的外观参见下图

l/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。 u另外,在广电和早期的CATV中应用较多的是“APC” 型号,其尾纤头采用了带倾角的端面,可以改善电视 信号的质量,主要原因是电视信号是模拟光调制,当 接头耦合面是垂直的时候,反射光沿原路径返回。由 于光纤折射率分布的不均匀会再度返回耦合面,此时 虽然能量很小但由于模拟信号是无法彻底消除噪声 的,所以相当于在原来的清晰信号上叠加了一个带时 延的微弱信号,表现在画面上就是重影。尾纤头带倾 角可使反射光不沿原路径返回。一般数字信号一般不 存在此问题 l光纤连接器 u光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以 使发射光纤输出的光能量能最大限度地耦合到接收光

光缆的种类与结构

2.5 光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)光缆——适用于室布放的光缆。 (4)设备光缆——用于设备布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 2.5.2 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图2.11所示。

光纤分类

光纤基本概念 一、光纤接口有哪几种? FC,SC,LC,MTRJ 二、单模(SMF)和多模(MMF)是以什么来区分的? 黄色的为单模光纤,橙色为多模光纤;(从颜色区分) 多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的 纤芯直径为8.3μm,包层外直径125μm。 三、单模和多模的技术是同时产生的吗?是不是哪个更先进? 多模先产生,谈不上那个更先进,一般距离近的用多模(能支持几公里左右),远的只有用单模的,因为多模光纤的收发器比单模的便宜很。 四、单模光纤用于长途的传输,多模光纤用于室内数据传输吧 长途只能用单模,但是室内数据传输不一定都要用多模。 五、服务器和存储设备用的光纤是单模还是多模的?多半是市内数据,FC-SAN架构一般都用多模就可以了。 六、光纤是否都得一对一对地来使用,有没有单孔单模光纤信号转换器之类的设备? 光纤是否都得一对一对地来使用,是的,后半个问题你的意思是不是 在一根光纤上进行收发光?这个是可以的中国电信1600G骨干光纤网就是这样的。 。。。。。 光纤模块只有短波(SX)、长波(LX)和超长波(ZX)之分,没有单模多模之分!只有光纤才分单模多模! 短波光纤模块:发光口大,传输距离近 长波和超长波光纤模块:发光口小,传输距离远 多模光纤:纤芯直径大,传输距离近 单模光纤:纤芯直径小,传输距离远 短波模块-单模光纤-短波模块:不可行!因为短波模块的发光口大于单模光纤的纤芯直径,部分光信号无法进入光纤 长波模块-多模光纤-长波模块:一般可行,因为长波模块的发光口小于多模光纤的纤芯直径,所有光信号能够进入光纤。但传输距离受多模光纤限制,只有几百米,而且本人见过连通性不稳定甚至连不通的情况!长波模块-多模光纤-短波模块:不可行!两端波长必须相同! 如果传输距离较远,必须选择长波模块-单模光纤-长波模块! 1)、光纤接头各符号的含义: A)、FC:常见的圆形,带螺纹光纤接头 B)、ST:卡接式圆形光纤接头 C)、SC:方型光纤接头 D)、PC:微凸球面研磨抛光 E)、APC:呈8度角并作微凸球面研磨抛光

光纤收发器接口类型、连接、指示灯说明

光纤收发器有多种不同的分类,而实际使用中大多注意的是按光纤接头不同而区分的类别:SC接头光纤收发器和FC/ST接头光纤收发器。 各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型 SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 在使用光纤收发器连接不同的设备时,必须注意使用的端口不同。 1、光纤收发器到100BASE-TX设备(交换机,集线器)的连接: 确认双绞线的长度最长不超过100米; 连接双绞线的一端到光纤收发器的RJ-45口(Uplink口),另一端到100BASE-TX设(交换机,集线器)的RJ- 45口(普通口)。 2、光纤收发器到100BASE-TX设备(网卡)的连接: 确认双绞线的长度最长不超过100米; 连接双绞线的一端到光纤收发器的RJ-45口(100BASE-TX口),另一端到网卡的RJ-45口。 3、光纤收发器到100BASE-FX的连接: 确认光纤长度没有超出设备能提供的距离范围; 光纤的一端连光纤收发器的SC/FC/ST接头,另一端连接100BASE-FX设备的SC/ST 接头。 指示灯问题: 一、SUN TELCOM: TXL:电口连接状态; RX:光口接收状态;

光缆的结构及种类

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/d59892864.html,) 光缆的结构及种类 变宝网11月21日讯 光缆是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以单独或成组使用的通信线缆组件。它可以根据环境的不同有不同的表现形式,比如需要防水、缓冲等。 一、光缆的结构 光缆的基本结构一般是由缆芯、加强钢丝、填充物和护套等几部分组成,另外根据需要还有防水层、缓冲层、绝缘金属导线等构件。 光缆由加强芯和缆芯、护套和外护层3部分组成。缆芯结构有单芯型和多芯型两种:单芯型有充实型和管束型两种;多芯型有带状和单位式两种。外护层有金属铠装和非铠装两种。 二、光缆的种类 1.按照传输性能、距离和用途的不同,光缆可以分为用户光缆、市话光缆、长途光缆和海底光缆。 2.按照光缆内使用光纤的种类不同,光缆又可以分为单模光缆和多模光缆。 3.按照光缆内光纤纤芯的多少,光缆又可以分为单芯光缆、双芯光缆等。 4.按照加强件配置方法的不同,光缆可分为中心加强构件光缆、分散加强构件光缆、护层加强构件光缆和综合外护层光缆。 5.按照传输导体、介质状况的不同,光缆可分为无金属光缆、普通光缆、综合光缆(主要用于铁路专用网络通信线路)。 6.按照铺设方式不同,光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。

7.按照结构方式不同,光缆可分为扁平结构光缆、层绞式光缆、骨架式光缆、铠装光缆和高密度用户光缆。 三、光缆的选用 光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用环境来选择光缆的外护套。 1.户外用光缆直埋时,宜选用铠装光缆。架空时,可选用带两根或多根加强筋的黑色塑料外护套的光缆。 2.建筑物内用的光缆在选用时应注意其阻燃、毒和烟的特性。一般在管道中或强制通风处可选用阻燃 但有烟的类型(Plenum),暴露的环境中应选用阻燃、无毒和无烟的类型(Riser)。 3.楼内垂直布缆时,可选用层绞式光缆(Distribution Cables);水平布线时,可选用可分支光缆(Breakout Cables)。 4.传输距离在2km以内的,可选择多模光缆,超过2km可用中继或选用单模光缆。 直埋光缆埋深标准 敷设地段或土质埋深(m)备注 普通土(硬土)≥1.2

教你如何选择光纤的种类和芯数2016-9-9

前言: 光纤在弱电系统的中应用越来越广泛,很多设备也自带了光纤口,那么弱电工程中光纤怎么选择呢? 正文: 在当今的高清监控摄像系统应用中,光纤是所有连接方式中能提供最好的带宽性能的一种方式。使用光纤传输系统时,系统的图像质量只受限于摄像机、环境和监视器这三个因素,而光纤传输系统可以将图像画面传送到非常远的地方都不会使信号发生任何形式的畸变,更不会减损图像画面的清晰度或细节。可以说光纤传输系统是整个监控系统的生命线。 一、光纤类型 光纤根据使用场合的不同,分为室内光纤,室外光纤,分支光纤,配线光纤。 按敷设方式分:自承重架空光纤、管道光纤、铠装地埋光纤和海底光纤。 按光纤结构分:束管式光纤、层绞式光纤、骨架式光纤、紧抱式光纤、带式光纤,非金属光纤和可分支光纤。 按用途分:长途通讯用光纤,短途室外光纤,混合光纤和建筑物内用光纤; 光纤根据传输方式可分为单模和多模,监控一般使用单模光纤。 单模光纤:只传输一种模式光信号的光纤,常规有G.652,G.653,G.654,G.655等传输等级分类,单模光纤传输百兆信号距离可达几十公里。单模光纤,只传输主模,也就是说光线只沿光纤的内芯进行传输,由于完全避免了模式射散使得单模光纤的传输频带很宽,因而适用于大容量,长距离的光纤通讯,单模光纤使用的光波长1310nm或1550nm。 多模光纤:能传输多种模式光信号的光纤,为G.651等级,根据光模式分为

OM1,OM2,OM3,多模光纤传输百兆信号最远传输距离2公里。多模光纤,在一定的工作波长下,有多个模式在光纤中传输,这种光纤称之为多模光纤,由于色散或像差,因此这种光纤传输性能较差频带比较窄,传输容量比较小,距离也比较短。 二、光纤敷设方式和要求: 常规室外光纤都是以松套管作为纤芯的容器,为最常见光纤纤芯敷设方式;室内光纤常见为紧套式敷设;大芯数光纤的纤芯也有以带状方式进行组合敷设光纤纤芯。 光纤的敷设要求:光纤的弯曲半径应至少为光纤外径的15倍,在施工过程中应至少于为20倍;布放光纤时,光纤盘转动应与布放速度同步,光纤索引的速度一般每分钟15米;布放光纤时,光纤出盘处要保持松弛的弧度,并保留缓冲的余量,又不宜过多,避免光纤出现背扣;光纤在两端预留长度为5-10米;敷设光纤时应做好标签,并填好放线记录;所有光纤不应外露。 三、光芯的选择 纤芯数量是每条光纤中所含的玻璃纤维的数量。下面小编给大家介绍一些确定光纤芯数的方法。 首先清楚知道该层布线点的数量,算出交换机的台数,交换机之间连接是堆叠还是不堆叠。如果堆叠,核心交换机为双机热备冗余的话,6芯就够用了(2台核心各用2芯,2芯冗余)。如果不堆叠一台交换机要4芯,交换机数量乘以4加上4芯的冗余,就可以了。(注:冗余:只要比用的多,多出的就叫冗余主备:一个用的,另外一个完全一样的做备用;热备份:同时都在工作状态中;冷备份:备份设备处于待机状态。)

光纤种类和作用

光纤种类和作用 一.光纤的分类 光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将Optical Fibe(光纤)又简化为Fiber,例如:光纤放大器(FiberAmplifier)或光纤干(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然是不可取的。光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价廉等。光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,兹将各种分类举例如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)。(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。(5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。 二.石英光纤 石英光纤是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛应用于有线电视和通信系统。掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO炸作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。由于,瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动因素的掺杂物,以少为佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。由于掺氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。由于它的瑞利散射很小,而且损耗也接近理论的最低值。所以多用于长距离的光信号传输。石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。 三.红外光纤 作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2pm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。红外光纤(Infrared Optical Fiber)主要用于光能传送。 例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。 四。复台光纤 复合光纤(Compound Fiber)在SiO2原料中,再适当混合诸如氧化钠(Na2O)、氧化硼(B2O2)、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,特点是多成分玻璃比石英的软化点低且纤芯与包层的折射率差很大。主要用在医疗业务的光纤内窥镜。 五.氟化物光纤

光纤跳线的种类大全图文并茂

ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 光纤接口连接器的种类 光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明:

① FC型光纤连接器:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ② SC型光纤连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ ST型光纤连接器:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④ LC型光纤连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤ MT-RJ:收发一体的方形光纤连接器,一头双纤收发一体 常见的几种光纤线 光纤接口大全

各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤

光纤接口连接器的种类

光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型 SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤 -------------------------------------------------------------------------------- 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “SC”表示尾纤接头型号为SC接头,业界传输设备侧光接口一般用用SC接头,SC接头是工程塑料的,具有耐高温,不容易氧化优点;ODF侧光接口一般用FC接头,FC是金属接头,但ODF不会有高温问题,同时金属接头的可插拔次数比塑料要多,维护ODF尾纤比光板尾纤要多。其它常见的接头型号为:ST、DIN 、FDDI。 “PC”表示光纤接头截面工艺,PC是最普遍的。在广电和早期的CATV中应用较多的是APC型号。尾纤头采用了带倾角的端面,斜度一般看不出来,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号。表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题。 还有一种“UPC”的工艺,它的衰耗比PC要小,一般有特殊需求的设备其珐琅盘一般为FC/UPC。国外厂家ODF架内部跳纤用的就是FC/UPC,提高ODF设备自身的指标。 光纤接口 光纤接口是用来连接光纤线缆的物理接口。通常有SC、ST、FC等几种类型,它们由日本NTT公司开发。FC是Ferrule Connector的缩写,其外部加强方式是采用金属套,紧固方式为螺丝扣。ST接口通常用于10Base-F,SC接口通常用于100Base-FX。

光纤分类及应用

(一)光纤的传输特性 一.衰减 1.光在光纤中传播时,平均光功率沿光纤长度方向呈指数规律减少,即: P(L)=P(0)10-(αL/10) 2.α为衰减系数,它的取值只与在光纤中传播的光线的波长有关。 3.衰减谱 石英玻璃光纤的衰减谱具有三个主要特征是: a.衰减随波长的增大而呈降低趋势。 b.衰减吸收峰与OH_离子有关。 c.在波长大于1600nm衰减的增大的原因是由微(或宏)观弯曲损耗和 石英玻璃吸收损耗引起的。 4.衰减起因 光纤中的传输光能衰减的起因是材料本身、制造缺陷、弯曲、接续等对光能的吸收和散射损耗。究其原因,如表3.1所示。 二.色散 1.由于光纤中的信号是由不同的频率成分和不同的模式成分来携带的, 这些不同的频率成分和不同的模式成分的传输速度不同,从而引起色

散。 2.在光纤中,不同速度的信号传过的距离所需的时延不同。时延差越大, 色散就越严重。因此,常用时延差表示色散程度。 3.单模光纤中只传输基模LP01,总色散由材料色散、波导色散和折射剖面 色散组成。这三个色散都与波长有关,所以单模光纤的总色散也称为 波长色散。 公式:D(λ)=D m+D w+D p 4.纯石英玻璃材料色散与波长的关系,如图所示。从图可看出,在波长 微1.29μm附近由一个零材料色散波长λ0有所移动,但移动变化甚 微,而过了λ0材料色散微正值。 材 料 色 散 ( p s / ( n m · k m ) ) 图 纯石英玻璃材料色散与波长的关系 波长(μm) 三.偏振模色散 光纤中的光传输可描述为完全时沿X轴振动和完全是沿Y轴上的振动或一些光在两个轴上的振动,如下图。每个轴代表一个偏振“模”。两个偏振模的到达时间差称为偏振色散PMD(Polarization Mode Dispersion)。 造成单模光纤中的PMD的内在原因是光纤的椭圆度和残余内应力。四.光纤的非线性效应 1.当光功率增加到一定程度时,光信号与光纤传输媒介间的非线性交互现象将会呈现。光纤的非线性可分为两类:受激散射效应和折射率扰动。 2.受激散射效应也分为两种形式:由于声光子振动而产生的受激布里渊散

光纤收发器接口类型

光纤收发器接口类型 、连接、指示灯说明及故障症断 光纤收发器有多种不同的分类,而实际使用中大多注意的是按光纤接头不同而区分的类别: SC接头光纤收发器和FC/ST接头光纤收发器。 各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体(华为8850上有用) 光纤模块: 一般都支持热插拔, GBIC Giga Bitrate Interface Converter,使用的光纤接口多为SC或ST型SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310单模长距LH 波长1310,1550 多模:

SM波长850 在使用光纤收发器连接不同的设备时,必须注意使用的端口不同。 1、光纤收发器到100BASE-TX设备(交换机,集线器)的连接: 确认双绞线的xx最长不超过100米; 连接双绞线的一端到光纤收发器的RJ-45口(Uplink口),另一端到 100BASE-TX设(交换机,集线器)的RJ- 45口(普通口)。 2、光纤收发器到100BASE-TX设备(网卡)的连接: 确认双绞线的xx最长不超过100米; 连接双绞线的一端到光纤收发器的RJ-45口(100BASE-TX口),另一端到网卡的RJ-45口。 3、光纤收发器到100BASE-FX的连接: 确认光纤长度没有超出设备能提供的距离范围; 光纤的一端连光纤收发器的SC/FC/ST接头,另一端连接100BASE-FX设备的SC/ST接头。 指示灯问题: 一、SUN TELCOM: TXL: 电口连接状态RX: 光口接收状态;SPD: 电口工作速度;FXL: 光口连接状态;FDX: 电口双工状态;PWR:

光纤分类

1 根据芯数选择不同型号的光缆光缆的结构可分为中心束管式、层绞式、骨架式和带状式等几种,不同的用途结构又不相同,用户可以根据线路情况提出相应要求。一般12芯以下的采用中心束管式,中 心束管式工艺简单成本低(比层绞式光缆的价格便宜15%左右),在农村架空敷设支干线网络中具有竞争力;层绞式光缆采用中心放置钢绞线或单根钢丝加强,采用SZ续合成缆,成缆纤数可达144芯。它的最大优点是易于分叉,即光缆部分光纤需分别使用时,不必将整个光缆开断,只需将需分叉的光纤开断即可,这对于有线电视网络沿途增设光节点是有利的;带状光缆的芯数可以做到上千芯,它是将4~12芯光纤排列成行,构成带状光纤单元,再将多个带状单元按一定方式排列成缆,我们县级一般选用束管式和层续式两种即可。 2按照用途选购相应的光缆根据用途的不同,光缆可分架空光缆、直埋光缆、管道光缆、海底光缆和无金属光缆等。架空光缆要求强度高、温差系数小;直埋式光缆要求抗埋、抗压、防潮、防湿度特性好、耐化学侵蚀;管道光缆和海底光缆则要耐水压、耐张力、防水特性好;无金属光缆可以和高压线一起架设,绝缘要好,虽然没有铁体加强芯,但也要有一定的抗拉能力。因此,在选购光缆时,用户要根据光缆的用途选择,并对厂家提出要求,确保光缆使用稳定、可靠。 3要了解考察厂家光缆使用的材料及生产工艺光缆材料选用是关系到光缆使用寿命的关键。而制造工艺是影响光缆质量的重要环节,工艺稳定、质量优良的产品在光缆生产的全过程中基本上未列入光纤附加损耗,≤ 0.01dB/km是衡量厂家光缆制造工艺水平的基本数据。光缆的主要用料有:纤芯、光纤油膏、护套材料、PBT(聚对笨二甲酸丁二醇酯),它们均有不同的质量要求,纤芯要求有较大的功充能力,较高的信噪比、较低比特误码率、较长放大器间距、较高的信息运载能力,要求1310nm平均损耗<0.34d B/km,1550mn 平均损耗<0.2dB/km,所以应选进口优质纤芯,目前进口优质纤芯有美国康宁,英国英康,德国西康等;光纤油膏是指在光纤束管中填充的油膏,其作用一是防止空气中的潮气侵蚀光纤,二是对光纤起衬垫作用,缓冲光纤受振动或冲击影响。油膏有严格的质量要求,强调超低的析氢量,保证光缆低温特性良好,防止“氢损”导致光缆严重损坏。所以也应选用进口的,目前光纤油膏在世界较为优质的有:日本SYNCOFX405、美国400N系列等;护套材料对光缆长期可靠性具有相当重要作用,是决定光缆拉伸、压扁、弯曲特性、温度特性、耐自然老化(温度、照射、化学腐蚀)特性,以及光缆的疲劳特性的关键。所以应选用高密度的聚乙烯材料,它具有硬度大,抗拉抗压性能好,外皮不易损坏;PBT是制作光缆二次套塑(束管)的热塑性工程塑料,必须具有杨式模量高(1600/mm2)、线张系数低(1.5×10一4)、耐化学腐蚀好、加工特性好、摩擦系数小等优点。用PBT材料做光纤套管,使光纤束管单元具有良好的耐侧压和温度特性。在耐水解要求比较高的地方,为保证光缆的长寿命,必须使用抗水解的PBT材料。目前质量较好的有美国celanex200L、瑞士EMS的B246081、德国HOLS的3001 3030等;为防止氢损,应选用塑封的钢丝加强芯。光缆的关键工艺主要是余长控制及控制“氢损”影响二个方面,光

光纤种类及特点

光纤类型及特点G652光纤纤芯图片 G657光纤纤芯图片

多模光纤纤芯图片 我们常用的光纤有G652B(蓝、橙、绿、棕、灰、白、红、黑)和G657A(蓝、橙、绿、棕、灰、黄、红、紫),两种光纤主要特性的区别是光纤的弯曲半径,G652B 是R30(光纤弯曲半径不可以小于30mm),G657A是R10(光纤弯曲半径不可以小于10mm)

G652光纤的排列顺序 G657光纤的排列顺序 光纤类型知识: ITU—T建议规范分类:G.651、G.652、G.653、G.654、G.655、G.656、G.657 MMF(Multi Mode Fiber多模光纤) - OM1光纤(62.5?125um) - OM2?OM3光纤(G.651光纤)其中:OM2—50?125um;OM3—新一代多模光纤。 SMF(Single Mode Fiber单模光纤) - G.652(色散非位移单模光纤) - G.653(色散位移光纤) - G.654(截止波长位移光纤) - G.655(非零色散位移光纤) - G.656(低斜率非零色散位移光纤) - G.657(耐弯光纤) ◆G.651:长波长多模光纤(ITU-T G.651)50/125μm梯度多模光纤工业标准。70年代末到80年代初建立。ITU-T G.651即OM2?OM3光纤或多模光纤(50?125)。

ITU-T推荐光纤中并没有OM1光纤或多模光(62.5?125),但它们在美国的使用仍非常普遍。主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。 ◆G.652:常规单模光纤(色散非位移单模光纤),截止波长最短,既可用于1550NM,又可用于1310NM。其特点在设计和制造时的波长在1310nm附近时的色散为零,1550nm波长时损耗最小,但色散最大。(1310nm窗口的衰减在0.3~0.4dB/km,色散系数在0~3.5ps/nm.km。1550nm窗口的衰减在0.19~ 0.25dB/km,色散系数在15~18ps/nm.km。)主要缺点是在1550波段色散系数较大,不适于2.5Gb/s以上的长距离应用。 G.652A?B是基本的单模光纤,G.652C?D是低水峰单模光纤。 ◆G.653:色散位移单模光纤。在1550nm波长左右的色散降至最低,从而使光损失降至最低。 ◆G..654:截止波长位移光纤。1550nm下衰耗系数最低(比G.652,G.653,G.655光纤约低15%),因此称为低衰耗光纤, 色散系数与G.652相同, 实际使用最少的一种光纤。主要应用于海底或地面长距离传输,比如400千米无转发器的线路。 ◆G.655:非零色散位移光纤(NZ-DSF: Non zero-Dispersion-Shifted Fiber)。G.653光纤在1550nm波长时色散为零,而G.655光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。 第一代非零色散位移光纤,如PureMetro 光纤具有每千米色散等于或低于5ps?nm 的优点,从而使色散补偿更为简便。 第二代非零色散位移光纤,如PureGuide 色散达到每千米10ps?nm左右,使DWDM系统的容量提高了一倍。 ◆G.656:低斜率非零色散位移光纤。非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系统中更大波长范围内的传输性能。

常见光纤跳线接口类型简介

光纤跳线(又称光纤连接器),通过将光缆两端都装上连接器接头,连接设备和光纤布线链路;一端装有插头则称为尾纤。光纤连接器在网络布线中应用广泛,一定程度上也影响着整个光传输系统的可靠性及其他各项性能。 下面对几种常用的光纤连接器进行详细的说明: 1.LC 型光纤跳线:连接SFP 模块的连接器,接头与SC 相似,但较SC 较小,它采用操作方便的模块化插孔(RJ)闩锁,插针和套筒的尺寸为1.25mm,是普通SC、FC 所用尺寸的一半。连接SFP 光模块,常用于路由器,一定程度上可提高光纤配线架中光纤连接器的密度。 2.SC 型光纤跳线:SC 的英文全称有时记做"Square Connector",因为它的外壳呈矩形,紧固方式为插拔销闩式,不须旋转。它是TIA-568-A 标准化的连接器,但初期由于价格昂贵(ST 价格的两倍)而没有被广泛使用。不同于ST/FC,SC 型光纤跳线是一种插拔式的设备,常作为连接GBIC 光模块的连接器,性能优异而逐渐被广泛使用。(路由器交换机上用的最多)常见光纤跳线接口类型简介

3.FC型光纤跳线:FC是Ferrule Connector的缩写,表明其外部加强件是采用金属套,紧固方式为螺丝扣。FC是单模网络中最常见的连接设备之一。它同样也采用2.5毫米的卡套,但早期FC连接器中的一部分产品设计为陶瓷内置于不锈钢卡套内。一般在ODF侧采用(配线架上用的最多),具有牢靠、防灰尘等优点。目前在多数应用中FC已经被SC和LC连接器替代。 4.ST型光纤跳线:ST的英文全称记做"Stab&Twist",即先插入,后拧紧。它外壳呈圆形,紧固方式为螺丝扣,芯外露。插头插入后旋转半周有一卡口固定。是多模网络(例如大部分建筑物内或园区网络内)中最常见的连接设备。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) 5.MT-RJ型光纤跳线:收发一体的方形光纤连接器,一头双纤收发一体。

常用光纤接头类型

常用光纤接头类型 FC型:金属双重配合螺旋终止型结构; ST型:金属圆型卡口式结构; SC型:矩形塑料插拔式结构,特点是容易拆装。多用于多根光纤与空间紧凑结构的法兰之间的连接。 以上是指接头与法兰之间的连接形式,这些结构主要任务是实现接头与法尘之间的坚固连接,并将两端光纤的轴线引导到一条线上。接头连接的损耗应该是越小越好,因此,对于活动接头的端面的要求标准比较高,以下是针对端面而制定的一些标准形式: PC型:端面呈球形,接触面集中在端面的中央部分,反射损耗35dB,多用于测量仪器; APC型:接触端的中央部分仍保持PC型的球面,介但端面的其它部分加工成斜面,使端面与光纤轴线的夹角小于90度,这样可以增加接触面积,使光耦合更加紧密。当端面与光纤轴线夹角为8度时,插入损耗小于。广播电视光纤传输系统中常采用这种结构的接头; UPC型:越平面连接,加工精密,连接方便,反射损耗50dB,常用于广播电视传输网光纤系统中。 此外,光接头的抛光水平也很重要,APC斜面抛光型反射损耗可达68dB,UPC越精度抛光型反射损耗可达5 5dB。 各种活动连接器性能参数: 活动连接器的型号一般由两部分组成:结构形式/端面形式,如FC/APC表示连接结构是金属双重螺纹终止形式,端面采用斜面、球形连接。每一种光设备性能参数中都说明了该设备采用何种连接形式,在实际使用中一定要注意根据光设备说明书选购配套的连接器。 光纤跳线:光纤跳线是由一段经过加强外封装的光纤和两端已与光纤连接好的接头构成。两端接头的型号可以一样,也可以不一样。如FC/PC--FC/APC,使用于一头连接FC/PC接口法兰,另一头连接FC/APC 接口法兰。 尾纤:尾纤指一端为接头,另一端为光纤的器件。将一根光纤跳线从中间剪断就成为两根尾纤了。 尾缆:将若干尾纤合在一起,加上外护套制作成一端为光纤另一端为若干个接头的器件。 尾纤、跳线通常用于室内的设备与设备、设备与光纤之间的连接。尾缆通常用于室外或室内多头并联的情况。由于尾缆具有防水、防晒、防尘、防风摇摆等功能,室外光接收机和室外光发射机等都采用尾缆实现连接。 此主题相关图片如下:

相关主题
文本预览
相关文档 最新文档