基于系统动力学的突发事件演化模型

  • 格式:pdf
  • 大小:968.32 KB
  • 文档页数:13

下载文档原格式

  / 13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30 3 2015 6

JOURNAL OF SYSTEMS ENGINEERING

V ol.30No.3

Jun.2015

1, 1, 2, 1

(1. , 300071;2. , 300072)

: , , ; . , , , . , .

: ; ; ; ;

:C931;X913.4 :A :1000−5781(2015)03−0306−13

doi:10.13383/ki.jse.2015.03.003

Modeling the evolution of emergency based on system dynamics

Li Yongjian1,Qiao Xiaojiao1,Sun Xiaochen2,Li Chunyan1

(1.Business School,Nankai University,Tianjin300071,China;

2.School of Science,Tianjin University,Tianjin300072,China)

Abstract:Due to the special characteristics like explosive,uncertainty of evolution and environmental com-plexity,this paper defines the evolution model of emergency chain and describes four basic evolution modes.

Based on the emergency structural description framework,it investigates the evolution of unconventional earth-quake under the collected earthquake cases.Then with the data of Tangjiashan dammed-lake derived from the Wenchuan Earthquake,this paper performs a numerical simulation by using system dynamics.The research results verify the feasibility and validity of this study.Finally,some suggestions are proposed to deal with dammed-lake.

Key words:emergency;emergency evolution;system dynamics;unconventional earthquake;dammed-lake

1

, , , . . , , .

, , , , : [1]; [2−4]; , [5,6]; , [7−11]; ,

3 : 307

[12−18]; , , [19−21] .

, , , . , , , , . , , .

, , , , , . , , , . , , , .

2

, 2001 “9·11” ,2003 SARS ,2004 ,2008 ,2011 12 ( , ) . , , . , : , , , . [22]:

={{ },{ },{ },{ },{ }}.

:

1)

. , ; . , .

2)

, . ; , .

3)

. , ; , .

4)

, .

5)

. , , . , .

308 30 , , :

={{ },{ , , },{ , , },{ , },{ , , , }};

={{ ( )},{ , , },{ , },{ , , , },{ , , }}.

: , , , ; , , , ; , ( , , ) . , .

3

. , , , . , , , , . [23−25]. , , :

1)

1 , . A , 1 , B. . , , .

1

Fig.1Mode of straight evolution

. , , , , , . { , , } .

2)

2 , . A , 1 , B,C. , . , , .

2011 “3 11” . , , 10km, ; , , , 7 . { , ,

3 : 309 } . , , , , .

3)

3 , A B, 1 2 C . , , , , , , .

2 Fig.2Mode of emanating evolution

3

Fig.3Mode of centralizing evolution

2011 . , , , ( ) , . : , , , , , . { , } { } . , , , ; , , , . , , . , . .

4)

4 , A , 1 B, B 2 C , C 3 A, , . , , , 1 .

4

Fig.4Mode of circulating evolution

310 30 , . { } ( ) , { } , , { , } . , , , .

, , . , ; . , .

4

, ={{ },{ , , },{ , , },{ , },{ , , , }}. ,1970 ( 2012−12−31) 109513 , , . 647 , , , , , , , , , , , , . , 5 .

5

Fig.5Evolution diagram of events derivated from unconventional earthquake