当前位置:文档之家› 珍藏几何计算专题

珍藏几何计算专题

珍藏几何计算专题
珍藏几何计算专题

中考系列复习——几何计算专题

一、中考要求

证明与计算,是几何命题的两大核心内容。几何计算题,通常需要借助几何中的概念、定义、定理、公理等知识,求解相关几何元素的数值。在解题时,要求能准确灵活地选用有关知识,采用各种数学方法(既可以是几何方法,也可以是代数方法),加以求解。为了能在有限的时间内,迅速准确地解题,就需要在平时练习中,强化基础题,多采用一题多解、优化方案等训练方法,积累经验,达到熟能生巧的效果。

二、知识网络图

如图1所示:

图 1

三、基础知识整理

几何计算题的重点比较分散,从知识点本身来说,解直角三角形的知识具有计算题得天独厚的优势,所以涉及解直角三角形的试题大部分是计算题。但是,在实际命题时,更多的是圆的有关计算题和四边形的计算题,它们与其它几何知识都有密切的联系,能在主要考查一个知识点的同时,考查其他知识点。就题型而言,各种题型中都能见到几何计算题的身影,比如线与角计算题、三角形计算题、相似形计算题等等,综合性计算题则更多出现在中档解答题和压轴题中。

需要说明的是,根据中考命题改革的大趋势,几何计算题的难度比以前有所下降,更突出在题目的内容、形式、解法上有所创新,所以,我们不必把重点放到一些繁难的计算题上,而应扎实学好基础知识,多分析解题使用到的数学思想方法,比如方程与函数、分类讨论、转化构造等数学思想方法,重视数学知识的实际应用。

四、考点分析(所选例题均为2004年中考试题)

1、线与角计算题

所用知识主要有线段的中点、角平分线、线段或角的和差倍分、余角、补角的基本概

念的定义,以及角的计量、对顶角性质、平行线性质等。难度不大,可直接利用上述定义、定理解题。

例1(黑龙江)如图1,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠

DOB=____________.

图1

分析:∠AOC+∠DOB

= (∠AOD+∠DOB+∠COB)+∠DOB = (∠AOD+∠DOB)+(∠COB+∠DOB) = ∠AOB + ∠COD = 900 + 900 = 1800.

2、三角形计算题

三角形的内角和定理、三边关系定理及其推论,等腰三角形的性质、全等三角形的性质、特殊三角形(比如等边三角形、含有300的直角三角形)的性质、勾股定理、边长、周长及面积的计算等都是三角形计算题的常用知识。解三角形计算题时也经常用到线与角的知识。

例2(江苏连云港)如图2,平面镜A 与B 之间夹角为110°,光线经平面镜A 反射到平面镜B 上,再反射出去,若21∠=∠,则1∠的度数为___________.

分析:根据光的反射定律可知,∠1=∠3,∠2=∠4. 因为21∠=∠,所以∠3 =∠4.

则∠3 、∠4成为顶角为1100角的等腰三角形的两个底角, 因此,∠1 = 12 (1800 – 1100) = 1

2 ×700 = 350.

3、四边形计算题

图2

随着对圆的计算、证明要求的降低,很多省市的几何中考重点开始向以四边形为主的内容转移。比如,河北省连续多年把压轴题锁定在以四边形、三角形为主的直线型图形上。四边形计算题主要的运用知识有:多边形内角和定理及其推论(外角和定理),各种平行四边形及梯形的性质,平行线等分线段定理,三角形及梯形的中位线定理,四边形的周长尤其是面积的求法,对称问题,折痕问题等。

例3(北京海淀)已知:如图3所示,梯形ABCD 中,AD//BC ,BD 平分∠ABC ,∠A=120°,BD BC ==43,求梯形的面积。

图3

分析:此题解法较多,下面提供其一,希望同学们在多想几种解法,分析所用知识点,比较优劣,以便在中考试有所选择,提高解题效率。

过点B 作BE ⊥DA 交DA 的延长线于E 。 ∠=B A D 120° ∴∠=E A B 60° BD ABC 平分,∠ ∴∠=∠12

AD BC // ∴∠=∠32 ∴∠=∠=13302°分 在Rt △BDE 中, BD =43,

∴=

==?=BE BD ED BD 1

2

233064,°分

cos 在Rt △BEA 中, ∴=?=?

=AE BE cot 602333

2 ∴=-=-=AD ED AE 6245分

()

∴=+?=?+?=+S AD BC EB 梯形分

121

2

4432343126()

4、相似形计算题

相似形是解直角三角形和圆等知识的基础,特别是在圆中,相似形、比例线段更是所处可见。这部分知识出现在计算题中的也有很多:比例及其性质、相似形的性质、平行线分线段成比例定理等等,另外,引入参数法等重要的数学方法在解题时也经常用到。 例4(山东泰安)有一张直角三角形纸片,两直角边AC=6cm ,BC=8cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE(如图4),则CD 等于( )

A.25/4;

B.22/3;

C.7/4;

D.5/3.

图4

分析:Rt △ABC 中,由勾股定理,得AB = AC 2+BC 2

=10cm.

将△ABC 折叠,使点B 与点A 重合,点B 与点A 关于折痕所在直线DE 对称,则DE 垂直平分AB ,BE=AB/2=5 cm .

易证Rt △BDE ∽Rt △BAC ,则BD:BE=AB:BC ,所以

BD = AB ·BE BC = 10×58 = 254 .

因此,CD = BC-BD = 8-25/4 =7/4.

故选C.

5、解直角三角形计算题

解直角三角形的全部主要内容都与计算有关。中考中考查:特殊角的三角函数值,利用三角函数的定义式和各种关系式求解,综合运用勾股定理、直角三角形两锐角互余等直角三角形的性质解直角三角形。

例5(湖北荆门)如图5,将一副三角尺如下图摆放在一起,连结AD ,试求ADB ∠的余切值.

分析:过点A 作DB 的延长线的垂线AE ,垂足为E .

在等腰Rt BDC △中,1451,BD DC BC ∠=?===

设则

在Rt ABC △中,430,AB BC ∠

=?=?则

tan 30?= 在Rt AEB △中,2180(13)180(9045)45∠=?-∠+∠=?-?+?=?.

D

C

A

B

A B D

C

E 1 3

4

2 图5

则EB EA AB ==?

sin 45323

?=

?= 在Rt DEA △

中,13

DE BD EB =+=

+, 则

cos (113DE ADB EA ∠=

=+= 6、圆的有关计算题

圆,可谓初中几何集大成者。他的知识领域几乎涵盖了初中几何的全部内容。涉及到计算的定理俯拾皆是:垂径定理、圆心角定理、圆周角定理、弦切角定理、切线长定理、相交弦定理以及它们的推论,圆的半径、直径、周长、面积,弧、弓形、扇形、圆柱、圆锥的相关计算公式等,无一不显示着计算题的本性。

例6(陕西)如图6,点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,tan ∠BAC =3

4

,求阴影部分的面积.

分析:此题除了要用到圆的有关知识,主要与解直角三角形知识综合在一起。 ∵AB 为直径, 2:,

90,

3

tan ,

43

sin .

5

sin ,10,344

106,68.

533

1125

58624.

222ABC AB ACB BAC BAC BC

BAC AB AB

BC AC BC S S S ππ∴∠=?∠=∴∠=∠=

=∴=?==?=?=∴??-??=- 阴影半圆19.解为直径又=-=

把初中几何甚至代数的知识融为一体,命制的几何综合计算题,在解答时,要注意知

A

B

图6

识之间的联系,善于发现各种信息之间的结合点,从中提炼出所需的知识点,用来解决问题。

五、创新题一隅

1、已知:如图7,在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB 为半径的圆与AB交于点E,与AC切于点D,连结DB、DE、OC。

⑴从图中找出一对相似三角形(不添加任何字母和辅助线),并证明你的结论;

⑵若AD=2,AE=1,求CD的长。

图7

2、如图8,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B 重合于点D,折痕分别交AB、BC于点F、E.若AD=2,BC=8,

求:(1)BE的长;(2)∠CDE的正切值.

参考答案:

1、(⑴略;⑵CD=3.

2、(1) BE=5;(2)tan∠CDE = 3/5. 图8

C

专题三 几何证明

专题三 几何证明 【专题分析】 几何证明题重在训练学生运用数学语言合情推理的能力,在数学学习中占有非常 重要的地位。此类题目经常出现在解答题的第二题,属于中低难度的题,比较基础;最后两题中也有涉及,属于中高难度的综合题. 【考点解析】 考点一:证明线段相等 例1.如图,E 、F 是□ABCD 对角线AC 上的两点,BE ∥DF . 求证:BE =DF . 考点二:证明线段平行或垂直 例2. 如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB=DE , ∠A=∠D ,AF=DC . 求证:BC ∥EF . 例3. 如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . 求证:CA 是圆的切线. A B C D E F

A E B C F D 考点三:证明角相等 例4.如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,过点A 作AE ∥DB 交CB 的延长线于点E . (1)求证:∠ABD =∠CBD ; (2)若∠C =2∠E ,求证:AB =DC . 考点四:证明三角形全等或特殊四边形 例5.在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE . (1)求证:△BEC ≌△DF A ; (2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论. 【基础演练】 1.如图,Rt △ABC 中,∠ACB=-90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F 求证:CE=CF . 2.如图,一张矩形纸片ABCD ,其中AD =8cm ,AB =6cm ,先沿对角线BD 对折, 点C 落在点C ′的位置,BC ′交AD 于点G 。 求证:AG =C ′G . (第21题)C

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

年重庆中考数学几何证明题--(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥ CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC. 6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

几何证明与计算(解析版)

几何证明与计算 考向1以圆为背景的特殊四边形的动态探究题 1.(2019年河南省中原名校中考第三次大联考数学试卷)如图,AB为⊙O的直径,射线AG为⊙O的切线,点A为切点,点C为射线AG上任意一点,连接OC交⊙O于点E,过点B作BD∥OC交⊙O于点D,连接CD,DE,O D. (1)求证:△OAC≌△ODC; (2)①当∠OCA的度数为时,四边形BOED为菱形; ②当∠OCA的度数为时,四边形OACD为正方形. 【答案】(1)证明见解析;(2)①∠OCA=30°,②∠OCA=45°. 【解析】 (1)依据SAS可证明△OAC≌△ODC; (2)①依据菱形的四条边都相等,可得△OBD是等边三角形,则∠AOC=∠OBD=60°,求出∠OCA=30°;②由正方形的性质得出∠ACD=90°,则∠ACO=45°. 【详解】(1)证明:∵OB=OD, ∴∠B=∠ODB, ∵BD∥OC, ∴∠AOC=∠B,∠DOC=∠ODB,

∴∠AOC=∠COD, ∵OA=OD,OC=OC, ∴△OAC≌△ODC(SAS); (2)①∵四边形BOED是菱形, ∴OB=D B. 又∵OD=OB, ∴OD=OB=D B. ∴△OBD为等边三角形, ∴∠OBD=60°. ∵CO∥DB, ∴∠AOC=60°, ∵射线AG为⊙O的切线, ∴OA⊥AC, ∴∠OAC=90°, ∴∠OCA=∠OAC﹣∠AOC=90°﹣60°=30°, ②∵四边形OADC是正方形, ∴∠ACD=90°, ∵∠ACO=∠DCO, ∴∠OCA=45°, 故答案30°,45°. 【点睛】本题主要考查的是切线的性质、全等三角形的判定和性质、菱形的性质、等边三角

2016五年级几何图形计算练习题

五年级数学几何图形练习题 一、计算题 1、一块平行四边形的水稻田,底180厘米、高70米。它的面积是多少平方米?(画图及计算) 2、一个近似于梯形的林地,上底1.5千米、下底3.9千米、高0.9千米。这个林地的面积是多少平方千米?(画图及计算) 3、一个长方形的苗圃,长41米、宽19米,按每平方米育树苗5棵计算。这个苗 圃一概可以育多少棵树苗? 4、爷爷家有一块三角形的小麦地,底32米、高15米,今年一共收小麦134.4千 克。平均每平方米收小麦多少千克? 5、张大伯家有一块梯形的玉米地,上地120米、下底160米、高40米。预计每 公顷可以收玉米6000千克。这块玉米地一共可以收玉米多少千克?按每千克玉米0.8元计算,玉米收入有多少元?

6、爷爷家的一块长120米、宽30米的地,按照每平方米收稻谷0.92千克计算。 今年这块地收稻谷多少千克?收的稻谷的质量是小麦的2.4倍,今年收小麦多少千克? 7、一块三角形的果园,面积是0.84公顷,已知底是250米。它的高是多少米? 选择题 1、把一个平行四边形活动框架拉成一个长方形,那么现在的长方形与原来的平行四边形相比,周长(),面积() A 、变大B、变小C、没变D、无法比较 2、一个三角形底不变,高扩大6倍,面积() A、不变B扩大6倍C、扩大3倍D、缩小3倍 3、一个平行四边形的底是40厘米,高是20厘米,与它等底等高的三角形的面积是() A 、4平方分米 B 400平方分米C、8平方分米 4、下列说法中错误的是() A 、在6与7之间的小数有无数个B、0既不是正数也不是负数。 C 、生活中,一般把盈利用正数表示D、两个不同形状的三角形面积也一定不相等 5、图中阴影部分与空白部分相比( A、面积相等,周长相等 B、面积不等,周长相等。 C、面积相等,周长不等。 D、无法比较。 三、求下面图形的周长和面积。

七年级数学下册几何证明计算简单型复习题

七年级数学下册几何证明计算简单型复习题 1.(2020春?安陆市期中)已知:如图1,∠1+∠2=180°,∠AEF=∠HLN; (1)判定图中平行的直线,并给予证明; (2)如图2,∠PMQ=2∠QMB,∠PNQ=2∠QND,请判定∠P与∠Q的数量关系,并证明. 2.(2020春?邗江区期末)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F. (1)CD与EF平行吗?什么缘故? (2)假如∠1=∠2,且∠3=100°,求∠ACB的度数. 3.(2020春?密云县期末)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°. (1)求证:DC∥AB. (2)求∠AFE的大小. 4.(2020秋?江都市校级期末)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F. (1)CD与EF平行吗?什么缘故? (2)假如∠1=∠2,且∠3=105°,求∠ACB的度数.

5.(2020春?沙河市期中)如图,已知直线AB,CD被直线EF,EG,MH所截,直线AB,EG,MH相交于点B,∠EAB=∠BNA,∠FAN=∠FNM,AN∥EG. (1)∠ABE与∠EGF相等吗? (2)试判定∠AFN与∠EBH之间的数量关系,并说明理由. 6.(2020春?高坪区校级期中)如图,已知∠1=∠BDC,∠2+∠3=180°. (1)请你判定AD与EC的位置关系,并说明理由; (2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠FAB的度数. 7.(2020春?东昌府区期中)如图,在△ABC中,AD⊥BC,垂足为D,点E在AB上,EF⊥BC,垂足为F. (1)AD与EF平行吗?什么缘故? (2)假如∠1=∠2,且∠3=115°,求∠BAC的度数. 8.(2020秋?道外区期末)如图(1),直线AB、CD被直线EF所截,EG平分∠AEF,FG 平分∠CFE,且∠GEF+∠GFE=90°

2020届高考数学(理)热点猜押练一 热点练15 立体几何中的证明与计算问题(含解析)

2020届高考数学(理)热点猜押练一致胜高考必须掌握的 20个热点 热点练15 立体几何中的证明与计算问题 1.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC. (1)证明:A1C⊥平面BED. (2)求二面角A1-DE-B的余弦值. 2.如图,三棱台ABC-EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF, BF=CF. (1)求证:AB⊥CG. (2)若BC=CF,求直线AE与平面BEG所成角的正弦值.

3.如图,在底面为矩形的四棱锥P-ABCD中,PB⊥AB. (1)证明:平面PBC⊥平面PCD. (2)若异面直线PC与BD所成角为60°,PB=AB,PB⊥BC,求二面角B-PD-C的大小. 4.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=45°,PD=2,M 为PD的中点,E为AM的中点,点F在线段PB上,且PF=3FB. (1)求证:EF∥平面ABCD. (2)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值.

5.如图,多面体ABC-DB1C1为正三棱柱ABC-A1B1C1沿平面DB1C1切除部分所得,M为CB1的中点,且BC=BB1=2. (1)若D为AA1中点,求证AM∥平面DB1C1. (2)若二面角D-B1C1-B大小为错误!未找到引用源。,求直线DB1与平面ACB1所成角的正弦值. 6.如图所示,等腰梯形ABCD的底角∠BAD=∠ADC=60°,直角梯形ADEF所在的平面垂直于平面ABCD,且∠EDA=90°,ED=AD=2AF=2AB=2. (1)证明:平面ABE⊥平面EBD. (2)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的锐二面角的余弦值为错误!未找到引用源。.

几何证明专题1

几何证明专题 1、如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD =DC,连结AC,AE,DE . 2、如图,O和e O'相交于A, B两点,过A作两圆的切线分别交两圆于点,连结DB并延长交eO于点E. 证明:(I)ACeBD二ADUB ; (II)AC=AE C,D两 B

3、选修4 —1几何证明选讲 如图,MBC的角平分线AD的延长线交它的外接圆于点E. (I)证明:MBE sA ADC ; ")若MBC的面积S^AD^AE,求Z BAC的大小. 4、如图,D, E分别为MBC的边AB , AC上的点,且不与心ABC的顶点重合.已 知AE的长为m, AC的长为n, AD , AB的长是关于x的方程Mx + mn-o的 两个根. (I)证明:C, B, D , E四点共圆; (II )若N A=9O。,且m=4, n=6,求C B , D , 所在圆的半径. B

全国名校高中数学优质学案、专题汇编(附详解) 参考答案 1 .【答案】证明:连接AD。 ??? AB是圆O的直径,??? NADB=9O0(直径所对的圆周角是直角)。 ? ?? AD丄BD (垂直的定义)。 又??? BD =DC,二AD是线段BC的中垂线(线段 的中垂线定义)。 AB =AC (线段中垂线上的点到线段两端的距 离相等)。 ? Z B=N C (等腰三角形等边对等角的性质)。 又??? D,E为圆上位于AB异侧的两点, ? ?? N B=N E (同弧所对圆周角相等)。 ? ?? N E =N C (等量代换)。 2.【命题意图】本题主要考查几何选讲的基础知识,是简单题. 证明:(1)由AC与eO相切于A,得N CAB二NADB,同理土ACB^DAB ,

几何计算与证明

几何计算与证明 学校_______ 5别______ 姓名________ 号__________ 一、选择题:(每题3分,共15分) 1、已知三角形两边a=3, b=7,第三边是c且av bvc,则c的取值范 围是( ) (A) 4 v c v 7 (B) 7 v c v 10 (C)4 v c v 10 (D)7 v cv 13 2、若梯形中位线的长是高的2倍,面积是18cm2,则这个梯形的 高等于( ) (A)6 3 cm (B)6cm (C)3 2 (D)3cm 3、在RtAABC 中,/ C=90° 若AB=2AC,贝S cosA 等于() (A)、3 (B)1 (C) 2 2 3 4、已知:等圆O O和O O'外切,过O作O O'的两条切线OA OB A、B是切点,则/ AOB等于( ) -.A 5、如果圆柱的母线长为6cm,侧面积是48n cm2,B 那么这个圆柱的底面直径为( ) (A)4cm (B)4 n cm (C)8cm (D)8 n cm 二、填空题:(每题4分,共24分) 1、三角形三内角的度数之比为1:2:3,最大边约长是8cm

则最小边的长是_______ cm 2、一个n边形的内角和等于外角和的3倍,则n二_________ 。

r 「 2 2 3、 _______________________________________ 若 tan a +cot a =3,贝y tan a +cot a - _______ 4、 已知:如图,O O 的弦AB 平分弦CD AB=1Q CD=8 且 PA < PB 贝S PB-PA 二 _____ 如图,在厶 ABC 中,/ BAC=9Q , AB=AC=2 以AB 为直径的圆交BC 于D,则图中阴影部分 面积为 6、 AB 是斜靠在墙壁上的长梯,梯脚 梯上点D 距墙1.4米,BD 长Q.55米。 则梯子等于 ______ 。 三、解答题:(每题7分,共35分) 1、已知:如图,D E 是厶ABC 的边AB 上 的点,/ A=35°, / C=85 , / AED=60,求证:ADAB=AEAC 5、 C B O D C

数学运算之几何问题专题

数学运算之几何问题专题 面积基本公式:(1)三角形的面积S=1/2ah (2)长方形的面积S=a×b (3)正方形的面积S=a2 (4)梯形的面积S=(a+b)/2×h (5)圆的面积=πr2=1/4πd2 (1)等底等高的两个三角形面积相同; (2)等底的两个三角形面积之比等于高之比; (3)等高的两个三角形面积之比等于底之比。 解决面积问题的核心是“割、补”思维,即当我们看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 体积基本公式:(1)长方体的体积V=abc (2)正方体的体积V=a3 (3)圆柱的体积V=Sh =πr2,S为圆柱底面积。 (4)圆锥的体积V=1/3Sh =1/3πr2h ,S为圆锥底面积。 周长基本公式:(1)长方形的周长C=(a+b)×2 (2)正方形的周长C=a×4 (3)圆的周长C=2πr =πd

例1、现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中,如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为()。 A 3.4平方米B9.6平方米C13.6平方米D16平方米 【解析】边长1米的一个木质正方体放入水里,有0.6米浸入水中,说明要考虑水的浮力的作用,并且告诉了浮力的大小。可以得到的小正方体有64个,每一个直接和水接触的表面积包括一个底面和4个侧面的60%。根据题意,直接和水接触的表面积总量为64×(0.25×0.25+40.6×0.25×0.25)=13.6(平方米)。答案选C。 例2、甲、乙两个容器均有50厘米深,底面积之比为5∶4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是()。 A20厘米B25厘米C30厘米D35厘米 【解析】不妨假设两个容器的底面积分别为5和4,设注入同样多的水后相等的水深为x厘米,根据题意,注入水的体积相等,得到方程5(x-9)=4(x-5),解方程得x=25(厘米)。答案选B。 例3、半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方厘

2019年中考数学几何证明、计算题汇编及解析

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. 所以3BF k = = 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. E B F C D A

浙教版初中数学几何计算型综合问题(含答案)

几何计算型综合问题 【考点透视】 几何计算型综合问题,是以计算为主线的综合各种几何知识的问题.在近年全国各地中考试卷中占有相当的分量.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想. 解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 值得注意的是近年中考几何综合计算的呈现形式多样,如折叠类型、探究型、开放型、运动型、情境型等,背景鲜活,具有实用性和创造性,在考查考生计算能力的同时,考查考生的阅读理解能力、动手操作能力、抽象思维能力、建模能力……力求引导考生将数学知识运用到实际生活中去. 【典型例题】 例1 在生活中需要测量一些球(如足球、篮球…)的直径,某学校研究性学习小组,通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线AD、CB分别与球相切于点E、F,则E、F即为球的直径.若测得AB的长为41.5cm,∠ABC=37°.请你计算出球的直径(精确到1cm) 分析:本题实际上是解直角梯形ABFE中的问题, 作AG⊥CB于G,在Rt△ABG中,求出AG即可. 解:作AG⊥CB于G, ∵AD、CB分别与圆相切于E、F, ∴EF⊥FG,EF⊥EA, ∴四边形AGFE是矩形, ∴AG=EF 在Rt△ABG中,AB=41.5,∠ABG=37°, ∴AG=AB·sin∠ABG=41.5×sin37°≈25. ∴球的直径约为25cm. 说明:将几何计算题与研究性学习问题和方案设计问题有机的结合起来,是近年中考题的又一热点.这类题一般难度不太大,关键是考查建模能力. 例2.在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在

专题十一—几何证明.docx

辅导讲义 基础概念回顾( 一) 全等三角形的判定定理: “SAS": ________________________________________________________ “ASA":________________________________________________________ “AAS":________________________________________________________ “SSS":________________________________________________________ “HL":_______________________________________________________ 通过观察和探索发现全等的三角形和全等成立的相关要素 1.(2015?常州)如图,在0ABCD中,ZBCD=120°,分别延长DC、BC到点E, F,使得△ BCE和厶CDF都是正三角形. (1)求证:AE=AF; (2)求ZEAF的度数. 技巧:挖掘隐含条件,构造全等三角形证明线段等几何关系成立

2.(2014*重庆)如图,AABC 中,ZBAC=90°, AB=AC, AD±BC,垂足是D, AE 平分ZBAD,交BC 于点E.在AABC 外有一点F,使FA丄AE, FC丄BC. (1)求证:BE=CF; (2)在AB±.取一点M,使BM=2DE,连接MC,交AD于点N,连接ME. 求证:①ME丄BC;②DE=DN. 3.(2015*重庆)如图1,在Z^ABC中,ZACB=90°, ZBAC=60°,点E是ZBAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH丄AC,垂足为H,连接EF, HF. (1)如图1,若点H是AC的屮点,AC=2>/E,求AB, BD的长; (2)如图1,求证:HF=EF; (3)如图2,连接CF, CE.猜想:ACEF是否是等边三角形?若是,请证明;若不是,说明理由. 对全等判定的进一步探究 4 (南京2015)【问题提出】

2018届中考数学复习《几何证明与计算》专题训练有答案

2018届初三数学中考复习几何证明与计算专题复习训练题 1.如图,在△ABC中,AD⊥BC于点D,BD=AD,DG=DC,点E,F分别是BG,AC 的中点. (1)求证:DE=DF,DE⊥DF; (2)连接EF,若AC=10,求EF的长. 2. 如图,在?ABCD中,DE=CE,连接AE并延长交BC的延长线于点F. (1)求证:△ADE≌△FCE; (2)若AB=2BC,∠F=36°.求∠B的度数.

3. 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E. (1)求证:AG=CG; (2)求证:AG2=GE·GF. 4. 如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA 交AC于点E,DF∥CA交AB于点F,已知CD=3. (1)求AD的长; (2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)

5. 如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF. (1)求证:△BCE≌△DCF; (2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由. 6. 如图,点E 是正方形ABCD 的边BC 延长线上一点,连接DE ,过顶点B 作BF⊥DE,垂足为F ,BF 分别交AC 于点H ,交CD 于点G. (1)求证:BG =DE ; (2)若点G 为CD 的中点,求HG GF 的值.

7. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG. (1)写出线段AG,GE,GF长度之间的数量关系,并说明理由; (2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长. 8. 如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F. (1)求证:△ACD∽△BFD;

中考数学几何计算题

分析中考的几何计算题 几何计算题历年来是中考的热点问题。几何计算是以推理为基础的几何量的计算,主要有线段与弧的长度计算、角和弧的度数计算、三角函数值的计算、线段比值的计算以及面积、体积的计算,从图形上分类有:三角形、四边形、多边形以及圆的有关计算。解几何计算题的常用方法有:几何法、代数法、三角法等。 一、三种常用解题方法举例 例1. 如图,在矩形ABCD 中,以边AB 为直径的半圆O 恰与对边CD 相切于T ,与对角线AC 交于P , PE ⊥AB 于E ,AB=10,求PE 的长。 解法一:(几何法)连结OT,则OT ⊥CD ,且OT=2 1 AB =5,BC=OT=5,AC=25100+=55 ∵BC 是⊙O 切线,∴BC 2 =CP ·CA ∴PC=5,∴AP=CA-CP=54 ∵PE ∥BC ∴ AC AP BC PE =,PE=5 55 4×5=4 说明:几何法即根据几何推理,由几何关系式进行求解的方法,推理时特别 要注意图形中的隐含条件。 解法二:(代数法)∵PE ∥BC ,∴AB AE CB PE = ∴2 1 ==AB CB AE PE 设:PE=x ,则AE=2x ,EB=10–2x 连结PB 。 ∵AB 是直径,∴∠APB=900 在Rt △APB 中,PE ⊥AB ,∴△PBE ∽△APE ∴ 2 1 ==AE PE EP EB ∴EP=2EB ,即x=2(10–2x ) 解得x=4 ∴PE=4 说明:代数法即为设未知数列方程求解,关键在于找出可供列方程的相等关系,例如:相似三角形中的线段比例式;勾股定理中的等式;相交弦定理、切割线定理中的线段等积式,以及其他的相等关系。 解法三:(三角法)连结PB ,则BP ⊥AC 。设∠PAB=α 在Rt △APB 中,AP=10COS α 在Rt △APE 中,PE=APsin α, ∴PE=10sin αCOS α 在Rt △ABC 中, BC=5,AC=55 ∴sin α= 555 55= ,COS α=5525 510= ∴PE=10×55255?=4 说明:在几何计算中,必须注意以下几点: (1) 注意“数形结合”,多角度,全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系。

中考几何证明专题

一、中考几何证明题的解法 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF; (2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形 (3)如图3,若AB= ,过点M作 MG⊥EF交线段BC的延长线于点G. ①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由. 2、(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程); (2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果).

3、已知梯形ABCD ,AD ∥BC , AB ⊥BC ,AD=1,AB=2,BC=3, 问题1:如图1,P 为AB 边上的一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ ,DC 的长能否相等,为什么? 问题2:如图2,若P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE=PD ,再以PE ,PC 为边作平行四边形PCQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 4、如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°.点D 是直线BC 上的一个动点,连接AD ,并以AD 为边在AD 的右侧作等边△ADE . (1)如图①,当点E 恰好在线段BC 上时,请判断线段DE 和BE 的数量关系,并结合图①证明你的结论; (2)当点E 不在直线BC 上时,连接BE ,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论; (3)若AC =3,点D 在直线BC 上移动的过程中,是否存在以A 、C 、D 、E 为顶点的四边形是梯形?如果存在,直接写出线段CD 的长度;如果不存在,请说明理由. B D A C E 图① B D A C E 图② B A C 备用图

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

几何证明与计算2

2012年寒假九年级数学学案二------几何证明与计算 一、基础回顾 1.如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E , 5 4 A cos =,则下列结论中正确 的个数为( ) ①DE =3cm ;②EB =1cm ;③2A BCD 15S cm =菱形. A .3个 B .2个 C .1个 D .0个 2..(2011山东菏泽)一次数学活动课上,小聪将一副三角板 按图中方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 3.(2011山东济宁)若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是( )A . 直角三角形 B . 锐角三角形 C . 钝角三角形 D . 等边三角形 4. 2011浙江义乌)如图,DE 是△ABC 的中位线,若BC 的长是3cm ,则DE 的长是( ) A .2cm B .1.5cm C .1.2cm D .1cm 5.(2011浙江绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A.16 B.10 C.8 D.6 6.(2011山东菏泽,18,10分)如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E , AE =2,ED =4, (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由. C 30° 45° α E A B C D

二、典例精评 例1. (2011广东茂名)如图,在等腰△ABC中,点 D、E分别是两腰AC、BC上的点,连接A E、BD 相交于点O,∠1=∠2. (1)求证:OD=OE; (2)求证:四边形ABED是等腰梯形; (3)若AB=3DE, △DCE的面积为2, 求四边形 ABED的面积. 例2. (2011浙江金华)如图,在平面直角坐标系中,点A(10,0),以OA 为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF. (1)当∠AOB=30°时,求弧AB的长;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.

几何计算题参考答案.

几何计算题 1.如图6,矩形纸片ABCD 的边长AB=4,AD=2.翻折矩形纸片,使点A 与点C 重合,折痕分别交AB 、CD 于点E 、F , (1)在图6中,用尺规作折痕EF 所在的直线(保留作图痕迹,不写作法),并求线段EF 的长; (2)求∠EFC 的正弦值. 解:(1) 作图正确 ∵矩形ABCD , ∴90B ∠=,BC AD =. ∵在Rt △ABC 中,AB =4,AD =2 ∴由勾股定理得:AC =设EF 与AC 相交与点O , 由翻折可得 AO CO ==90AOE ∠=. ∵在Rt △ABC 中, tan 1BC AB ∠=, 在Rt △AOE 中,tan 1EO AO ∠=. ∴ EO BC AO AB = , ∴2EO =. 同理:2FO = . EF =. (2)过点E 作EH CD ⊥垂足为点H , 2EH BC == ∴sin 5EH EFC EF ∠= == 2、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE . (1)求证:ABE △DFA ≌△; (2)如果10AD AB =,=6,求sin EDF ∠的值. D C B A D A B C E F

3、如图7,△ABC 中,AB=AC , 4 cos ∠(1) 求AB 的长; (2) 求ADC ∠的正切值. 解:(1)过点 A 作AH ⊥BC ,垂足为 ∵AC A B = ∴B C HC BH 2 1==设x CD AC AB === ∵6=BD ∴6+=x BC , 2 6+=x BH 在Rt △AHB 中,AB BH ABC =∠cos ,又5 4 cos =∠ABC ∴ 5 426 =+x x 解得:10=x ,所以10=AB (2)82 1===BC HC BH 2810=-=-=CH CD DH 在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH 在Rt △AHD 中,32 6tan ===∠DH AH ADC ∴ADC ∠的正切值是3 4、如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°. (1)求∠A 的度数; (2)若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积. 解:(1) 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°∵∠D =30°,∴∠COD =60°. ∵OA=OC ,∴∠A=∠ACO=30°. (2)∵CF ⊥直径AB , CF =34,∴CE = ∴在Rt △OCE 中,OE =2,OC =4. ∴2 BOC 6048 3603 S ππ?扇形= =,EOC 1 22 S ??=∴EOC BOC S S S π阴影扇形8=-=-3

培优专题几何证明题(含答案)

如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。求证:DE =DF C F B A E D 图1 例 2. 已知:如图 2 所示,AB =CD ,AD =BC ,AE =CF 。求证:∠E =∠ F D B C F E A 图2 2、证明直线平行或垂直:在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,

几何计算题中的求线段长度

几何计算题中的求线段长度 几何计算题一直是我们各级各类考试中必考题型,它不象证明题有一个明确的求解方向,而是要同学们自己猜想、探究、发现.所以有些同学对几何计算题产生了畏惧心理,每每遇到,便停笔不前.其实几何计算题还是有章可循的,下面以求几何图形中线段长度为例,作一个简单阐述. 仔细回顾我们所做过的几何计算题,大致有如下几类: 一、 用算术方法直接求解 这一类型题目又有不同层次要求. (1)比如有些问题中要求某条线段长,由中点、中位线、特殊四边形、三角函数、等式性质、相似形、勾股定理等知识直接可解,思路很明显. 例如: 如图1,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=5cm ,BD=12cm ,求梯形ABCD 的中位线长. 分析:要求中位线即要求梯形的两底,而该题的 条件集中在对角线上,所以应将对角线AC 平移 至经过点D ,与BC 延长线交于点E ,则可得口 ACED ,进而可得Rt △BDC ,利用勾股定理可求 出BE=13cm ,也就是两底之和等于13cm ,所以 中位线长为6.5cm . (2)而有些题目并不能一眼就看出结果的求法,但只要根据已知条件,将能求的线段尽可能多地求出来,当成为已知的量越来越多,未知的量越来越少,“包围圈”越收越紧时,要求的量便自然“浮出水面”了. 例如: 如图2,AB 是半圆O 的直径,C 为半圆上一点,∠ CAB 的角平分线AE 交BC 于点D ,交半圆O 于点E .若 AB=10,tan ∠CAB=43,求线段BC 和CD 的长. 分析:根据已知条件易求出AC=8,BC=6,而线段CD 的 长却不易看出,仔细分析条件,发现角平分还没有起到作 A D E B C O A B O C D E F 图2 图1

相关主题
文本预览
相关文档 最新文档