当前位置:文档之家› 发动机研发中的动力学有限元分析

发动机研发中的动力学有限元分析

发动机研发中的动力学有限元分析
发动机研发中的动力学有限元分析

发动机研发中的动力学有限元分析

作者:长安汽车股份有限公司周舟

摘要:本文阐述了发动机(包括动力总成)开发中应用MSC.ADAMS和MSC.Nastran 软件完成的动力学和有限元分析内容,并结合长安公司的产品开发,详述了几个典型的分析算例,它们分别是:曲轴系分析、缸体缸盖一体化分析、配气机构分析、常用附件结构分析、动力总成模态分析以及动力总成悬置系统分析。这些算例表明,CAE分析技术逐渐成为发动机开发过程中的重要技术手段。

1 概述

随着现代发动机技术的发展,CAE 分析在新型发动机开发过程中地位不断提高,逐渐成为了与传统试验平行的开发手段。新机型在开发过程中的需要考虑的刚度、强度、疲劳、振动、噪声等问题,都可以在设计阶段应用CAE 手段解决,大幅度提高设计质量,缩短开发周期,节省开发费用,避免产品在投放市场时出现致命的质量问题。

在发动机的CAE 分析中,主要可分为性能分析、流场分析以及结构分析三个研究方向,其中结构分析是针对零部件级(比如活塞、连杆等)、子系统级(比如曲轴系)和总成级(比如整机和动力总成)三个级别的对象进行动力学和有限元分析,主要分析内容包括分析各级别对象的刚度、强度、疲劳、模态、温度、刚体运动、弹性振动等。根据现代发动机开发的要求以及以往的开发经验,发动结构分析的基本内容如图1 所示。

MSC.ADAMS 以运动学和动力学分析见长,可有效地对发动机中的运动机构进行分析,其中MSC.ADAMS/Engine 模块提供了若干发动机常用部件的分析模块。MSC.Nastran 则是以成熟的有限元分析技术在发动机结构分析领域占有重要的地位。本文将结合长安公司的产品开发,详细论述几个应用MSC.ADAMS 和MSC.Nastran 完成的发动机结构分析算例。

图1 发动机结构分析基本内容

2 典型分析算例

2.1 曲轴系分析

曲轴是发动机中结构比较复杂,承受载荷比较大的零件。在曲轴的工作过程中,疲劳失效往往是其失效的主要原因,因此,对曲轴疲劳性能研究显得尤为重要。由于曲轴属于高速旋转部件,若采用传统的静强度分析方面,则不能准确地反映曲轴在工作状态下真实的受力情况。所以,本文采用了基于动力学分析的曲轴强度分析方法。

首先,对发动机曲轴系(包括曲轴、连杆、主轴承座等)进行符合实际的三维建模型与装配,各部件之间采用不同的连接体进行连接,构成发动机曲轴系的多体非线性模型,在建模的过程中同时考虑轴承油膜的影响。对此模型进行动力学求解,得到曲轴的动力学特性与主轴承油膜特性。然后,将动力学分析得到的结果作为输入条件施加到曲轴有限元模型上,应用MSC.Nastran 软件求解得到曲轴一个工作循环下的瞬态应力,进而得到曲轴关键点的疲劳安全系数来考察曲轴的耐久性。

图2 表示某带液力变矩器的曲轴有限元模型,该模型包含曲轴所有的部件,由绝大部分六面体单元和少量四面体单元构成,单元总数为251768,节点总数为290597。将此模型与连杆、主轴承座等其它部件连接构成的动力学模型进行分析,得到该曲轴系一系列动力学特性和油膜特性,包括前后端最大动态扭矩、前后端最大动态角位移、各主轴颈在工作循环内

受到的瞬态力与力矩、各主轴承最小油膜厚度、最大油膜压力等等。其中,图3 表示前后端最大动态角位移,图4 表示各主轴承最小油膜厚度。基于以上的动力学结果,通过有限元计算得到曲轴在一个工作循环内的瞬态应力如图5 所示,进而根据曲轴材料特性和瞬态应力结果得到曲轴关键点的疲劳安全系数。

图2 曲轴有限元模型

图3 前后端最大动态角位移

图4 各主轴承最小油膜厚度

图5 曲轴在某时刻的瞬态应力

2.2 缸盖缸体一体化分析

缸盖和缸体是最重要的主体结构部件,它们的耐久性和可靠性直接影响整个发动机的性能。所以,在设计前期,就必须对缸盖缸体在各种工况下的温度和强度、缸孔变形、缸垫压力分布以及这些结构的高周疲劳进行评估。

缸盖缸体一体化分析主要分为水套CFD 分析、缸盖缸体温度场分析、缸盖缸体结构分析三个部分。通过水套的CFD 分析,得到水套中冷却液体的流速、压力损失、对流传热系数等等。然后将部分CFD 分析结果作为输入条件施加到结构分析的有限元模型中,计算缸体和缸盖的温度场分布。最后再基于温度场的分析结果进行结构分析,主要包括以下工况:(1)装配载荷;(2)热载荷;(3)工作载荷(燃气爆发压力等);(4)冷却状态。通过对这一系列工况分析,对缸盖缸体的耐久性、缸孔变形以及缸垫密封性进行评估。

图6 表示某发动机缸盖缸体一体化有限元网格模型,该模型中还包括缸垫、气门、螺栓等结构。图7 表示缸盖和缸体的温度场计算结果。图8 表示缸垫在某种工况下压力的分布情况,若压力过低甚至为零,则说明缸垫的密封存在一定问题,需要在优化中进行改进。

图6 缸盖缸体一体化分析有限元模型

图7 缸体缸盖的温度场分布

图8 缸垫在某种工况下的压力分布

2.3 配气机构分析

配气机构是发动机的重要部件,气门升程曲线、零件质量刚度等因素将极大的影响发动机功率、油耗、排放、怠速稳定性等目标性能。因此,在配气机构设计阶段对虚拟样机进行系统仿真,能检验和优化配气机构设计,减少开发成本和缩短开发周期。

配气机构的动力学分析主要分为以下两个步骤:

(1)基于MSC.ADAMS/Engine 提供的配气机构模块进行建模,如图9 所示,建模中除气门弹簧外其余部件都考虑为刚体。计算输入主要为气门升程曲线、凸轮轴型线、气门弹簧的形状、质量、刚度等。通过动力学计算,得到气门落座速度、凸轮与挺柱之间的赫兹接触力(图10 表示某发动机在不同转速下的赫兹接触力)、气门弹簧力以及凸轮轴驱动力矩等,以此来检验配气机构在发动机不同转速下是否能正常工作。

(2)为更准确地模拟配气机构的动力学行为,在进一步计算中考虑凸轮轴本身的弹性,通过MSC.ADAMS 的柔性部件接口(MNF 文件),将弹性的凸轮轴有限元模型引入动力学分析模型,计算配气机构的动力学特性。并且,还可以基于动力学分析结果,通过

MSC.Nastran 软件,对凸轮轴在不同转速、不同转角下的动应力进行考察。图11 表示某凸轮轴在6000rpm 下的动应力云图。

图9 配气机构动力学分析模型

图10 不同转速下的赫兹接触力

图11 凸轮轴在6000rpm 下的动应力

2.4 常用附件结构分析

发动机中有很多附件,比如压缩机托架、进气管支架、发电机支架等等,这些附件用于连接发动机中各个部件总成,并将其固定在发动机主体结构上。如果这些附件在工作过程中产生失效(如断裂等),就可能使发动机无法正常工作。

在发动机设计阶段中,一般都在线性范围内,对发动机附件结构进行强度和模态分析。在强度分析中,根据设计部门提供的设计载荷或实际工作载荷,应用MSC.Nastran 软件对结构进行有限元计算,得到零部件在不同工况下的变形、应力分布、支反力等等。强度分析的准确度主要取决于:(1)有限元网格的质量,因为畸变的网格会引起虚假的高应力,从而影响对结果的判定;(2)载荷的确定,附件的外载荷必须由设计部门提供或由发动机实际工况计算得到。而模态分析则是为了防止附件的固有频率被发动机正常工作状态的激振所激发,从而那导致危险的共振破坏。模态分析的难点主要在于:(1)激振频率的确定,对一般直列四缸发动来说,主要考虑其二阶激振或四阶激振;(2)边界条件的准确简化,由于不同的边界条件会使得计算的固有频率有所差异,所以必须对与它们连接的部件进行准确地简化和模拟,比如连接螺栓的模拟等。

图12 表示某发动机发电机支架、压缩机托架、进气歧管支架以及发电机压缩机组合托架四个发动机附件的模态分析结果。

图12 发动机附件的模态分析

2.5 动力总成模态分析

动力总成的弯曲振动对汽车的NVH 性能有着非常重要的影响,在严重时还会引起车辆零部件的早期共振破坏和疲劳损伤破坏。在发动机的开发过程中,必须对动力总成及附件系统进

行模态计算,得到它们的模态频率和振型,分析它们各自的动态固有振动特性。

动力总成模态分析的重点在于合理的简化建模,而非计算本身。由于动力总成包含了发动机和变速器,为了全面反映动力总成及附件系统的振动特性,在分析计算时必须将系统中所有零部件考虑在内;同时为了控制有限元模型的规模,节约计算时间和资源,在进行整个动力总成有限元建模时,针对不同对象在模态计算中的作用分别作适当的简化处理。一般来说,动力总成各个零部件有两种建模方式,一种是采用实体单元和壳单元建模,包含的主要零件有:缸体、缸盖、机油盘、变速器壳体、发动机附件、轴承盖;另一种是采用集中质量来模拟,包含的主要零件有:变速器壳体内部总成、配气机构部分、排气歧管、机油滤清器、曲轴系、前端轮系。完整的动力总成有限元分析模型如图13 所示。

图13 完整的动力总成有限元模型

在直列四缸发动中,对于动力总成本身的弯曲或扭转振动来说,主要考虑发动机的二阶激振,而对于发动机附件以及托架等,主要考虑四阶激振。通过MSC.Nastran 软件计算得到动力总成的固有频率与振型,从而为动力总成的结构修改提供参考。图14 和图15 分别表示动力总成的第一阶弯曲振型和第一阶扭转振型。

图14 动力总成第一阶弯曲振型图15 动力总成第一阶扭转振型

2.6 动力总成悬置系统分析

悬置系统是指动力总成(包括发动机、离合器及变速器等)与车架或车身之间的弹性连接系统,该系统的好坏直接关系到发动机与车体之间的振动传递,影响整车的NVH 性能。一个好的发动机悬置系统,可以较好地控制发动机本身的激振力向车体部分传递,不使底盘和车身在发动机工作时产生强烈的振动和噪音,提高汽车乘坐舒适性和使用可靠性。

动力总成悬置系统的分析方法如图16 所示。在本方法中,首先根据整车和动力总成的数据,用MSC.ADAMS 进行建模,其中最关键的部分在于悬置元件的描述,由于悬置件大多是橡胶或者液压的,所以可采用ADAMS 软件中的Maxwell 模型或者零极点方式来进行描述。在根据惯性主轴确定了悬置布置方式后,通过刚体模态和动力总成及悬置件位移之间的平衡来确定悬置的静动刚度、阻尼以及悬置点在各种工况下的受力,以这些输出结果作为悬置件制造和发动机支架验证的输入条件。

图17 表示某动力总成的惯性主轴和悬置布置方式,图18 表示测振点的振动评估。

图16 动力总成悬置系统分析方法

图17 惯性主轴及悬置布置图18 测振点的振动评估3 结论

CAE 分析技术在长安公司的发动机产品开发中应用越来越广泛。通过以上分析算例可以看出,在发动机设计前期,应用MSC.ADAMS 和MSC.Nastran 软件,可以对设计的发动机零部件以及总成系统进行定性和定量的评估,从而检查设计的合理性,为优化设计提供改进方向。(end)

发动机动力学复习资料

15、 一、名词解释题 “内部平衡” 当考虑曲轴为柔性转子,发动机机体也是弹性体时,由于曲轴和机体承受 惯性力及其力 矩后产生周期性变形,此时即使发动机已达到完全的外部平衡,但变形的 结果仍会有一部分力和力矩 回传到机座,引起发动机振动并向外传递,发动机的这种平 衡称为“内部平衡”。 “外部平衡” 当假定曲轴为刚性转子发动机机体也是绝对刚体时,把内燃机当成一个 整体,来分析曲 柄连杆机构惯性力及其力矩对发动机支承、支架等外部构件作用时,所 达成的平衡称为外部平衡。 表示 ,即 什么叫发动机稳定工况? 在一个完整的曲轴总转矩变化周期内, 内燃机曲轴输出 的有用功与 作业机具的阻力功相等。 过量平衡 通过加大曲轴平衡重来部分平衡一阶往复惯性力的方法对旋转惯性力 的平衡叫做过量 平衡法 部分平衡 通过加大曲轴平衡重来部分平衡一阶往复惯性力的方法对一阶往复惯 性力的平衡叫做 部分平衡法 转移平衡 通过加大曲轴平衡重来部分平衡一阶往复惯性力的方法对整机的平衡 叫做转移平衡法 活塞拍击 :由于活塞的工作温度变化很大, 运动速度又很高, 不可能把与汽缸的配 合间隙做 得很小,加上连杆偏置的影响,导致活塞在上下止点附近,从靠近汽缸一侧转 变到靠近汽缸另一侧, 对汽缸产生的拍击作用,成为振源。 1、 2、 3、 4、 5、 6、 7、 何谓功率平衡 基于能量守恒定律和功能原理,在结构上或机构设计方面采取相关措 施,将机器的 速度波动限制在允许范围内,称为功率平衡。 何谓质量平衡 调整构件的质量分布及在结构上采取特殊的措施,将各惯性力和惯性力 矩限制在预 期的范围内,叫做质量平衡。 倾覆力矩 作用于机体,产生使发动机沿阻力矩方向翻转倾覆的趋势。 静平衡 在垂直于轴线的同一个平面(径向)内, 如果分布在回转件上各个质量的离 心惯性力合力 为零或质径积矢量和为零,称为静平衡。 曲轴回转不均匀性 用曲轴的旋转不平均度5来表示 8、 9、 10、 动平衡 分布在回转件上各个质量的离心惯性力合力为零; 合力矩也为零 ,这样的平衡叫做动平衡 . 质量代换 实际机构具有复杂的分布质量, 但可以根据动力学等效性原则用几个适当配 置的集中质量 (质点 )代替原来的系统,这样的方法叫做质量代换。 扭矩不均匀性 为了评价内燃机总转矩变化的均匀程度 ,通常用转矩不均匀度卩来 同时离心力在轴向所引起的 11、 12、 13、 14、

2020年【航空发动机】行业调研分析报告

2020 年【航空发动机】行业调研分析报告 2020 年 2 月

目录 1. 航空发动机行业概况及市场分析 (6) 1.1 航空发动机行业市场规模分析 (6) 1.2 航空发动机行业结构分析 (6) 1.3 航空发动机行业 PEST 分析 (7) 1.4 航空发动机行业发展现状分析 (9) 1.5 航空发动机行业市场运行状况分析 (10) 1.6 航空发动机行业特征分析 (11) 2. 航空发动机行业驱动政策环境 (12) 2.1 市场驱动分析 (12) 2.2 政策将会持续利好行业发展 (14) 2.3 行业政策体系趋于完善 (14) 2.4 一级市场火热,国内专利不断攀升 (15) 2.5 宏观环境下航空发动机行业的定位 (15) 2.6 “十三五”期间航空发动机建设取得显著业绩 (16) 3. 航空发动机产业发展前景 (17) 3.1 中国航空发动机行业市场规模前景预测 (17)

3.2 航空发动机进入大面积推广应用阶段 (18) 3.3 中国航空发动机行业市场增长点 (19) 3.4 细分化产品将会最具优势 (19) 3.5 航空发动机产业与互联网等产业融合发展机遇 (20) 3.6 航空发动机人才培养市场大、国际合作前景广阔 (21) 3.7 巨头合纵连横,行业集中趋势将更加显著 (22) 3.8 建设上升空间较大,需不断注入活力 (22) 3.9 行业发展需突破创新瓶颈 (23) 4. 航空发动机行业竞争分析 (24) 4.1 航空发动机行业国内外对比分析 (24) 4.2 中国航空发动机行业品牌竞争格局分析 (26) 4.3 中国航空发动机行业竞争强度分析 (26) 4.4 初创公司大独角兽领衔 (27) 4.5 上市公司双雄深耕多年 (28) 4.6 互联网巨头综合优势明显 (29) 5. 航空发动机行业存在的问题分析 (30) 5.1 政策体系不健全 (30)

2020年航空发动机行业分析报告

2020年航空发动机行业分析报告 2020年2月

目录 一、我国航空发动机国产化势在必行,产业链各环节企业将迎来重大 发展机遇期 (5) 1、国家级基金战略扶持:预计2017年启动的国家级两机专项计划投入规模 6在3000亿以上 ........................................................................................................ 2、国家安全战略重要保障:两机是工业领域皇冠上的明珠,是国家安全的重 7要战略保障 .............................................................................................................. 3、产业链条足够长、市场空间足够大:预计未来10年全球两机市场规模将 达到6000亿美元,产业链各环节企业发展空间巨大 (8) 二、我国航空发动机产业发展现状及标的梳理 (12) 1、航空发动机产业发展特点:技术壁垒高、经济回报高、研制周期长 (12) (1)技术壁垒高 (12) (2)经济回报高 (13) (3)研制周期长、研制投入大 (13) 2、我国国产军用航空发动机发展现状 (14) (1)仿制和改进 (14) (2)部分自主设计 (15) (3)拥有自主知识产权 (15) 3、我国航空发动机等两机产业链标的梳理 (16) 三、两机产业链:全球维度看切入两机供应体系,国内维度看自主可 控加速技术与产品落地 (17) 1、航发动力:我国航空发动机制造龙头企业,整机制造处垄断地位 (18) 2、应流股份:两机叶片千亿美金赛道,从此有了中国制造 (19)

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

西工大航空发动机结构分析课后作业答案

第六章加力燃烧室 1.加力燃烧室由哪些基本结构组成? 答:加力燃烧室由扩压器、预燃室、火焰稳定器、喷嘴和加力输油总管、加力燃烧室壳体等组成。 2.加力燃烧室(预燃)点火方式有哪几种类型?说明相应的预燃点火装置的组 成和特点。 答:①电嘴点火:WP6发动机采用这种点火方式,其预燃室由内外锥体,内外壁,点火电嘴,导流板和火焰喷口等组成。内外壁之间是助燃冷却的二股气流通道,内壁上两排交错的16个小孔使二股气流进入预燃室。当接通加力时,用专门的汽化器形成混合气,输入预燃室,经过内外锥体组成的环形气流通道后,截面突然扩张,在预燃室头部内锥体后的凹面内形成强烈的涡流:用电嘴点燃后,火舌从预燃室喷出,点燃后输油圈上两个喷嘴喷出的燃油,形成中心火焰稳定区,然后火焰经过V型支柱点燃环形状火焰稳定器迥流区的混合气。经过8.5~14秒后,在加力燃烧室内形成稳定的点火源,预燃室便自动停止工作。 ②火舌点火系统:当启动加力燃烧室时,由专门的附件将附加的燃油喷入主燃烧室中的某个火焰筒内,这股附加燃油形成的火焰穿过涡轮,点燃加力燃烧室的混合气。这种点火方式的优点是:点火能量大,高空性能好,迅速可靠,不能添加附加机构件,只要主燃烧室不熄火就总能点燃,缺点是:火舌传递路程远,流程复杂尤其在穿过多级涡轮时,受到强烈的扰动,在调试加力燃烧室时相应地要做大量的点火试验。 ③催化点火系统:利用铂能吸附氧气和氢气的特性,使点火用的混合气借助铂铑丝网的催化作用,在较低的温度下点燃。这种点火装置结构简单,重量轻,点火方便,但铂铑丝价格贵,易受污染而失效,影响其工作可靠性。 5.为什么加力燃烧室的输油圈常有主副之分? 答:加力燃烧室的供油为分圈分压式供油,当加力泵后的油压小于0.98MPa时,副油路供油,主油路关闭;加力泵后油压大于0.98MPa时,主、副油路同时供油。故一般有主副之分。 7.为什么说高温陶瓷适合于作未来加力燃烧室材料? 答:未来先进发动机燃烧室的单位推力将比F110高70%~80%,对所用的材料也提出了更高的要求。在推重比为15~20的发动机加力燃烧室中,火焰稳定器的工作温度是1200摄氏度左右,加力燃烧室的喷嘴也要在1530摄氏度以上的温度工作,高温陶瓷具有非常好的耐高温特性,是其他金属无可替代的。

2014年航空发动机行业分析报告

2014年航空发动机行业分析报告 2014年3月

目录 一、航空发动机是飞机的“心脏” (3) 1、航空发动机的分类 (3) 2、航空发动机在军民领域用途十分广泛 (4) 3、典型航空发动机的组成部件和系统 (4) 4、航空发动机的发展历程 (5) 二、航空发动机的战略地位 (6) 1、航空发动机:国家军事安全战略的需要 (6) 2、航空发动机:新经济的增长点 (8) 三、航空发动机行业政策利好 (9) 1、航空发动机行业的政策依赖性 (9) 2、国家政策:航空发动机重大专项可能获批 (10) 3、中航工业政策:资产证券化程度加深可期 (11) 四、航空发动机行业广阔的市场需求 (11) 1、航空发动机市场存在强劲的需求 (11) (1)国际市场空间巨大,未来20年新增市值达1.2万亿美元 (11) (2)未来20年国内民用市场新增市值可达1400亿美元 (12) (3)未来20年军用市场新增市值有望达350亿美元 (14) 2、燃气轮机军民两用,非航空市场前景光明 (14) 五、航空发动机产业链及相关公司将受益 (16)

一、航空发动机是飞机的“心脏” 1、航空发动机的分类 在过去的一百年里,人类所使用的主要航空发动机基本上可以分为活塞式和空气喷气式两大类。其中,空气喷气式发动机又可以具体地分为涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、涡轮轴发动机、桨扇发动机、以及不包含压气机的冲压式发动机和脉动式发动机。 以上各种航空发动机中,活塞式发动机已基本退出历史舞台,冲压发动机等新型发动机技术尚不完全成熟,而涡喷、涡扇、涡轴、涡桨等发动机则是目前的主流。

UG有限元分析教程

第1章高级仿真入门 在本章中,将学习: ?高级仿真的功能。 ?由高级仿真使用的文件。 ?使用高级仿真的基本工作流程。 ?创建FEM和仿真文件。 ?用在仿真导航器中的文件。 ?在高级仿真中有限元分析工作的流程。 1.1综述 UG NX4高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工程师与分析师的需要。高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能评估解法。图1-1所示为一连杆分析实例。 图1-1连杆分析实例 高级仿真提供对许多业界标准解算器的无缝、透明支持,这样的解算器包括NX Nastran、MSC Nastran、ANSYS和ABAQUS。例如,如果结构仿真中创建网格或解法,则指定将要用于解算模型的解算器和要执行的分析类型。本软件使用该解算器的术语或“语言”及分析类型来展示所有网格划分、边界条件和解法选项。另外,还可以求解模型并直接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。 高级仿真提供基本设计仿真中需要的所有功能,并支持高级分析流程的众多其他功能。 ?高级仿真的数据结构很有特色,例如具有独立的仿真文件和FEM文件,这有利于在分布式工作环境中开发有限元(FE)模型。这些数据结构还允许分析师轻松 地共享FE数据去执行多种类型分析。

UG NX4高级仿真培训教程 2 ?高级仿真提供世界级的网格划分功能。本软件旨在使用经济的单元计数来产生高质量网格。结构仿真支持完整的单元类型(1D、2D和3D)。另外,结构级仿真 使分析师能够控制特定网格公差。例如,这些公差控制着软件如何对复杂几何体 (例如圆角)划分网格。 ?高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制CAD几何体。例如,分析师可以使用这些工具提高其网格的整体质量,方法是消 除有问题的几何体(例如微小的边)。 ?高级仿真中专门包含有新的NX传热解算器和NX流体解算器。 NX传热解算器是一种完全集成的有限差分解算器。它允许热工程师预测承受热载荷系统中的热流和温度。 NX流体解算器是一种计算流体动力学(CFD)解算器。它允许分析师执行稳态、不可压缩的流分析,并对系统中的流体运动预测流率和压力梯度,也可 以使用NX传热和NX流体一起执行耦合传热/流体分析。 1.2仿真文件结构 当向前通过高级仿真工作流时,将利用4个分离并关联的文件去存储信息。要在高级仿真中高效地工作,需要了解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文件必须是激活的工作部件。这4个文件平行于仿真过程,如图1-2所示。 图1-2仿真文件结构 设计部件文件的理想化复制 当一个理想化部件文件被建立时,默认有一.prt扩展名,fem#_i是对部件名的附加。例如,如果原部件是plate.prt,一个理想化部件被命名为plate_fem1_i.prt。 一个理想化部件是原设计部件的一个相关复制,可以修改它。 理想化工具让用户利用理想化部件对主模型的设计特征做改变。不修改主模型部件,

发动机动力学计算

课程名称:发动机动力学 课程代码:8200240 发动机动力学计算基本内容 以495型柴油机为例: 一已知条件 二 动力学计算的主要内容 (一)活塞运动规律的运算 活塞位移x, 速度v ,加速度J 的计算,并绘制曲线图 (),( ),( x f v f J f ααα== = (二)曲柄连杆机构的动力计算 1,作用在活塞上的气体压力的计算 A ,进气行程 0180CA α=? '0()g g p p p bar =-,'g p ——气缸内绝对压力计算时候取'00.9g a p p p ==

0p ——大气压力取01p bar = B ,压缩行程 180360CA α=? 11 00( )()n n a c g a a cx c V s h p p p p p V x h +=-=-+(bar ),a V ——气缸总容积,a h c V V V =+ h V ——气缸工作容积,2 4 h D V S π= c V ——燃烧室容积,1 h c V V ε= - cx V ——压缩过程中活塞处于任意位置时候的气缸容积 cx h c V F x V =+, h F ——活塞顶面积,2 4 h D F π= x ——活塞位移,()()1cos 1cos 24x R λαα?? =-+-???? c h ——当量余隙高度 1 c s h ε= -,1n ——平均压缩多变指数 1100 1.41n n =- n ——标定转速 当360CA α=?时,取(0.450.5)()g c z c p p p p =+-其中 z p ——最高爆发压力(一般自己选择)75z p bar =,1n c a p p ε= C ,膨胀行程 380540CA α=? 2 2200( )0()()n n n c c z g z z z bx bx c pV p h V p p p p p p p V V x h =-=-=-+ ()bar z p ——最高爆发压力 取75z p bar =并选定z p 出现在370CA α=?处 z V ——膨胀始点的气缸容积,z c V V ρ= ρ——初期膨胀比 取 1.635ρ=,bx V ——膨胀过程中活塞处于任意位置的气缸容积 bx h c V F x V =+,2n ——膨胀平均多变指数,取2 1.18n = D ,排气行程 540720CA α=? 01 1.151g r p p p =-=- ()bar r p ——排气终点压力,取01.15r p p = 2,往复惯性力 J p

(整理)西北工业大学航空发动机结构分析课后答案第2章典型发动机

第二章典型发动机 1、根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡轮喷气、涡轮风扇、军用涡扇发动机的性能特征。 涡轮喷气发动机、涡轮风扇发动机、军用涡扇发动机对比如下,以典型的三代发动机的性能指标加以对比,如下表所示: 通过分析比较,涡喷发动机随着技术的更新,新一代的发动机比上一代的发动机拥有高的增压比,推重比,涡轮燃气温度也有较大幅度的提高,特别是第三代发动机,整体性能有了大幅度的提升。 民用涡扇发动机的涵道比进一步增大,涡轮燃气温度也进一步升高,在不影响整体性能的情况下,采用了一系列措施降低了耗油率。

军用涡轮风扇发动机每一代的性能提高十分迅速,增压比,推重比,涡轮前燃气温度都有大幅度提高,而涵道比降低,耗油率也有较明显的下降。对于军用发动机来说,推重比的大幅提高提高了战机的机动性能,耗油率降低也相应的增大了载弹量,这些性能的提高均有利于空中作战. 2、АЛ—31Ф发动机的主要特点是什么?在该机上采用了哪些先进技术? 主要特点: АЛ—31Ф发动机是苏—27的动力装置,其主要部件有低压压气机、中介机匣、高压压气机、环形燃烧室、双转子涡轮、射流式加力燃烧室、全状态可调拉瓦尔喷管和附件传动机匣等。其中压气机有13级,低压压气机4级,高压压气机9级;涡轮为双转子流反应式,高、低压涡轮各1级。高压转子为刚性连接,支承在两个支点上;打压转子由部分组成,各个部分之间用销钉连接,支撑在4个支点上。 先进技术: 进气匣为全钛结构,有23个可变弯度的进口导流叶片; 风扇和高压压气机才、广泛采用钛合金结构,转子的级间采用了电子束焊; 高压压气机有三级可调静子叶片,所有9级工作叶片均为环形燕尾形榫头; 环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴; 高压压气机不带冠,榫头处带有减震器,低压涡轮叶片带冠; 涡轮冷却系统采用了设置在外涵道中的空气—空气换热器,可使冷却空气降温125~210℃,加强了冷却效果; 加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障; 收敛—扩张喷管有亚音速、超音速调节片及密封片各16片组成; 排气方式为内、外涵道混合排气; 燃油控制系统为监控型电子控制,模拟式电子控制装置—综合调节器提供超限保护,提高了控制精度;发动机全流程几何通道控制系统和防喘系统使发动机稳定工作范围扩大,工作可靠性提高; 附件传动装置中游恒速传动装置。 3、ALF502发动机是什么类型的发动机?它有哪些优点? ALF502发动机是为商用短程及支线客机发展的小推力级别高涵道比双子涡轮风扇发动机。 优点: 该发动机采用单元体设计,整台发动机由4个单元体组成,每个单元体在出厂前都经过平衡,可以直

有限元动力学分析方程及解法

动力分析中平衡方程组的解法 1前言 描述结构动力学特征的基本力学变量和方程与静力问题类似,但所有的变量都是时间的函数。 基本变量 三大类变量(,)i u t ξ、(,)ij t εξ和(,)ij t σξ是坐标位置(,,)x y z ξ和时间t 的函数,一般将其记为()()()i ij ij u t t t εσ。 基本方程 (1) 平衡方程 利用达朗贝尔原理将惯性力和阻尼力等效到静力平衡方程中,有 ,()()()()0ij j i i i t b t u t u t σρν+--=&&& (1) 其中ρ为密度,ν为阻尼系数。 (2) 几何方程 ,,1 ()(()())2ij i j j i t u t u t ε=+ (2) (3) 物理方程 ()()ij ijkl kl t D t σε= (3) 其中ijkl D 为弹性系数矩阵。 (4) 边界条件 位移边界条件()BC u 为, ()()i i u t u t = 在u S 上 (4) 力的边界条件()BC p 为, ()()ij j i t n p t σ= 在p S 上 (5) 初始条件 0(,0)()i i u t u ξξ== (6) 0(,0)()i i u t u ξξ==&& (7)

虚功原理 基于上述基本方程,可以写出平衡方程及力边界条件下的等效积分形式, ,() ()0p ij j i i i ij j i S u u b u d n p dA δσρνδσΩ∏=---+Ω+-=??&&& (8) 对该方程右端第一项进行分部积分,并应用高斯-格林公式,整理得, ()()0p ijkl ij kl i i i i i i i i S D u u u u d b u d p u dA εδερδνδδδΩΩ-++Ω-Ω+=???&&& (9) 有限元分析列式 单元的节点位移列阵为, 111222()[(),(),(),(),(),()(),(),()]e t k k k U t u t v t w t u t v t w t u t v t w t =L (10) 单元内的插值函数为, (,)()()e t u t N U t ξξ= (11) 其中()N ξ为单元的形状函数矩阵,与相应的静力问题单元的形状函数矩阵完全相同,ξ为单元中的几何位置坐标。 基于上面的几何方程和物理方程及(11)式,将相关的物理量表达为节点位移的关系,有, (,)[](,)[]()()()()e e t t t u t N U t B U t εξξξξ=?=?= (12) (,)()()()()e e t t t D DB U t S U t σξεξξ=== (13) (,)()()e t u t N U t ξξ=&& (14) (,)()()e t u t N U t ξξ=&&&& (15) 将(12)-(15)供稿到虚功方程(9)中,有, [()()()()]()0e e e e e e e T e t t t t t M U t C U t K U t R t U t δδ∏=++-=&&&g (16) 由于()e t U t δ具有任意性,消去该项并简写有, e e e e e t t t t U C U KU R ++=&&& (17) 其中, e e T M N Nd ρΩ= Ω? (18) e e T C N Nd νΩ=Ω? (19)

发动机动力学复习思考题2010

发动机动力学复习思考题 一、名词解释题 1、内部平衡:当考虑曲轴为柔性转子,发动机的机体也是弹性体时,由于曲轴与机体承受惯性力 及其力矩后产生周期性变形,此时即使发动机达到完全平衡。 2、外部平衡:当假定曲轴为刚性转子,发动机也是绝对刚体时,把内燃机当成一个整体,来分析 曲柄连杆机构惯性力及其力矩对发动机支承,支架等外部构件作用时,所达成的平衡。 3、功率平衡:基于能量守恒定律和能量原理,在结构上或机构设计方面采取相关措施,将机器的 速度波动限制在允许的范围内。 4、质量平衡:调整构件的质量分布及在结构上采取特殊的措施,将各惯性力和惯性力矩限制在预 期的容许范围内。 5、倾覆力矩: 6、静平衡:分布在回转件上各个质量的离心惯性力合力为0或质径积矢量和为0. 7、曲轴回转不均匀性: 8、动平衡:分布在回转件上各个质量的离心惯性力合力为0;离心力所引起的合力矩也为0. 9、质量代换: 10、扭矩不均匀性: 11、发动机稳定工况:在一个完整的曲轴总转矩变化周期内,内燃机曲轴输出的有用功与作业机具 的阻力功相等。 12、过量平衡: 13、部分平衡: 14、转移平衡: 二、填空题 1.正置式曲柄连杆单缸机活塞位移在上止点后90°曲轴转角之前(请填“前”或者“后”)到达行程的一半,λ越大,活塞达到行程之半的时刻越提前(请填“提前”或者“延后”)。正置式曲柄连杆单缸机活塞最大速度出现在上止点后90°曲轴转角之前(请填“前”或者“后”); 2.对曲柄半径为r的正置式曲柄连杆机构,当曲柄在0°曲轴转角时,该活塞的位移为0 ,对曲柄半径为r的正置式曲柄连杆机构,当曲柄在90°曲轴转角时,该活塞的位移为r+(r*λ)/2 ,对曲柄半径为r的正置式曲柄连杆机构,当曲柄在180°曲轴转角时,该活塞的位移为2*r。 3.对曲柄半径为r的正置式曲柄连杆机构,当α=90 度曲柄转角时,连杆摆角β出现正的最大值;当α= 270 度曲柄转角时,连杆摆角β出现负的最大值。 4.当某原正置式曲柄连杆机构改为活塞销负偏置(e=-1mm)的偏置机构后,改变前后相比,其活 第页共页

我国航空发动机行业现状及发展趋势预测分析

2016年我国航空发动机行业现状及2017市场发展趋势预测分析 中商情报网讯:近年来,我国已经形成较完整的航空发动机产业链和相应的 生产布局。2011年我国整个航空发动机市场规模约为200亿元人民币,其中军 用约占70%;民用约占30%,预计到2020年,我国航空发动机产业市场规模将 突破千亿元大关。 中国航空发动机市场规模及预测,2011年-2020年如下图所示: 一、航空发动机整体情况 航空发动机作为飞机动力源,是决定飞机性能的重要因素。航空发动机集中 了机械制造行业几乎所有的高精尖技术,因此航空发动机技术水平的高低是一个 国家工业实力的重要标志。目前世界上能制造飞机的国家很多,但是能独立研制 航空发动机的只有美国、俄罗斯、英国、法国、中国等少数几个国家,而全球民 用航空发动机市场基本被欧美企业垄断。 航空发动机产业空间广阔,未来20年全球民用航空发动机市场规模将达到 14,360亿美元,军用航空发动机市场规模将达到4,300亿美元。 二、航空发动机电子技术 随着发动机测试技术和控制技术的快速发展,发动机系统已从传统的机械系 统向机电系统发展,而且发动机电子技术所占比例不断提高。在航空发动机领域, 以发动机参数采集器和发动机电子控制系统为代表的发动机电子系统的采用极 大推动了发动机电子技术的发展。 (一)发动机参数采集器基本情况 发动机参数采集器属于发动机状态监视装置。这类设备主要进行发动机重要 参数的采集、处理和存储,发动机气路参数趋势分析,发动使用寿命监视,发动 机振动监视,发动机健康管理等。发动机参数采集器可以跟踪采集航空发动机运 行中的工作状态和故障信息,并进行处理,分析出航空发动机部件的性能退化情 况或者根据处理后的数据对故障进行诊断、分析故障原因、性质、部位及发展趋 势,根据具体情况采取必要的维护措施。这类电子状态监视与故障诊断系统对航 空发动机早期故障诊断征兆的及时发现与及时处理具有重要作用,可以避免相关 事故的发生,保障飞行安全,同时还可以“视情维修”,大大节省维修成本与维修 时间,对使用方和维修商都会带来明显的经济效益。 目前国内外飞机都逐渐采用发动机参数采集器取代传统的发动机仪表,新飞 机制造和老飞机改造产生了较大容量的市场。晨曦航空是国内率先研制发动机参 数采集器的企业之一,是国内直升机发动机参数采集器最大供应商。 (二)航空发动机电子控制领域基本情况

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

相关主题
文本预览
相关文档 最新文档