当前位置:文档之家› 电流互感器局部放电实验研究

电流互感器局部放电实验研究

电流互感器局部放电实验研究
电流互感器局部放电实验研究

电流互感器局部放电实验研究

【摘要】由于电流互感器绝缘体中存在着细微的气泡和裂纹,没有形成连通性故障,用交流耐压方式无法检测成功。利用局部放电的方式进行绝缘体局部放电检测,通过获取局部放电量来判断检测部位是否存在着放电现象,从而检验处绝缘体内部的薄弱环节,加强互感器的运行安全。

【关键词】绝缘体局部放电;脉冲电流;校正电荷

引言

国标GB50150-91《电气装置安装工程电气设备交接试验标准》中规定“35kV 及以上

固体绝缘互感器应进行局部放电试验”。35kV固体绝缘互感器,一般指LCZ-35型环氧树脂

电流互感器。由于在这种互感器在浇注环氧树脂时可能残留小气泡,在搬运过程中又容易因振动和撞击产生微小裂纹。这些微小的气泡和裂纹往往存在于绝缘体的局部,没有形成连通性故障,用交流耐压方式无法检测成功。在交流高电压作用下,便会产生局部放电,周而复始地形成恶性循环,并伴随着电、热、声、光过程,加速着绝缘材料的老化,以致酿成严重的电气事故,破坏系统的正常运行。利用局部放电的方式进行绝缘体局部放电检测,通过获取局部放电量来判断检测部位是否存在着放电现象,从而检验处绝缘体内部的薄弱环节,加强互感器的运行安全。

1 局部放电试验

局部放电测量方法主要有无线电干扰测量方法、放电能量法和脉冲电流法。脉冲电流法灵敏度高,是目前国际电工委员会推荐进行局部放电测试的一种通用方法。

1.1 测试装置

为了取得较好的试验电源,阻止干扰脉冲进入测量回路,使用了型号为LB-55 kV·A的电源滤波装置,成套的YDW-k5V·A无局部放电升压试验变压器和XYD-5S无局部放电调压器,局部放电仪型号为KJF96-1,检测阻抗是RLC 型,调谐电容量范围为25 ~100 ~400 pF。被试品型号为LZZW-35和LCZ-35Q。

1.2 试验接线

首先采用直接法串联线路,用此方法进行局放试验时,空气杂散电容器Cs

浅谈电流互感器误差及影响

浅谈电流互感器误差及影响 摘要:电流互感器是一次系统和二次系统电流间的联络元件,将一次回路的大电流转换为小 电流,供给测量仪表和保护装置使用。电流反应系统故障的重要电气量,而保护装置是通过电流互感器来间接反应一次电流的,因此电流互感器的性能直接决定保护装置的运行。然而从互感器本身和运行使用条件方面来看,电流互感器存在不可避免的误差,本文分别从这两个方面分析了误差,并结合实际工作阐述了误差带来的影响,以便在工作中加强重视,并做出正确的分析。 关键词:电流互感器 励磁电流 误差 一、电流互感器的误差 在理想条件下,电流互感器二次电流I 2=I 1/Kn ,Kn=N 2/ N 1 ,N 1 、N 2 为一、二次绕组的 匝数,不存在误差。但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。这一点我们可以从图中看到。 从图一看,实际流入互感器二次负载的电流I’2 =I 1-Ie ,其中I’2 = I 2 * Kn,Ie 为励 磁电流,即建立磁场所需的工作电流。正是因为励磁损耗的存在,使得I 1 和I’2 在数值上和 相位上产生了差异。正常运行时励磁阻抗很大,励磁电流很小,因此误差不是很大,经常可以被忽略。但在互感器饱和时,励磁阻抗会变小,励磁电流增大,使误差变大。 图二相量图,以I’2 为基准,E 2 较-I’2超前φ角(二次总阻抗角,即Z 2 和Z 阻抗角), 如果不考虑铁磁损耗,励磁阻抗一般被作为电抗性质处理,Ie 超前E 2 为90度, I’2与Ie 合成I 1。图中I’2与I 1不同相位,两者夹角δ即为角度误差。 对互感器误差的要求一般为,幅值误差小于10%,角度误差小于7度。 二、电流互感器的饱和 电流互感器的误差主要是由励磁电流Ie 引起的。正常运行时由于励磁阻抗较大,因此Ie 很小,以至于这种误差是可以忽略的。但当CT 饱和时,饱和程度越严重,励磁阻抗越小, Z 图一 等值电路 E 图二 相量图

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法 变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。 但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。 变压器差动保护误动作的原因及处理方法如下: 一、差动保护电流互感器二次接线错误 (一)常用的电流互感器二次接线 图1-101 常用的电流互感器二次接线 图1-101是工程上常用的一种接线方式。图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。 对图l-101进行相量分析如下: 现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。T2流出。 在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得: I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。 由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。 在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-

电流互感器10差校验的计算方法.

电流互感器10%误差校验的计算方法 简介:本文对<<工业与民用配电手册>>中关于电流互感器10%误差校验的方法提出疑问,并结合<<手册>>中的例题,给出了作者认为的计算方法. 关键字:电流互感器 10%误差校验计算方法 由中国航空工业规划设计研究院组编,中国电力出版社出版的《工业与民用配电设计手册》(以下简称手册)自1983年11月第一版到2005年10月的第三版,发行量近16万册,该手册的权威性、指导性,对工业与民用配电设计行业的影响是勿庸置疑的。正因为广大设计者对该手册的重视和尊重,更要求它是完美的。本文就手册中关于“电流互感器10%误差校验的计算方法”提出不同的意见,供大家参考。尽管如此,本人仍然认为,暇不掩玉,该手册仍然是广大设计者必备的案头参考书。 手册给出的电流互感器允许误差计算步骤如下: 道频 2,根据电流互感器的型号、变比和一次电流倍数,在10%误差曲线上确定控m自电流互感器的允许二次负荷。 oc网.s师i3,按照对电流互感器二次负荷最严重的短路类型计算电流互感器的实际二次负j计eh荷。设s.国k中w.z 4,比较实际二次负荷与允许二次负荷,如实际二次负荷小于允许二次负荷, 表示电流互感器的误差不超过ww10%。 1,按照保护装置类型计算流过电流互感器的一次电流倍数 对于步骤1、2、4,本文并无异议,对步骤3,有值得商榷的地方。现引用《工业与民用配电设计手册》例题【7-9】,6KV线路过流与速断保护为例来说明问题。已知条件如下(对原例题中与本讨论无关的给予了简化):某6KV单侧放射式单回路线路,工作电流Ig.xl为100A,电动机起动时的过负荷电流Igh为181A。经校验实际线路长度能满足瞬时电流速断选择性动作,且短路时母线上有规定的残压。采用DL-11型电流继电器、DL-13型继电器、DSL-12型时间继电器和ZJ6型中间继电器作为线路的电流速断保护和过电流保护(交流操作),电流互感器选用LFZB6-10型,变比150/5,三相星型接线方式。另采用ZD-4型小电流接地信号装置作为线路单相接地保护。已知最大运行方式下,线路末端三相短路时的超瞬态电流I”2k3.MAX=1752A。最小运行方式下,线路末端三相短路时的超瞬态电流I”2k3.Min=1674A。 计算过程为: 1)瞬时电流速断保护的整定: IopK=KrelKjxI”2k3.MAX/nTA=1.2x1x1752/30=70.1A (式1) 式中Krel:可靠系数,取1.2;Kjx:接线系数,接于相电流时取1;IopK:继电器动作值,计算值为70.1A,取70A,装设DL-11/200型继电器。 2)过电流保护整定:

互感电路实验报告结论

竭诚为您提供优质文档/双击可除互感电路实验报告结论 篇一:互感器实验报告 综合性、设计性实验报告 实验项目名称所属课程名称工厂供电 实验日期20XX年10月31日 班级电气11-14班 学号05姓名刘吉希 成绩 电气与控制工程学院实验室 一、实验目的 了解电流互感器与电压互感器的接线方法。 二﹑原理说明 互感器(transformer)是电流互感器与电压互感器的统称。从基本结构和工作原理来说,互 感器就是一种特殊变压器。电流互感器(currenttransformer,缩写为cT,文字符号为TA),是一种变换电流的互感器,其二次侧额定电流一般为5A。电压互

感器(voltagetransformer,缩写为pT,文字符号为TV),是一种变换电压的互感器,其二次侧额定电压一般为100V。(一)互感器的功能主要是:(1)用来使仪表、继电器等二次设备与主电路(一次电路)绝缘这既可避免主电路的高电压直接引入仪表、继电器等二次设备,有可防止仪表、继电器等二次设备的故障影响主回路,提高一、二次电路的安全性和可靠性,并有利于人身安全。(2)用来扩大仪表、继电器等二次设备的应用范围通过采用不同变比的电流互感器,用一只5A量程的电流表就可以测量任意大的电流。同样,通过采用不同变压比的电压互感器,用一只100V量程的电压表就可以测量任意高的电压。而且由于采用互感器,可使二次仪表、继电器等设备的规格统一,有利于这些设备的批量生产。 (二)互感器的结构和接线方案 电流互感器的基本结构和接线电流互感器的基本结构 原理如图3-2-1-1所示。它的结构特点是:其一次绕组匝数很少,有的型式电流互感器还没有一次绕组,而是利用穿过其铁心的一次电路作为一次绕组,且一次绕组 导体相当粗,而二次绕组匝数很多,导体很细。工作时,一次绕组串联在一次电路中,而二次绕组则与仪表、继电器等电流线圈相串联,形成一个闭合回路。由于这些电流线圈的阻抗很小,因此电流互感器工作时二次回路接近于短路状

电流互感器接线图

电流互感器接线图 我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。 一测量用电流互感器接线方法 测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。 1普通电流互感器接线图 电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。 电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。

注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。 2穿心式电流互感器接线图 穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。 二电流互感器接线图 电流互感器接线总体分为四个接线方式: 1.单台电流互感器接线图 只能反映单相电流的情况,适用于需要测量一相电流的情况。 单台电流互感器接线图 2.三相完全星形接线和三角形接线形式电流互感器接线图 三相电流互感器能够及时准确了解三相负荷的变化情况。(三相完全星形电流互感器接线图)

3.两相不完全星形接线形式电流互感器接线图 在实际工作中用得最多,但仅限于三相三线制系统。它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。 两相不完全星形接线形式电流互感器接线图 4.两相差电流接线形式电流互感器接线图 也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。 两相差电流接线形式电流互感器接线图 5.其它接线方式 5.1 原边串联、副边串联 电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。 电流互感器原边串联、副边串联接线图

电流互感器检测报告

编号:DY-GY-01-CF-0101 干式固体结构电流互感器试验报告设备名称001 1BBA01 #1发电机出线 1.设备参数 型号LZZBJ9-12/175b/4 短时热电流31.5/4 kA/s 额定动稳定电流80 kA 额定绝缘水平值 E 二次绕组1S1-1S2 2S1-2S2 3S1-3S2 / 准确等级5P30 5P30 0.2S / 额定容量(VA) 20 20 20 / 变比1000/1 1000/1 1000/1 / 相别A相B相C相 产品编号170400559 170400558 170400555 制造厂中国大连第一互感器有限公司出厂日期2017.04 2.试验依据 GB 50150-2016 电气装置安装工程电气设备交接试验标准 3.绕组的绝缘电阻及交流耐压试验 测试绕组 出厂耐 压值 (kV) 耐压 值 (kV) 耐压 时间 (min) A相(MΩ)B相(MΩ)C相(MΩ) 耐压前耐压后耐压前耐压前耐压后耐压前一次绕组对二次绕组、末 屏及外壳 / 33 1 6430 5370 5230489052804980一次绕组间/ / / / / / / / / 1S1-1S2对2S1-2S2、 3S1-3S2、4S1-4S2及地 / 2 1 1670 1520 16901580 1590 1890 2S1-2S2对1S1-1S2、 3S1-3S2、4S1-4S2及地 / 2 1 1580 1670 14801350 1460 1570 3S1-3S2对1S1-1S2、 2S1-2S2、4S1-4S2及地 / 2 1 1690 1590 15701470 1540 1680 4S1-4S2对1S1-1S2、 2S1-2S2、3S1-3S2及地 / / / / / / / / / 末屏对二次绕组及地/ / / / / / / / / 备注二次绕组回路耐压采用 2500V 兆欧表代替,试验持续时间为 1min 试验环境环境温度: 34 ℃,湿度:45%RH 试验设备FLUKE1550C 电动兆欧表/量程(250V-5000V); FBG-6kVA/50kV 试验变压器(含操作箱) 试验人员试验日期年月日4.测量绕组直流电阻 相别A相B相C相最大差值(%)一次绕组(μΩ)53.5 53.9 53.6 0.75

电流互感器准确级大全

精心整理 电流互感器的准确级 一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。 准确级一次电流为额定 的百分数(%) 误差限值二次负荷变化 范围 电流误差(%)相位差(’) 0.2 10 20 100—120 ±0.5 ±0.35 ±0.2 ±20 ±15 ±10 (0.25-1)S2n 0.5 10 20 100—120 ±1 ±0.75 ±0.5 ±60 ±45 ±30 1 10 20 100—120 ±2 ±1.5 ±1 ±120 ±90 ±60 3 50—120 ±3 不规定(0.5-1)S2n 二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。? 5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。 准确级电流误差(%)相位差(’)复合误差(%) 在额定准确限值一次电流下 在额定一次电流下

电流互感器误差现场校验及其影响因素分析 周业文

电流互感器误差现场校验及其影响因素分析周业文 发表时间:2018-05-10T10:37:44.290Z 来源:《电力设备》2017年第36期作者:周业文 [导读] 摘要:作为电力系统中非常重要的一次设备,电流互感器具有重要的作用,特别是110kV电流互感器,掌握其误差现场校验的方法,以及产生误差的原因、分析影响误差的因素,对实现电流互感器现场校验具有针对性的意义。 (广西电网有限责任公司钦州供电局广西钦州 535000) 摘要:作为电力系统中非常重要的一次设备,电流互感器具有重要的作用,特别是110kV电流互感器,掌握其误差现场校验的方法,以及产生误差的原因、分析影响误差的因素,对实现电流互感器现场校验具有针对性的意义。本文首先介绍了电流互感器现场误差检测的条件,然后研究了电流互感器误差导线连接方法和检测线路,并重点分析电流互感器误差现场校验的主要影响因素。希望本文所陈述的内容对于电流互感器现场校验具有一定的建议性意义,能够有针对性地解决相关的问题,具备一定的参考价值。 关键词:110kV电流互感器;误差校验;影响因素分析 电能计量的准确性在很大程度上取决于互感器的误差,在电力系统中,通常电流互感器的准确度为0.5级和0.2级,目前大量的电流互感器被应用于电气测量和电能计量。国家规定必须定期检查电力互感器的二次侧负荷、极性及变比等电气参数,误差校验作为其中的代表,是电能计量工作中发展变化较快的一项试验工作。 一般地,对于110kV高压电能计量设备中的电流互感器,需要在现场完成误差检验。测试方法一般分为标准电流互感器检测线路、低压外推法(二次低压法),实际上,对于电磁干扰较大,以及额定电流较小的电流互感器,一般采用标准的校验方法,这种方法的准确度很高,同时数据稳定,但检测设备体积大、数量较多;对于额定一次电流很大,电磁干扰较小的电流互感器,难以使用传统的方法进行现场检验,特别是安装在封闭母线和变压器套管上的电流互感器,因此一般采用低压外推法。这种方法是近年来新兴的一种测试方法,具有其他方法不可比拟的优势,由于在实际应用中便携的特性,受到了广泛的欢迎。本文对比了不同测试方法下的110 kV内置式电流互感器现场校验,分析了电流互感器现场检测误差主要影响因素。 1.检测条件 1.1环境条件 需要在相对湿度不大于 95%,气温-25~55℃的环境下。校验检测接线造成被检电流互感器误差的变化要小于被检电流互感器基本误差标准的 1/10,同时电磁场干扰造成电流互感器的误差变化要小于被检电流互感器基本误差限值的 1/20。 1.2电流负荷箱条件 在额定电压、电流和额定频率的80%~120%范围内,其残余无功分量要小于额定负荷的±6%,无功和有功分量相对误差均小于 ±6%。 1.3标准电流互感器条件 准确度等级至少要比被检电流互感器高出两个等级,额定变比应与电流互感器相同,变差和误差均要小于被检电流互感器基本误差限值的1/5。 1.4误差测量装置条件 相位差和比值差示值分辨率应高于0.01′和0.001%。造成的测量误差,应小于被检电流互感器基本误差限值的1/10。 2.电流互感器误差现场校验 2.1 电流互感器现场校验线路 如图1所示,为应用标准电流互感器检测线路。这种检测方法准确度高,是较为传统的检测方式,但设备接线的工作量大,同时检测设备体积大、数量多。在检测时,除计量绕组外,其他二次绕组端子接地并用导线短路,并禁止电流互感器二次侧开路。

电流互感器结构及原理

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝 数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产生 的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电 流比:。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额 定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3 特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图

电流互感器的额定变比和误差

互感器的额定变比KN指电压互感器的额定电压比和电流互感器的额定电流比。前者定义为原边绕组额定电压U1N与副边绕组额定电压U2N之比;后者则为额定电流I1N与I2N之比。即KN=U1N/U2N (对电压互感器) KN=I1N/I2N (对电流互感器)电压(或电流)互感器原边电压(或电流) 在一定范围内变动时,一般规定为0.85~1.15U1N(或10~120%I1N),副边电压(或电流)应按比例变化,而且原、副边电压(或电流)应该同相位。但由于互感器存在内阻抗、励磁电流和损耗等因素而使比值及相位出现误差,分别称为比差和角差。比差为经折算后的二次电压(或二次电流)与一次电压(或一次电流)量值大小之差对后者之比,即fU 为电压互感器的比差,fI 为电流互感器的比差。 当KNU2》U1(或KNI2》I1)时,比差为正,反之为负。角差为二次电压(或二次电流)相量旋转180°后与一次电压(或一次电流)相量之间的夹角,以分为单位。并规定副边的-妧2(或-夒2)超前于妧1(或夒1)时,角差为正,反之为负。对没有采取补偿措施的电压互感器,比差为负,角差一般为正值,比差的绝对值和角差均随电压的增大而减小;铁心饱和时,比差与角差均随电压的增大而增大。 对于没有采取补偿措施的电流互感器,比差为负值,角差为正值,比差的绝对值和角差均随电流增大而减小。采用补偿的办法可以减小互感器的误差。一般通过在互感器上加绕附加绕组或增添附加铁心,以及接入相应的电阻、电感、电容元件来补偿。常用的补偿法有匝数补偿、分数匝补偿、小铁心补偿、并联电容补偿等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关电流互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/e717081600.html,。

电流互感器试验报告

电流互感器试验报告 电气设备试验报告大唐淮南洛河发电厂一期烟气脱硫工程 电流互感器试验报告 安装环境 安装位置电控楼一楼6KVII段2#脱硫增压风机旁路电流互感器设备名称电流互感器试验性质交接试验日期 2008-06-13 天气睛温度 26.2? 湿度66% 试验标准 GB 50150-1991-8 铭牌 型号 LZZBJ9-10A2G 额定电压 6KV 次级线圈编号准确度级容量,VA, 生产日期 2008.4 电流比 200/5 1S-1S0.5 20 12 生产厂家中国.大连第一互感器有限公司 2S-2S 5P20 15 12 A C 出厂编号 080480448 080480499 绝缘电阻测量:,MΩ, 仪器:2500V兆欧表(PC27-5G) 500兆欧表(PC27-1G) 试验项目 A C 初级对次级及地 2500 2500 次级对地 500 500 直流电阻测量及极性检查仪器:直流电阻快速测试仪、HQ2000互感器特性综合测试仪试验项目 A C 直流电阻(mΩ) 0.154 0.120 极性减极性减极性 励磁特性测量仪器:HQ2000互感器特性综合测试仪、标准电压表(0.5级 D26-V 805.60) 标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 电流(A) 1 2 3 4 5 1 2 3 4 5 1S-1S 23.7 23.9 24.2 24.8 25.2 23.5 23.8 24.9 25.0 25.1 12电压(V) 2S-2S 85.2 88.4 91.8 93.6 95.0 82.6 87.9 92.8 95.7 96.2 12 电流比测量仪器:HQ2000互感器特性综合测试仪标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 初级加电流(A) 40 80 120 160 200 40 80 120 160 200

电流互感器检测项目及试验

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘 第四个字母:W—五铁芯柱;B—带补偿角差绕组。连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。

电压电流互感器准确等级

电压、电流互感器准确等级根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差的百分值。国产电流互感器的准确等级有:0.01; 0.02;0.05;0.1;0.2;0.5;1;3;10级。按照国家标准《电流互感器》GB1208-75规定,电力系统用电流互感器的误差限值。 带S的是特殊电流互感器,要求在1%-120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围;0.1级以上电流互感器,主要用于实验室进行精密测量,或者作为标准,用来校验低等级的互感器,也可以与标准仪表配合,用来校验仪表,所以叫做标准电流互感器;在工业上,0.2级和0.5级互感器用来连接电器测量仪表,要求误差20%-120%负荷范围内精度足够高,一般取4个负荷点测量其误差小于规定的范围(误差包括比差和角差,因为电流是矢量,故要求大小和相角差),而3.0级及以下等级互感器主要用于连接某些继电保护装置和控制设备,如5P,10P的电流互感器一般用于接继电器保护用,即要求在短路电流下复合误差小于一定的值,5P 即小于5%,10P即小于10%;标有B(或D)级的电流互感器,用来接差动保护和距离保护装置。所以电流互感器根据用途规定了不同的准确度,也就是不同电流范围内的误差精度。 保护用电流互感器按其功能特性分级如下: 保护用电流互感器按用途分为稳态保护用(P)和暂态保护用(TP)P级:准确限值规定为稳态对称一次电流下的复合误差,无剩磁限值。

5P20表示在加20倍额定电流的情况下,误差小等于5% 暂态保护用电流互感器准确级分为TPX、TPY、TPZ三个级别。 TPS 级:低漏磁电流互感器,其性能由二次励磁特性和匝数比误差限值规定。无剩磁限值。 TPX级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。无剩磁限值。TPX级电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±0.5% TPY级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。剩磁不超过饱和磁通的10%。级电流互感器铁芯带有小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减,在额定负荷下允许最大电流误差为±1%。 TPZ级:准确限值规定了为在指定的二次回路时间常数下,具有最大直流偏移的单次通电时的峰值瞬时交流分量误差。无直流分量误差限值要求,剩磁通实际上可以忽略。TPZ级电流互感器铁芯心有较大气隙,气隙长度约为磁路平均长度的0.1%,由于铁芯气隙较大,一般不易饱和,特别适合于有快速重合闸(无电流时间间隙不大于0.3s)线路上使用。 测量用单相电磁式电压互感器的标准准确级为:0.1,0.2,0.5,1.0,3.0,5.0; 保护用电压互感器的标准准确级为:3P和6P,电压误差分别是3%和6%。

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

电流互感器误差分析(精)

电流互感器主要由三部分组成:铁心、一次线圈和二次线圈。由于铁心磁阻的存在,电流互感器在传变电流的过程中,必须消耗一小部分电流用于激磁,使铁心磁化,从而在二次线圈产生感应电势和二次电流,电流互感器的误差就是由于铁心所消耗的励磁电流引起的。由于激磁电流和铁损的存在,电流互感器一次电流和二次电流的差值是一个向量,误差包括比值差和相角差。 影响误差的因素: 1、电流互感器的内部参数是影响电流互感器误差的主要因素。 ⑴ 二次线圈内阻R2和漏抗X2对误差的影响: 当R2增大时比差和角差都增大; X2增大时比差增大,但角差减小,因此要改善误差应尽量减小R2和适当的X2值。由于二次线圈内阻R2和漏抗X2与二次负载Rfh和Xfh比较而言值很小,所以改变R2和X2对误差的影响不大,只有对小容量的电流互感器影响才较显著。 ⑵ 铁芯截面对误差的影响:铁芯截面增大使铁芯的磁通密度减少,励磁电流减小,从而改善比差和角差。没有补偿的电流互感器在额定条件下铁芯的磁通密度已经很小,所以减少磁通密度也相对减小了导磁系数,使励磁电流减小不多,而且磁通密度越小效果越差。 ⑶ 线圈匝数对误差的影响: 增加线圈匝数就是增加安匝,增加匝数可以使磁通密度减小,其改善误差的效果比增加铁芯截面显著得多。但是线圈匝数的增加会引起铜用量的增加,同时引起动稳定倍数的减少和饱和倍数的增加。此外,对于单匝式的电流互感器(如穿心型或套管型电流互感器一次线圈只允许一匝)不能用增加匝数的办法改善误差。 ⑷ 减少铁芯损耗和提高导磁率。在铁芯磁通密度不变的条件下,减少铁芯励磁安匝和损耗安匝也将改善比差和角差,因此采用优质的磁性材料和采取适宜的退火工艺都能达到提高导磁率和减少损耗的目的。铁芯磁性的优劣还影响饱和倍数,铁芯磁性差时饱和倍数较校。

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

电流互感器10%误差校验的计算方法

电流互感器10%误差校验的计算方法 摘要:本文对<<工业与民用配电手册>>中关于电流互感器10%误差校验的方法提出疑问,并结合<<手册>>中的例题,给出了作者认为的计算方法. 关键词:电流互感器 10%误差校验计算方法 由中国航空工业规划设计研究院组编,中国电力出版社出版的《工业与民用配电设计手册》(以下简称手册)自1983年11月第一版到2005年10月的第三版,发行量近16万册,该手册的权威性、指导性,对工业与民用配电设计行业的影响是勿庸置疑的。正因为广大设计者对该手册的重视和尊重,更要求它是完美的。本文就手册中关于“电流互感器10%误差校验的计算方法”提出不同的意见,供大家参考。尽管如此,本人仍然认为,暇不掩玉,该手册仍然是广大设计者必备的案头参考书。 手册给出的电流互感器允许误差计算步骤如下: 1,按照保护装置类型计算流过电流互感器的一次电流倍数 2,根据电流互感器的型号、变比和一次电流倍数,在10%误差曲线上确定电流互感器的允许二次负荷。 3,按照对电流互感器二次负荷最严重的短路类型计算电流互感器的实际二次负荷。 4,比较实际二次负荷与允许二次负荷,如实际二次负荷小于允许二次负荷,表示电流互感器的误差不超过10%。 对于步骤1、2、4,本文并无异议,对步骤3,有值得商榷的地方。现引用《工业与民用配电设计手册》例题【7-9】,6KV线路过流与速断保护为例来说明问题。已知条件如下(对原例题中与本讨论无关的给予了简化): 某6KV单侧放射式单回路线路,工作电流I g.xl 为100A,电动机起动时的过负 荷电流I gh 为181A。经校验实际线路长度能满足瞬时电流速断选择性动作,且短路时母线上有规定的残压。采用DL-11型电流继电器、DL-13型继电器、DSL-12型时间继电器和ZJ6型中间继电器作为线路的电流速断保护和过电流保护(交流操作),电流互感器选用LFZB6-10型,变比150/5,三相星型接线方式。另采用ZD-4型小电流接地信号装置作为线路单相接地保护。已知最大运行方式下,线路 末端三相短路时的超瞬态电流I” 2k3.MAX =1752A。最小运行方式下,线路末端三相短 路时的超瞬态电流I” 2k3.Min =1674A。 计算过程为: 1)瞬时电流速断保护的整定: I opK =K rel K jx I” 2k3.MAX /n TA =1.2x1x1752/30=70.1A (式1) 式中K rel :可靠系数,取1.2;K jx :接线系数,接于相电流时取1;I opK :继电 器动作值,计算值为70.1A,取70A,装设DL-11/200型继电器。 2)过电流保护整定: I opK =K rel K jx I gh /K r n TA =1.2x1x181/0.85x30=8.52A(式2) 取9A,装设DL-13/20型继电器, 3)电流互感器10%误差校验 a,确定电流互感器的一次电流计算倍数:

电流互感器的几种接线方法

电流互感器的接线方法及形式 1、是单台电流互感器的接线形式。 只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表。 2、三相完全星形接线和三角形接线形式。 三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中。只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集。三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所 以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护。 3、两相不完全星形接线形式。 在实际工作中用得最多。它节省了一台电流互感器,用A、C相的合成电流形成反 相的B相电流。二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护。这种接线方式用于中性点不接地系统或经消弧线圈接 地系统作相间短路保护。 4、两相差电流接线形式。 也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点 是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种 相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。但故障 形式不同时,其灵敏度不同。这种接线方式常用于 10kV 及以下的配电网作相 间短路保护。由于此种保护灵敏度低,现代已经很少用了。

有人问我,爱情是什么?我不知道,也无从回答,我只知道,为了遇到那个人,我等待了很多年,甚至快要忘了自己到底寻找的是什么? 是心灵的寄托还是真实的感受,我不知道,也不在乎,我执着于这份寻觅,我也不怕世事沧桑,更不怕容颜老去,哪怕还有一丝微弱的光,我都会朝着光芒勇敢的追逐。 爱情的世界里,究竟是什么样子?我曾经问了自己无数遍,我想象着,却给不出任何答案。我只知道:我要遇见你,我渴望见到你 ,我要把全部的爱给予你!我为什么如此渴望爱情?因为我相信我们的爱情早已命中注定。 都说,住在爱情世界里的人会变傻,她的欢喜和忧愁都会牵动着你的心,她哭了,你会心疼不已;她高兴,你会开心一整天。 你会无时无刻的关注她的喜怒哀乐,第一时间回复她的消息,只要有时间,你的脑海里都是她的影子,为了让她开心快乐,做什么都是值得的。从此,你的世界里最重要的人就变成了她。 有时候,你们也会吵架,可你从来不生气,因为你爱她,换作别人你会置之不理,而她的一句玩笑话你都会深思半天,到底是自己哪里做的不够好。 因为你怕她生气,怕她伤身,怕她不够幸福,你只想把全世界的爱都给她,这样的吵架让你更心疼、更深爱她。 而他也和你一样,小心翼翼的呵护你们的爱情,都愿意为对方付出,都愿意对方是那个被爱多一点的人。 爱情的世界里,没有对与错,只有爱与被爱,两个人都想多爱对方一点点 ,都想做那个爱的最深的人 ,她会把你放在心底,让你聆听她想你时的心跳,让你感受连呼吸的空气都有你的味道。

电流互感器的误差

电流互感器的误差 在理想的电流互感器中,励磁损耗电流为零,由于一次绕组和二次绕组被同一交变磁通所交链,则在数值上一次绕组和二次 绕组的安匝数相等,并且一次电流和二次电流的相同。但是在实 际的电流互感器中,哟与有励磁电流存在,一次绕组与二次绕组 的安匝数不相等,并且一次电流与二次电流的相位也不相同。因此,实际的电流互感器通常有变比误差(一下简称比差)和相位 角误差(以下简称为角差)。 角差,是指二次电流向量旋转180以后,与一次电流向量间 的夹角。并且规定二次电流向量超前于一次电流向量,角差为 正,反之为负。的单位为分""O影响电流互感器的误差的因素有:(1)电流互感器的角差主要由电流互感器铁芯的材料和结构来决定,若铁芯损耗小,导磁率高,则角差的绝对值就小;采用带形硅钢片卷成圆环铁芯互感器的角差小。因此高精度的电流互感器多采用优质硅钢片卷成的圆环形铁芯。(2)二次回路阻抗Z (即负载)增大会使误差增大,这是因为在二次电流不变的情况下,z 增大,将是感应电势E2增大,从而使磁通?增加,铁芯损耗则会增加,致使误差增大。负载功率因数的降低,则会使比差增大角差减小。(3)—次电流的影响当系统发生短路故障时,一次电流急剧增加,致使电流互感器工作在磁化曲线的非线性部分(即饱和部分),这样比差和角差都将增加。电流互感器主要由三部分

组成:铁心、一次线圈和二次线圈。由于铁心磁阻的存在,电流互感器在传变电流的过程中,必须消耗一小部分电流用于激磁,使铁心磁化,从而在二次线圈产生感应电势和二次电流,电流互感器的误差就是由于铁心所消耗的励磁电流引起的。 由于激磁电流和铁损的存在,电流互感器一次电流和二次电流的差值是一个向量,误差包括比值差和相角差。影响误差的因素: 1、电流互感器的内部参数是影响电流互感器误差的主要因素。 (1)二次线圈内阻R2和漏抗X2对误差的影响:当R2增大时比差和角差都增大;X2增大时比差增大,但角差减校因此要改善误差应尽量减小R2和适当的X2值。由于二次线圈内阻R2和漏抗X2与二次负载Rfh和Xfh比较而言值很小,所以改变R2和X2对误差的影响不大,只有对小容量的电流互感器影响才较显著。 (2)铁芯截面对误差的影响:铁芯截面增大使铁芯的磁通密度减少,励磁电流减小,从而改善比差和角差。没有补偿的电流互感器在额定条件下铁芯的磁通密度已经很小,所以减少磁通密度也相对减小了导磁系数,使励磁电流减小不多,而且磁通密度越小效果越差。 (3)线圈匝数对误差的影响:增加线圈匝数就是增加安匝,增加匝数可以使磁通密度减小,其改善误差的效果比增加铁芯截面显著得多。但是线圈匝数的增加会引起铜用量的增加,同时引起动稳定倍数的减少和饱和倍数的增加。此外,对于单匝式的电

相关主题
文本预览
相关文档 最新文档