当前位置:文档之家› 实验二两个多位十进制数相加实验报告

实验二两个多位十进制数相加实验报告

实验二两个多位十进制数相加实验报告
实验二两个多位十进制数相加实验报告

南昌理工学院实验报告

二O一二年月日

课程名称:微机原理与接口技术实验名称:两个多位十进制数相加

班级:姓名:同组人:

指导教师评定:签名:

【一、实验名称】

两个多位十进制数相加

【二、实验目的】

1、熟悉DOS系统命令;学习数据传送和算术运算指令的用法。

2、熟悉在PC机上建立、汇编、链接、调试和执行汇编语言程序的过程。

3、初步练习用DEBUG调试程序运行8086汇编语言程序的过程。

【三、实验内容和原理】

将两个5位十进制数相加。要求被加数和加数均以ASCII码形式各自顺序存放在以DA TA1和DATA2为首地址的5个内存单元中(低位在前),结果送回DATA1处。另外,程序利用DOS的9号调用功能完成将被加数、加数和最后的和在显示器上的显示。

【四、实验条件】

微型计算机一台,软件MASM

【五、实验过程】

1、用编辑软件,输入以下汇编语言源程序:

参考程序如下:

data segment

data1 db , , , , ,'$'

data2 db , h, , , , '$'

data ends

stac segment

sta db 100 dup (?)

stac ends

code segment

assume cs:code, ds:data, ss:stac, es:data

start proc far

push ds

xor ax, ax

push ax

mov ax, data

mov ds, ax

mov es, ax

mov ah, 9

mov dx, offset data1

int 21h

mov ah, 2

mov dl, '+'

int 21h

mov ah, 9

mov dx, offset data2

int 21h

mov si, offset data1

mov di, offset data2

mov bx, 5

push bx

push si

conv1: and byte ptr[si+bx-1], 0fh

and byte ptr[di+bx-1], 0fh

dec bx

jnz conv1

mov cx, 5

xor ax, ax

add1: mov al, [si+4]

mov bl, [di+4]

adc al, bl

aaa

mov [si+4], al

dec si

dec di

loop add1

pop si

pop bx

conv2: or byte ptr[si+bx-1], 30h

dec bx

jnz conv2

mov ah, 2

mov dl, '='

int 21h

mov ah, 9

mov dx, si

int 21h

ret

start endp

code ends

end start

2.通过编译,连接形成可执行文件

3.运行。

【六、实验结果】

【七、实验结果分析、讨论】【八、实验结论】

实验一 两个多位十进制数相加的实验

实验一两个多位十进制数相加的实验 一、实验目的 1、学习数据传送和算术运算指令的用法。 2、熟悉在PC机上建立、汇编、链接、调试和运行汇编语言程序的过程。 二、实验内容 将两个多位十进制数相加,要求被加数和加数均以ASCII码形式各自顺序存放在以DATA1、DATA2为首的5个内存单元中(低位在前),结果送回DATA1处。 三、程序框图

四、程序清单 DATA SEGMENT ;定义数据段 DATA1 DB 33H,39H,31H,37H,34H ;被加数 DATA1END EQU $-1 DATA2 DB 34H,35H,30H,38H,32H ;加数 DATA2END EQU $-1 SUM DB 5 DUP(?) ;定义5个空字节 DATA ENDS STACK SEGMENT ;定义堆栈段 STA DB 20 DUP(?) ;取从STA开始的20个字节为堆栈段TOP EQU LENGTH STA ;将堆栈段长度存放在TOP中

STACK ENDS ;堆栈段定义结束 CODE SEGMENT ;定义程序代码段 ASSUME CS:CODE,DS:DATA,SS:STACK,ES:DATA ;表明程序代码段与段地址之间的关系START: MOV AX,DATA MOV DS,AX ;将段地址送入段地址寄存器 MOV AX,STACK MOV SS,AX ;将当前堆栈段首地址送入SS MOV SP,AX ;将堆栈段首地址送入堆栈指针寄存器 MOV SI,OFFSET DATA1END ;将DATA1的偏移地址送入SI MOV DI,OFFSET DATA2END ;将DATA2的偏移地址送入DI CALL ADDA ;调用子程序ADDA MOV AX,4C00H INT 21H ;中断调用 ADDA PROC NEAR ;子程序段 MOV DX,SI ;DX=0004H MOV BP,DI ;BP=0009H MOV BX,05H ;程序调用次数 AD1: SUB BYTE PTR[SI],30H ;将被加数的ASCII码转换成十六进制数SUB BYTE PTR[DI],30H ;将加数的ASCII码转换成十六进制数 DEC SI ;SI中的内容自减1 DEC DI ;DI中的内容自减1 DEC BX ;程序调用次数自减1 JNZ AD1 ;条件转移 MOV SI,DX ;回到初始位置

两个任意长的整数的求和运算

两个任意长的整数的求和运算 进制的转换 2014 年6月 软件综合课程设计

目录 一、问题陈述 二、需求分析 三、概要设计 四、详细设计 五、程序代码 六、运行结果与测试 七、设计体会与总结

两个任意长的整数的求和运算 一、问题陈述 设计一个程序实现两个任意长的整数的求和运算。 利用双向循环链表,设计一个实现任意长的整数进行加法运算的演示程序。要求输入和输出每四位一组,组间用逗号隔开。如:1,0000,0000,0000,0000。 二、需求分析 1、本程序实现计算任意长的整数的加法运算. 以用户和计算机对话的方式,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的运算命令,然后程序就计算并显示出这两个数的运算。 2、本演示程序中,集合的元素限定为数字字符[‘0’~’9’],输入字符可以任意长,输入形式以“#”为结束标志,串中字符顺序不限,且允许出现重复字符。 3、利用双向循环链表现实长整数的存储,每个结点含一个整形变量。输入的形式以#结束,每四位一组。 三、概要设计 在此说明数据结构设计和关键的算法设计思想 Add()函数是实现该问题的主要函数即相加。 typedef struct et 定义双循环链表的存储结构. void setin(dtp *a) 读入数据存储在双链表中的函数; void print1(dtp *w,int len) 原样输出输入的数,略去结束符"#"; void print2(dtp a,int len) 输出运算结果,以每四位一个","样式; 四、详细设计 程序流程图

五、程序代码 #include using namespace std; #define null 0 typedef struct et //自定义双循环链表的存储结构.

数字电子钟课程设计实验报告

中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计任务书2016/2017 学年第一学期 学生姓名:张涛学号: 李子鹏学号: 课程设计题目:数字电子钟的设计 起迄日期:2017年1月4日~2017年7月10日 课程设计地点:科学楼 指导教师:姚爱琴 2017年月日 课程设计任务书

中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计开题报告2016/2017 学年第一学期 题目:数字电子钟的设计 学生姓名:张涛学号: 李子鹏学号:

指导教师:姚爱琴 2017 年 1 月 6 日 中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计说明书2016/2017 学年第二学期 题目:数字电子钟的设计 学生姓名:张涛学号: 李子鹏学号: 指导教师:姚爱琴 2017 年月日

目录 1 引言 (6) 2 数字电子钟设计方案 (6) 2.1 数字计时器的设计思想 (6) 2.2数字电路设计及元器件参数选择 (6) 2.2.2 时、分、秒计数器 (7) 2.2.3 计数显示电路 (8) 2.2.5 整点报时电路 (10) 2.2.6 总体电路 (10) 2.3 安装与调试 (11) 2.3.1 数字电子钟PCB图 (11) 3 设计单元原理说明 (11) 3.1 555定时器原理 (12) 3.2 计数器原理 (12) 3.3 译码和数码显示电路原理 (12) 3.4 校时电路原理 (12) 4 心得与体会 (12) 1 引言 数字钟是一种用数字电子技术实现时,分,秒计时的装置,具有较高的准确性和直观性等各方面的优势,而得到广泛的应用。此次设计数字电子钟是为了了解数字钟的原理,在设计数字电子钟的过程中,用数字电子技术的理论和制作实践相结合,进一步加深数字电子技术课程知识的理解和应用,同时学会使用Multisim电子设计软件。 2数字电子钟设计方案 2.1 数字计时器的设计思想 要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。而脉冲源产生的脉冲信号地频率较高,因此,需要进行分频,使得高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1Hz)。经过分频器输出的秒脉冲信号到计数器中进行计数。由于计时的规律是:60秒=1分,60分=1小时,24小时=1天,就需要分别设计60进制,24进制计数器,并发出驱动信号。各计数器输出信号经译码器、驱动器到数字显示器,是“时”、“分”、“秒”得以数字显示出来。 值得注意的是:任何记时装置都有误差,因此应考虑校准时间电路。校时电路一般

操作系统实验08

实验8 缺页统计 实验目的 学习虚拟内存的基本原理和Linux虚拟内存管理技术;深入理解、掌握Linux的按需调页过程。 复习巩固Linux内核模块和虚拟文件系统的知识和运用能力。 实验原理 由于每发生一次缺页都要进入缺页中断服务函数do_page_fault一次,所以可以认为执行该函数的次数就是系统发生缺页的次数。通过定义一个全局变量pfcount作为计数变量,每次执行do_page_fault时,该变量值加1,从而得到一段时间内的缺页次数。 至于经历的时间则可以利用系统原有的变量jiffies。这是一个系统的计时器,在内核加载完以后开始计时,以10ms(缺省)为计时单位。 借助内核模块技术通过/proc虚拟文件系统来读出上述两个变量的值。在/proc文件系统下建立目录pf以及在该目录下的只读文件pfcount和jiffies。 实验内容 完成《边干边学》第7.3.1节的“系统缺页次数”实验。 1.修改现有的内核代码,在系统中添加一个全局变量pfcount。配置、编译、安装新 的内核,并重新启动,使用新的内核。 2.编辑、编译、安装新的内核模块pf,在/proc虚拟文件系统中创建目录pf以及只 读文件pfcount和jiffies。 3.编写用户程序,引发足够的缺页中断;观察一定时间内的缺页状况。 4.选做:学习《边干边学》第7章,阅读相关的内核源代码,分析Linux系统中缺页 的处理过程。 实验步骤 一、修改现有内核代码,添加缺页计数器pfcount 1.以root帐号登录,解包内核源码,并转入内核源码目录 cd /usr/src tar zxvf linux-2.4.18.tar.gz cd linux 2.修改include/linux/mm.h文件 添加变量pfcount的声明 即添加extern unsigned long volatile pfcount;一行

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。 温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样

易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。 二.硬件设计 1.DS18B20 DS1820 单线数字温度计特性 ? 独特的单线接口仅需一个端口引脚进行通讯 ? 简单的多点分布应用 ? 无需外部器件 ? 可通过数据线供电 ? 零待机功耗 ? 测温范围-55~+125℃,以 0.5℃递增 ? 温度以 9 位数字量读出 ? 温度数字量转换时间 200ms (典型值) ? 用户可定义的非易失性温度报警设置 ? 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件 ? 应用包括温度控制、工业系统、消费品、温度计或任何热感测系统 DS1820温度传感器外观图(a )和引脚图(b ) ①引脚1接地 ②引脚2数字信号输入/输出 ③引脚3接高电平5V 高电平

操作系统课后习题答案

第一章 1.设计现代OS的主要目标是什么? 答:(1)有效性(2)方便性(3)可扩充性(4)开放性 4.试说明推劢多道批处理系统形成和収展的主要劢力是什么? 答:主要动力来源于四个方面的社会需求与技术发展: (1)不断提高计算机资源的利用率; (2)方便用户; (3)器件的不断更新换代; (4)计算机体系结构的不断发展。 12.试从交互性、及时性以及可靠性方面,将分时系统不实时系统迚行比较。答:(1)及时性:实时信息处理系统对实时性的要求与分时系统类似,都是以人所能接受的等待时间来确定;而实时控制系统的及时性,是以控制对象所要求的开始截止时间或完成截止时间来确定的,一般为秒级到毫秒级,甚至有的要低于100微妙。 (2)交互性:实时信息处理系统具有交互性,但人与系统的交互仅限于访问系统中某些特定的专用服务程序。不像分时系统那样能向终端用户提供数据和资源共享等服务。 (3)可靠性:分时系统也要求系统可靠,但相比之下,实时系统则要求系统具有高度的可靠性。因为任何差错都可能带来巨大的经济损失,甚至是灾难性后果,所以在实时系统中,往往都采取了多级容错措施保障系统的安全性及数据的安全性。 13.OS有哪几大特征?其最基本的特征是什么? 答:并发性、共享性、虚拟性和异步性四个基本特征;最基本的特征是并发性。 第二章 2. 画出下面四条诧句的前趋图: S1=a:=x+y; S2=b:=z+1; S3=c:=a –b;S4=w:=c+1; 8.试说明迚程在三个基本状态之间转换的典型原因。 答:(1)就绪状态→执行状态:进程分配到CPU资源 (2)执行状态→就绪状态:时间片用完 (3)执行状态→阻塞状态:I/O请求 (4)阻塞状态→就绪状态:I/O完成

操作系统习题答案整理

存 1通常情况下,在下列存储管理方式中,()支持多道程序设计、管理最简单,但存储碎片多;()使存碎片尽可能少,而且使存利用率最高。 Ⅰ.段式;Ⅱ.页式;Ⅲ.段页式;Ⅳ.固定分区;Ⅴ.可变分区 正确答案:Ⅳ;Ⅰ 2为使虚存系统有效地发挥其预期的作用,所运行的程序应具有的特性是()。 正确答案:该程序应具有较好的局部性(Locality) 3提高存利用率主要是通过存分配功能实现的,存分配的基本任务是为每道程序()。使每道程序能在不受干扰的环境下运行,主要是通过()功能实现的。 Ⅰ.分配存;Ⅱ.存保护;Ⅲ.地址映射;Ⅳ.对换;Ⅴ.存扩充;Ⅵ.逻辑地址到物理地址的变换;Ⅶ.存到外存间交换;Ⅷ.允许用户程序的地址空间大于存空间。 正确答案:Ⅰ;Ⅱ 4适合多道程序运行的存储管理中,存储保护是 正确答案:为了防止各道作业相互干扰 5下面哪种存管理方法有利于程序的动态()? 正确答案:分段存储管理 6在请求分页系统的页表增加了若干项,其中状态位供()参考。 正确答案:程序访问 7从下面关于请求分段存储管理的叙述中,选出一条正确的叙述()。 正确答案:分段的尺寸受存空间的限制,但作业总的尺寸不受存空间的限制 8虚拟存储器的特征是基于()。 正确答案:局部性原理 9实现虚拟存储器最关键的技术是()。 正确答案:请求调页(段) 10“抖动”现象的发生是由()引起的。 正确答案:置换算法选择不当 11 在请求分页系统的页表增加了若干项,其中修改位供()参考。 正确答案:换出页面 12 虚拟存储器是正确答案:程序访问比存更大的地址空间 13测得某个请求调页的计算机系统部分状态数据为:CPU利用率20%,用于对换空间的硬盘的利用率97.7%,其他设备的利用率5%。由此断定系统出现异常。此种情况下()能提高CPU的利用率。 正确答案:减少运行的进程数 14在请求调页系统中,若逻辑地址中的页号超过页表控制寄存器中的页表长度,则会引起()。 正确答案:越界中断 15 测得某个请求调页的计算机系统部分状态数据为:CPU利用率20%,用于对换空间的硬盘的利用率97.7%,其他设备的利用率5%。由此断定系统出现异常。此种情况下()能提高CPU的利用率。 正确答案:加存条,增加物理空间容量 16 对外存对换区的管理应以()为主要目标,对外存文件区的管理应以()为主要目标。 Ⅰ.提高系统吞吐量;Ⅱ.提高存储空间的利用率;Ⅲ.降低存储费用;Ⅳ.提高换入换出速度。 正确答案:Ⅳ;Ⅱ 17 在请求调页系统中,若所需的页不在存中,则会引起()。 正确答案:缺页中断 18 虚拟存储器一般都引入关联存储器技术,关联存储器是 正确答案:按容寻址 19 在请求分页系统的页表增加了若干项,其中访问位供()参考。 正确答案:置换算法 20 在动态分区式存管理中,倾向于优先使用低址部分空闲区的算法是();能使存空间中空闲区分布得较均匀的算法是();每次分配时,把既能满足要求,又是最小的空闲区分配给进程的算法是()。 Ⅰ.最佳适应算法;Ⅱ.最坏适应算法;Ⅲ.首次适应算法;Ⅳ.循环首次适应算法(即Next fit)。 正确答案:Ⅲ;Ⅳ;Ⅰ

微机实验 两个多位十进制数相加的实验

实验2 两个多位十进制数相加的实验 一、实验目的 1. 学习数据传送和算术运算指令的用法。 2. 熟悉在PC机上建立、汇编、连接、调试和运行8088汇编语言程序的过程。 二、实验内容 将两个多位十进制数相加,要求被加数均以ASCII码形式各自顺序存放在以DA TA1和DA TA2为首的5个内存单元中(低位在前),结果送回DATA1处。附加题要求将加法过程显示与屏幕。 同学可以自己设计程序也可对代码段进行填空以及问答来完成程序。(附加题范例在第二页) ;该程序完成54321+54321=108642的多位十进制加法运算,和存放与DAT3 DATA SEGMENT DAT1 DB'12345';问一个多位十进制数各位是以何种顺序存放于内存的。 DAT2 DB'12345';个位存放于高地址或者为低地址。 DAT3 DB 6 DUP(0) DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START:MOV AX,DATA MOV DS,AX LEA BX,DAT1 LEA SI,DAT2 LEA DI,DAT3 MOV CX,5 CLC ;为什么要加入这条指令 L1: MOV AL[BX] ADC AL,[SI] ;BYTE PTR[BX]+[SI]+CF→AL 例‘1’+‘1’+0= 62H→AL __________;填空________________; AL=02H PUSHF;为什么要加入pushf popf这两条指令 OR AL,30H;为什么要加入这条指令 POPF MOV [DI],AL __________;填空________ __________;填空________ __________ ;填空________ LOOP L1 JNC L2 MOV [DI],31H INC DI hlt CODE ENDS END START 三、程序框图(见下页)

操作系统第4章测验题

第4章存储器管理 4.1 典型例题解读 【例1】某系统采用动态分区分配方式管理内存,内存空间为640K,高端40K用来存放操作系统。在内存分配时,系统优先使用空闲区低端的空间。对下列的请求序列:作业1申请130K、作业2申请60K、作业3申请100K、作业2释放60K、作业4申请200K、作业3释放100K、作业1释放130K、作业5申请140K、作业6申请60K、作业7申请50K、作业6释放60K,请分别画图表示出使用首次适应算法和最佳适应算法进行内存分配和回收后内存的实际使用情况。

答:使用首次适应算法和最佳适应算法进行上述内存的分配和回收后,内存的实际使用情况分别如图(a)和(b)所示。 (a ) (b) 【例2】对一个将页表存放在内存中的分页系统: (1)如访问内存需要0.2μs ,有效访问时间为多少? (2)如果加一快表,且假定在快表中找到页表项的机率高达90%,则有效访问时间又是多少(假定查快表需花的时间为0)? 答:(1)有效访问时间为:2×0.2=0.4μs (2)有效访问时间为:0.9×0.2+(1—0.9)×2×0. 2=0.22 ps 。 【例3】某系统采用页式存储管理策略,拥有逻辑空间32页,每页2K ,拥有物理空间1M 。 (1)写出逻辑地址的格式。 (2)若不考虑访问权限等,进程的页表有多少项?每项至少有多少位? (3)如果物理空间减少一半,页表结构应相应作怎样的改变? 答:(1)该系统拥有逻辑空间32页,故逻辑地址中页号必须用5位来描述:而每页为 2K ,因此,页内地址必须用11位来描述,这样可得到它的逻辑地址格式如下: 等,则页表项中只需给出页所对应的物理块块号,1M 的物理空间可分成29个内存块,故每个页表项至少有9位 (3)如果物理空间减少一半,则页表中页表项数仍不变,但每项的长度可减少1位。 【例4】已知某分页系统,主存容量为64K ,页面大小为1K ,对一个4页大的作业,其0、l 、2、3页分别被分配到主存的2、4、6、7块中。 (1)将十进制的逻辑地址1023、2500、3500、4500转换成物理地址。 (2)以十进制的逻辑地址1023为例画出地址变换过程图。 答:(1)对上述逻辑地址,可先计算出它们的页号和页内地址(逻辑地址除以页面大小,得到的商为页号,余数为页内地址),然后通过页表转换成对应的物理地址。 ①逻辑地址1023:1023/1K ,得到页号为0,页内地址为1023,查页表找到对应的物理块

实验一 两个多位十进制数相减实验

实验一两个多位十进制数相减实验 一、实验要求:将两个多位十进制数相减,要求被减数,减数均以ASCII码形式按顺序存放在以DATAI 和DATA2为首的5个内存单元中(低位在前),结果送回DATAI处。 二、实验目的:1.学习数据传送和算术运算指令的用法。 2.熟悉在PC机上建立、汇编、链接、调试和运行汇编语言程序的过程。 三、实验程序框图: 开始 显示减数和被减数 被减数和减数转换成十六进制数 设置计数值 消除最低进位数 制进位减 结果送被减数区 调整偏移量 计数值-1=10 结果转换成ASCII码字符串 显示结果 结果

四、实验程序: DA TA SEGMENT DA TA1 DB 33H,39H,31H,37H,38H ;第一个数据(作为被减数)DA TA2 DB 36H,35H,30H,38H,32H ;第二个数据(作为减数)MES1 DB '-','$' MES2 DB '=','$' DA TA ENDS STACK SEGMENT ;堆栈段 STA DB 20 DUP(0) TOP EQU LENGTH STA STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK,ES:DA TA START: MOV AX,DATA MOV DS,AX MOV ES,AX MOV AX,STACK MOV SS,AX MOV AX,TOP MOV SP,AX MOV SI,OFFSET DA TA1 MOV BX,05 CALL DISPL ;显示被减数 MOV AH,09H LEA DX,MES1 INT 21H MOV SI,OFFSET DATA2 MOV BX,05 ;显示减数 CALL DISPL MOV AH,09H LEA DX,MES2 INT 21H MOV SI,OFFSET DA TA1 MOV DI,OFFSET DATA2 CALL SUBA ;减法运算 MOV SI,OFFSET DATA1 MOV BX,05 ;显示结果 CALL DISPL MOV DL,0DH MOV AH,02H INT 21H MOV DL,0AH MOV AH,02H INT 21H INT 21H MOV AX,4C00H

微机原理实验一 两个多位十进制数相加实验试做报告

实验一两个多位十进制数相加实验试做报告 【实验目的】 1.熟悉在PC机上建立、汇编、连接、调试和运行汇编语言程序的过程。 2.熟悉和掌握用DEBUG调试程序的方法。 【实验性质】 验证性实验(学时数:3H)。 【实验内容】 将两个多位十制数相加,要求加数和被加数均以ASCII码形式各自顺序存放在以DATAl 和DATA2为首的5个内存单元中(低位在前),结果送回DATAl处。 【实验说明】 汇编语言没有十进制加法指令,ADD/ADC加法指令的运算对象是二进制数,如果要进行BCD码数的加法,需要对结果进行修正。组合BCD码的加法调整指令为DAA,它针对AL寄存器中的组合BCD码数之和进行修正。对于未组合BCD码的加法调整指令为AAA(加法的ASCII 码调整指令),它将存于AL寄存器中的一位ASCII码数加法运算的结果调整为一位拆开型十进制数,仍保留在AL中,如果向高位有进位(AF=1),则进到AH中。 对于多字节的ASCII码相加,只能从最低位开始逐个字节地进行加法操作,并随即进行调整。 参考程序清单(WJSY0.ASM): DATA SEGMENT DATA1 DB 33H,39H,31H,37H,34H DATA2 DB 36H,35H,30H,38H,32H DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX MOV CX,5 ;计数 MOV SI,0 ;做指针用,因从DATA1的第一个数取数,故SI=0 CLC NEXT: MOV AL,DATA1[SI] ;取被加数给AL ADC AL,DATA2[SI] ;取加数和AL相加 AAA ;未组合十进制数加法调整指令 MOV DATA1[SI],AL ;结果回送至DATA1处 INC SI ;修改SI指向下一位数 LOOP NEXT MOV SI,5 ;因显示是从高位到低位,故SI=5 L: ADD DATA1[SI-1],30H ;还原成ASCII码 MOV DL,DATA1[SI-1] MOV AH,02 ;送显示 INT 21H DEC SI

数电课程设计

一、数字电子钟 1.设计目得 (1)培养数字电路得设计能力。 (2)掌握数字电子钟得设计、组装与调试方法。 2.设计内容及要求 (1)设计一个数字电子钟电路。要求: ①按24小时制直接显示“时”、“分”、“秒”。 ②当电路发生走时误差时具有校时功能。 ③具有整点报时功能,报时音响为4低1高,即在59分51秒、53秒、55秒、57秒输出500Hz信号,在59分59秒时输出1000 Hz信号,音响持续时间为1秒,最后一响结束时刻正好为整点。 (2)用中小规模集成电路组成电子钟,并在实验仪上进行组装、调试。 (3)画出各单元电路图、整机逻辑框图与逻辑电路图,写出设计、实验总结报告。 (4)选作部分:①闹钟系统。②日历系统。 3.数字电子钟基本原理及设计方法 数字电子钟得逻辑框图如图1411所示。它由振荡器、分频器、计数器、译码器、显示器、校时电路与整点报时电路组成。振荡器产生得脉冲信号经过分频器作为秒脉冲,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”译码器显示时间。有得数字电子钟还加有定时响铃、日历显示等其它功能,需增加相应得辅助电路。 图1411 数字电子钟得基本逻辑框图 (1)振荡分频电路 振荡器就是数字电子钟内部用来产生时间标准“秒”信号得电路。构成振荡器得电路很多,图1412(a)就是RC环形多谐振荡器,其振荡周期T≈2、2RC。作为时钟,最主要得就是走时准确,这就要求振荡器得频率稳定。要得到频率稳定得信号,需要采用石英晶体振荡器。石英晶体振荡器电路如图1412(b)所示,这种电路得振荡频率只取决于石英晶体本身得固有频率。 图1412 振荡器

(a)RC环形多谐振荡器 (b)石英晶体多谐振荡器 由于石英晶体振荡器产生得频率很高,要得到秒信号,需采用分频电路。例如,振荡器输出4 MHz信号,先经过4分频变成1 MHz,再经过6次10分频计数器,便可得到1Hz得方波信号作为秒脉冲。 (2)计数器 把秒脉冲信号送入秒计数器个位得CP输入端,经过6级计数器,分别得到“秒”个位、十位,“分”个位、十位,以及“时”个位、十位得计时。“秒”、“分”计数器为60进制,“时”计数器为24进制。 24进制计数器如图1413所示。当“时”个位计数器输入端CP来到第10个触发脉冲时,该计数器归零,进位端Q D5向“时”十位计数器输出进位信号。当第24个“时”脉冲(来自“分”计数器输出得进位信号)到来时,十位计数器得状态为0010,个位计数器得状态位0100,此时“时”十位计数器得Q B6与“时”个位计数器得Q C5输出为1。两者相与后送到两计数器得清零端R0A与R0B,通过74LS90内部得R0A与R0B与非后清零,完成24进制计数。同理可构成60进制计数器。 CP 来自分计数器 的进位信号 图1413 24进制计数器 (3)译码显示电路 译码驱动器采用8421 BCD码七段译码驱动器74LS48,显示器采用共阴极数七段数码显示器,有关74LS48与七段显示器得使用方法前面已经作了介绍,这里不再赘述。 (4)校时电路 当数字电子钟出现走时误差时,需要对时间进行校准。实现校时电路得方法很多,如图1414所示电路即可作为时计数器或分计数器得校时电路。 图1414 校时电路 现设用该电路作为分计数器得校时电路,图中采用RS触发器作为无抖动开关。通过开关K得接入位置,可以选择就是将“1 Hz信号”还就是将“来自秒计数器得进位信号”送至分计数器得CP端。当开关K置于B端时,RS触发器得输出、,“来自秒计数器得进位信号”被送至分计数器得CP端,分计数器正常工作;需要校正分计数器时,将开关K置于A端,这时RS触发器得输出、,“1 Hz信号”被送至分计数器得CP端,分计数器在“1Hz信号”得作用下快速计数,直至正确得时间,再将开关K置于B端,达到了校准时间得目得。 (5)整点报时电路 电路得设计要求在差10 s为整点时开始每隔1 s鸣叫一次,每次持续时间为1 s,共鸣叫5次,前4次为低音500 Hz,最后一次为高音1 kHz。因为分计数器与秒计数器从59分51秒计数到59分59秒得过程中,只有秒个位计数器计数,分十位、分个位、秒十位计数器得状态不变,分别为Q D4Q C4Q B4Q A4=0101,Q D3Q C3Q B3Q A3=1001,Q D2Q C2Q B2Q A2=0101,所以Q C4=Q A4=Q D3=Q A3=Q C2=Q A2=1不变。设Y1=Q C4Q A4Q D3Q A3Q C2Q A2,又因为在51、53、55、57秒时Q A1=1,Q D1=0,输出500Hz信号f2;59秒时Q A1=1,Q D1=1,输出1kHz信号f1,由此可写出整点报时电路得逻辑表达式为:

统计操作系统缺页次数

实验二: 统计操作系统缺页次数

目录 一.实验目的---------------------------------------------3 二.实验内容--------------------------------------------3三.实验步骤----------------------------------------------3

统计操作系统缺页次数 一实验目的 学习虚拟内存的基本原理和Linux虚拟内存管理技术; 深入理解、掌握Linux的按需调页过程; 掌握内核模块的概念和操作方法,和向/proc文件系统中增加文件的方法;综合运用内存管理、系统调用、proc文件系统、内核编译的知识。 二实验内容 1.原理 Linux的虚拟内存技术采用按需调页,当CPU请求一个不在内存中的页面时,会发生缺页,缺页被定义为一种异常(缺页异常),会触发缺页中断处理流程。每种CPU结构都提供一个do_page_fault处理缺页中断。由于每发生一次缺页都要进入缺页中断服务函数do_page_fault一次,所以可以认为执行该函数的次数就是系统发生缺页的次数。因此可以定义一个全局变量pfcount 作为计数变量,在执行do_page_fault时,该变量值加1。本实验通过动态加载模块的方法,利用/proc文件系统作为中介来获取该值。 2.实验环境 操作系统:Ubuntu (内核版本为3.2.0-23-generic-pae) 内核源码:linux-3.2.58

三实验步骤 1.下载一份内核源代码并解压 Linux受GNU通用公共许可证(GPL)保护,其内核源代码是完全开放的。现在很多Linux的网站都提供内核代码的下载。推荐使用Linux的官方网站:。 在terminal下可以通过wget命令下载源代码: $ cd /tmp $ wget 切换到root身份,解压源代码到/usr/src目录下: # xz –d tar –xvf –C /usr/src 2.修改内核源代码,添加统计变量 1、切换到预编译内核目录 #cd /usr/src/linux-3.2.58

多位十进制数加法器实验-2014

实验三多位十进制数加法器设计 1、实验目的 (1)继续熟练掌握在PC机上建立、汇编、链接、调试和运行8088汇编语言程序的过程; (2)学习数据传送和算术运算指令的用法; (3)掌握子程序设计方法; (4)掌握宏汇编设计方法; (5)掌握键盘输出的DOS功能调用方法。 2、实验内容 (1)将两个多位十进制数相加。要求被加数、加数均以ASCII码形式各自按高位高地址的规律分别顺序存放在以DATAl和DATA2为首的5个内存单元中(低位在前),结果送回结果变量DATA3处,并屏幕显示结果。 (2)在以上程序基础上,设计一个多位十进制数加法器,键盘输入十进制加数和被加数,将输入和输出结果以竖式形式显示在屏幕。 3、提示: (1)算法说明:以42136与12547相加为例,首先将两个数中的每一位都以ASCII码存入相应的内存单元,然后将每一位数都减去30H,并将被加数DATA1和加数DATA2相对应位相加(BCD码加法及其十进制调整,要考虑低位向高位的进位),存入相应的结果DATA3存储单元中,最后将该单元中的每一位数转换成相应的ASCII码,调用DOS系统功能调用的显示字符指令,显示两数相加的结果。 (2)部分程序代码: DATA SEGMENT ;数据段 …;补充必要的代码,定义被加数、加数和结果变量 DATA ENDS STACK SEGMENT STACK ;堆栈段 STA DB 64 DUP(0) SP_TOP DB 0 STACK ENDS CODE SEGMENT ; 代码段 …;补充必要的代码 ;显示回车换行功能用宏定义CRLF实现,放在代码段最前面 CRLF MACRO MOV DL,0DH ;回车(0DH为回车的ASCII 码) MOV AH,02H ; 送DOS 的中断调用功能号 INT 21H ; DOS 的中断调用

两个任意长的整数的求和运算

软件综合课程设计两个任意长的整数的求和运算 进制的转换 2014 年6月

目录 一、问题陈述 二、需求分析 三、概要设计 四、详细设计 五、程序代码 六、运行结果与测试 七、设计体会与总结

两个任意长的整数的求和运算 一、问题陈述 设计一个程序实现两个任意长的整数的求和运算。 利用双向循环链表,设计一个实现任意长的整数进行加法运算的演示程序。要求输入和输出每四位一组,组间用逗号隔开。如:1,0000,0000,0000,0000。 二、需求分析 1、本程序实现计算任意长的整数的加法运算. 以用户和计算机对话的方式,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的运算命令,然后程序就计算并显示出这两个数的运算。 2、本演示程序中,集合的元素限定为数字字符[‘0’~’9’],输入字符可以任意长,输入形式以“#”为结束标志,串中字符顺序不限,且允许出现重复字符。 3、利用双向循环链表现实长整数的存储,每个结点含一个整形变量。输入的形式以#结束,每四位一组。 三、概要设计 在此说明数据结构设计和关键的算法设计思想 Add()函数是实现该问题的主要函数即相加。 typedef struct et 定义双循环链表的存储结构. void setin(dtp *a) 读入数据存储在双链表中的函数; void print1(dtp *w,int len) 原样输出输入的数,略去结束符"#"; void print2(dtp a,int len) 输出运算结果,以每四位一个","样式; 四、详细设计 程序流程图 如果4位间没有“,

”隔开 五、程序代码 #include using namespace std; #define null 0 typedef struct et //自定义双循环链表的存储结构. { int data; struct et * pr,* next; } dtp; void setin(dtp *a) //读入数据存储在双链表中的函数; { char k; int w,len=0; dtp *p; a->next=null; a->data=null; a->pr=null; cout<<"input the number: "; while (cin>>k) //一次读入数字或一个字符","; { if(k=='\n') continue; if(k=='#') break; //以"#"表示该数也讲读完; if(k==44) continue; //读到字符','继续读下一个数; p=new dtp; //读入一个四位数为它开辟一个存储空间 w=k-'0'; p->data=w; len++; if(a->next) a->next->pr=p; p->next=a->next; a->next=p;

数字电压表课程设计实验报告

自动化与电气工程学院 电子技术课程设计报告 题目数字电压表的制作 专业 班级 学号 学生姓名 指导教师 二○一三年七月

一、课程设计的目的与意义 1.课程设计的主要目的,是通过电子技术综合设计,熟悉一般电子电路综合设计过程、设计要求、完成的工作内容和具体的设计方法。 2.同时了解双积分式A/D转换器ICL7107的性能及其引脚功能,熟悉集成电路ICL7107构成直流数字电压表的使用方法,并掌握其在电路中的工作原理。 3.通过设计也有助于复习和巩固以往的模电、数电内容,达到灵活应用的目的。在完成设计后还要将设计的电路进行安、调试以加强学生的动手能力。在此过过程中培养从事设计工作的整体观念。 4.利用双积分式A/D转换器ICL7107设计一数字电压表,量程为-1.99—+1.99,通过七段数码管显示。 二、电路原理图 数字电压表原理图

三、课程设计的元器件 1.课程设计所使用的元器件清单: 2.主要元器件介绍 (1)芯片ICL7107: ICL7107的工作原理 双积分型A/D转换器ICL7107是一种间接A/D转换器。它通过对输入模拟电压和参考电压分别进行两次积分,将输入电压平均值变换成与之成正比的时间间隔,然后利用脉冲时间间隔,进而得出相应的数字性输出。 它的原理性框图如图所示,它包括积分器、比较器、计数器,控制逻辑和时钟信号源。积分器是A/D转换器的心脏,在一个测量周期内,积分器先后对输入信号电压和基

准电压进行两次积分。比较器将积分器的输出信号与零电平进行比较,比较的结果作为数字电路的控制信一号。时钟信号源的标准周期Tc 作为测量时间间隔的标准时间。它是由内部的两个反向器以及外部的RC组成的。其振荡周期Tc=2RCIn1.5=2.2RC 。 ICL7106A/D转换器原理图 计数器对反向积分过程的时钟脉冲进行计数。控制逻辑包括分频器、译码器、相位驱动器、控制器和锁存器。 分频器用来对时钟脉冲逐渐分频,得到所需的计数脉冲fc和共阳极LED数码管公共电极所需的方波信号fc。 译码器为BCD-7段译码器,将计数器的BCD码译成LED数码管七段笔画组成数字的相应编码。 驱动器是将译码器输出对应于共阳极数码管七段笔画的逻辑电平变成驱动相应笔画的方波。 控制器的作用有三个:第一,识别积分器的工作状态,适时发出控制信号,使各模拟开关接通或断开,A/D转换器能循环进行。第二,识别输入电压极性,控制LED 数码管的负号显示。第二,当输入电压超量限时发出溢出信号,使千位显示“1" ,其余码全部熄灭。 钓锁存器用来存放A/D转换的结果,锁存器的输出经译码器后驱动LED 。它的每个测量周期自动调零(AZ)、信号积分(INT)和反向积分(DE)三个阶段。

操作系统_第四章作业讲解

1、“整体对换从逻辑上也扩充了内存,因此也实现了虚拟存储器的功能”这种说法是否正确?请说明理由 答:上述说明法是错误的。整体对换将内存中暂时不用的某个程序及其数据换出至外存,腾出足够的内存空间以装入在外存中的、具备运行条件的进程所对应的程序和数据。虚拟存储器是指仅把作业的一部分装入内存便可运行作业的存储器系统,是指具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统,它的实现必须建立在离散分配的基础上。虽然整体对换和虚拟存储器均能从逻辑上扩充内存空间,但整体对换不具备离散性。实际上,在具有整体对换功能的系统中,进程的大小仍受到实际内存容量的限制。 2、某系统采用页式存储管理策略,拥有逻辑空间32页,每页为2KB,拥有物理空间1MB。 1)写出逻辑地址的格式 2)若不考虑访问权限等,进程的页表有多少项?每项至少有多少位? 3)如果物理空间减少一半,页表结构应相应作怎样的改变? 答:1)该系统拥有逻辑空间32页,故逻辑地址中页号必须用5位来描述,而每页为2KB,因此,页内地址必须用11位来描述。这样,可得到它的逻辑地址格式如下: 2)每个进程最多有32个页面,因此,进程的页表项最多为32项;若不考虑访问权限等,则页表项中只需给出页所对应的物理块号。1MB的物理空间可分成29个内存块,故每个页表项至少有9位。 3)如果物理空间减少一半,则页表中项表项数仍不变,但每项的长度可减少1位。 3、已知某系统页面长4KB,每个页表项为4B,采用多层分页策略映射64位的用户地址空 间。若限定最高层页表只占1页,则它可采用几层分页策略 答:方法一:由题意可知,该系统的用户地址空间为264B,而页的大小为4KB,故作业最多可有264/212(即252)个页,其页表的大小则为252*4(即254)B。因此,又可将页表分成242个页表页,并为它建立两级页表,两级页表的大小为244B。依次类推,可知道它的3、4、5、6级页表的长度分别是234B、224B、214B、24B,故必须采取6层分页策略。 方法二:页面大小为4KB=212B,页表项4B=22B,因此一个页面可以存放212/22=210个面表项,因此分层数=INT[64/10]=6层 4、对于表所示的段表,请将逻辑地址(0,137)、(1,4000)、(2,3600)、(5,230)转换 成物理地址。 答:[0,137]:50KB+137=51337;

两个多位十进制数相加的实验

学生实验报告 (2010 —学年第学期)课程名称:微型计算机原理与接口技术开课实验室:2011年月日年级、专业、班学号姓名成绩实验项目名称两个多位十进制数相加的实验指导教 师 教 师 评语教师签名: 年月日 注:报告内容按实验须知中几点要求进行。 一、实验目的 1、学习数据传送和算术运算指令的用法。 2、熟悉在PC机上建立、汇编、链接、调试和运行8088汇编语言程序的过程。 3、学会PC机得安装 4、认识编程过程 二、实验原理及基本技术路线图或实验内容(方框原理图或程序流程图) 将两个多位十进制数相加。要求被加数均以ASCII码形式各自顺序存放在以DATA1和DATA2为首的5个内存单元中(低位在前),结果送回DATA1处。

程序框图 三、所用软件

四、实验步骤 整个程序分为4个部分:显示加数、转换、相加、输出结果。 五、源码程序编制及分析注释 CRLF MACRO ;宏定义指令(回车执行程序) MOV DL,0DH ;回车 MOV AH,02H ;2号调用,显示回车 INT 21H MOV DL,0AH ;换行 MOV AH,02H ;2号调用换行 INT 21H ENDM ;宏指令定义结束 DATA SEGMENT ;数据段定义 DATA1 DB 33H,39H,31H,37H,34H ;第一个数据(作为加数)47193 DATA2 DB 36H,35H,30H,38H,32H ;第二个数据(作为被加数)28056 DATA ENDS ;数据段定义结束 STACK SEGMENT ;堆栈段定义 STA DB 20 DUP(?) ;定义从STA开始20个单元作为堆栈使用TOP EQU LENGTH STA ;TOP等于堆栈单元数

相关主题
文本预览
相关文档 最新文档