当前位置:文档之家› 汽车动力性试验 仿真 matlab

汽车动力性试验 仿真 matlab

汽车动力性试验  仿真  matlab
汽车动力性试验  仿真  matlab

基于matlab 的一款轻型货车动力性试验仿真

段##

(武汉理工大学汽车学院,汽车##班;1049####)

摘要:利用一款轻型货车发动机外特性的转矩拟合曲线及整车的其他配置参数建立了整车的动力学模型,在matlab 环境下用m 语言完成了仿真过程。动力性是汽车的最基本性能,是汽车整车性能道路试验的必备项目之一,但道路试验需要较好的试验场地和有经验的试验人员,过程也很繁琐。但若利用发动机及整车的参数建立数学模型,在软件中进行试验 仿真则会方便很多。设计合理的数学模型及高效的仿真程序,能得出接近真实试验的结果,为工作人员提供了重要参考,有很强的实用性。 关键词:汽车;动力性;试验仿真;matlab ;m 语言;实用性

1 汽车动力性试验的基本内容

汽车动力性评价指标有最高车速、加速时间、最大爬坡度等,与之对应的试验内容有最高车速的测试、汽车起步连续换挡加速时间与超车加速时间的测试和汽车最大爬坡度的测试。另外,按照我国标准,动力性评价试验均在满载情况下进行。 1.1 最高车速

汽车的最高车速是指汽车标准满载状态,在水平良好的路面(清洁、干燥、平坦的混凝土或沥青路面,纵向坡度在0.1%以内)上所能达到的最高行驶速度。 1.2 加速时间

常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由Ⅰ挡或Ⅱ挡起步,并以最大的加速度(包括选择最恰当的换挡时间)逐步换至最高挡到某一预定的距离或车速所需的时间。一般常用0—100km/h 所需的时间来表明原地起步的加速能力。

超车加速是指用最高挡或次高挡有某一较低车速全力加速至某一高速所需的时间。对超车加速能力还没有一致的规定,采用较多的是用最高挡或次高挡由30km/h 或40km/h 全力加速至某一高速所需的时间。

本文所取模型为一款轻型货车,动力性一般,再结合生活使用实际需要,现用40km/h 全力加速至70km/h 所用的时间来评价汽车的加速性能,因为此速度区间是城市道路在较佳的通车情况下加速时的常用工况。 1.3 最大爬坡度

实际的各类公路不可避免会有一定的坡度,若汽车能顺利且快速的通过遇到的各类斜坡,必然需要较强的动力。

汽车的上坡能力是用满载时汽车在良好的路面上的最大爬坡度。轿车的最高车速大,加速时间短,经常在较好的道路上行驶,一般不强调它的爬坡能力;然而,它的Ⅰ挡加速能力大,故爬坡能力也强。货车在各种地区的各种道路上行驶,所以必须具有足够的爬坡能力,一般最大爬坡度在30%即16.7o左右。要进一步说明的是:最大爬坡度代表了汽车的极限爬坡能力,它应该比实际行驶中遇到的道路最大坡度超出很多,这是因为应考虑到实际坡道行驶时,在坡道上停车顺利起步加速、克服松软坡道路面的阻力、克服坡道上崎岖不平路面的局部最大阻力等要求的缘故。

2 动力模型的参数

2.1 发动机使用外特性的Tq-n 的拟合曲线

4

32q )1000

(8445.3)1000(874.40)1000(44.165)1000(27.295313.19n n n n T -+-+-=

式中,q T 为发动机转矩(N*m );n 为发动机转速(r/min )。 发动机最低转速min n =600r/min,最高转速max n =4000r/min

2.2 整车配置参数

装载质量 m1=2000kg 整车整备质量 m0=1800kg 总质量 M =3880kg 车轮半径 r =0.367m 传动系机械效率 η=0.85 滚动阻力系数 f=0.013

空气阻力系数×迎风面积 C D ·A=2.77m^2 主减速器传动比 i0=5.83

飞轮的转动惯量 If=0.218kg ·㎡ 二前轮转动惯量 Iw1=1.798kg ·㎡ 四后轮转动惯量 Iw2=3.598kg·㎡

重力加速度 g=9.8 m/s 2

变速器传动比 ig

I 挡 ig(1) II 挡 ig(2) III 挡ig(3) IV 挡 ig(4)

V 挡 ig(5) 5.56

2.769

1.644

1.00

0.793

3 模型的动力方程

3.1 外特性功率曲线的求出

由公式(1)可求出功率曲线与给出参数中的转矩曲线一起可得出此发动机的外特性曲线,如图1.外特性曲线可反映发动机的做功性能,为汽车动力性的求解提供重要参考。 9550

n

q e ?=

T P 公式(1) 公式中Pe 为发动机的功率,Tq 为转矩,n 为转速。 3.2 最高车速的求出

由已知的Tq 曲线和其他参数可得到汽车各挡位下的驱动力Ft ,并可做出驱动力曲线。

r

i0ig Tq Ft η

???=

公式(2)

图1发动机外特性曲线

汽车在水平路面上匀速行驶时阻力包括滚动阻力和空气阻力,运用公式(3)可求出不同挡位下汽车的行驶速度,继而利用公式(4)、公式(5)分别求出滚动阻力和空气阻力。Ft+Fw 与车速的关系为行驶阻力曲线,结合公式(2)的各档驱动力曲线就得到汽车驱动力—行驶阻力平衡,如图2。第Ft5曲线与Ft+Fw 曲线的交点便是最高车速u amax 。显然最高车速为100km/h 。

i0

ig n r 377.0u a

??= 公式(3)

f g f ??=M F 公式(4)

15

.21u w 2

a ??=A C F D 公式(5)

图2汽车驱动力—行驶阻力平衡图

3.3 汽车的加速时间

如上所述,本文用40km/h 全力加速至70km/h 所用的时间来评价汽车的加速性能。现利用图2来求出汽车的加速时间。 由行驶方程的

)]([m

1a Fw Ff Ft +-=δ 公式(6)结合各档节气门全开时的加

速度曲线,见图3。有图可以看出,高挡位的加速度要小些。

图3 加速度曲线图

由运动学知识可知 公式(6),可得 公式(7),即加速时间可用计算机进行积分计算或图解积分法求出,将a —ua 曲线转化成1/a —ua 曲线,如图4。曲线下两个速度区间的面积就是通过此速度区的加速时间。

du a

1

dt =

公式(6)

du a

dt u u ??==t

02

1

1

t 公式(7)

图4 各挡加速度的倒数曲线

在进行一般动力性分析而计算加速时间时,加速过程中的换挡时刻可根据图3各挡的a-ua 曲线来确定。若I 挡与II 挡加速度曲线有交点,显然,为获得最短加速时间,应在交点对应车速由I 挡换II 挡。若I 挡与II 挡加速度曲线不相交,则应在I 挡加速度行驶至发动机转速达到最高转时换入II 挡。其他各挡间的换挡时刻亦按此原则来确定。至于换挡过程所经历的时间,则常忽略不计。

)

()1()(s(i)i a i ua i ua T --= 公式(8)

图5 汽车超车加速的车速—时间曲线

利用matlab 中的积分函数可得到汽车从40km 全力加速到70km 的加速时间为24.78s 。用公式(8)可求得两次速度采样点之间间隔的时间,然后利用Matlab 数据处理及图像功能可以得到汽车超车加速的车速—时间曲线,如图(5)。作为综合评定参考。 3.4 汽车的爬坡能力

一般所谓的爬坡能力,是指在良好的路面上克服Ff+Fw 后的余力全部用来(即等速)克服坡度阻力时爬上的坡度,所以汽车爬坡时Fj=0。因此有公式(9),一般汽车最大爬坡度30%左右,即16.7o因此利用汽车行驶方程确定I 挡及抵挡爬坡能力时,应采用Gsin α作为坡度阻力,即公式(9)化为公式(10)。

)(i Fw Ff Ft F +-= 公式(9)

(15

.21_cos -r i0ig q sin 2

ua A C G T G ?+???=αηα 公式(10) 整理得2

1)(sin f G Fw Ft +-=

+?α 公式(11)

其中定义2

11cos f

+=

?,α为坡道的角度

即利用图2求出汽车能爬上的坡道角,相应的根据i =αtan 求出坡度值。其中,汽车的最大爬坡度max i 为I 挡时的最大爬坡度。最高挡最大爬坡度也应该引起注意,特别是货车、牵引车,因为货车经常以最高挡行驶,如果最高挡的最大爬坡度过小,迫使货车在遇到较小的坡度时经常换挡,就影响了行驶的平均速度。图6为求出的汽车爬坡度图。由图可以看出,此货车在低挡时有较好的爬坡能力,在高挡时能通过较缓的坡。

图6 汽车爬坡度图

4总结

利用动力学公式在matlab中建立汽车动力性试验的仿真模型,可得到汽车动力性的各项参数。设计合理的数学模型及高效的仿真程序,能得出接近真实试验的结果,为工作人员提供了重要参考,有很强的实用性。

参考文献:

[1]何耀华主编,汽车试验技术,机械工业出版社2010

[2]余志生主编,汽车理论第5版,机械工业出版社2009

[3]林雪松周婧编著MATLAB 7.0应用集锦机械工业出版社2005

[4]张琨毕靖编著MA TLAB 7.6从入门到精通电子工业出版社2009

[5]张志涌杨祖樱等编著 MATLAB教程 R2010a 北京航空航天大学出版社 2010年

附matlab程序:

clear

clc

close

%*********汽车动力性试验仿真********%

%*********按照我国规定,动力性指标为在满载条件下测得******

m0=1800; %整车整备质量

m1=2000; %装载质量

M=3880; %总质量

g=9.8; %重力加速度

G=M*g;

f=0.013; %滚动阻力系数

r=0.367; %车轮半径

eta=0.85; %传动系机械效率

C_A=2.77; %空气阻力系数乘以迎风面积

i0=5.83; %主减速器传动比

If=0.218; %飞轮转动惯量

Iw1=1.798; %二前轮转动惯量

Iw2=3.598; %四后轮转动惯量

n_max=4000;

n_min=600;

k=200; %发动机转数采样个数

n=linspace(n_min,n_max,k);

%*****变速器传动比***

ig(1)=5.56;

ig(2)=2.769;

ig(3)=1.644;

ig(4)=1.00;

ig(5)=0.793;

delta=1+(Iw1+Iw2)/(M*r^2)+(If*ig.^2*i0^2*eta)/(M*r^2);%旋转质量换算系数

Tq=-19.313+295.27.*(n./1000)-165.44.*(n./1000).^2+40.874.*(n./1000).^3-3.8455.*(n./1000).^4; Pe=Tq.*n/9550;

for i=1:5

ua(i,:)=0.377*n.*r/(ig(i)*i0);

end

figure(1)

plotyy(n,Pe,n,Tq)

text(2400,35,'Pe-n曲线')

text(1550,65,'Tq-n曲线')

title('发动机使用外特性的功率与转矩的曲线')

xlabel('发动机转速n/(r/min)')

clear i

clear j

for i=1:5

Ft(i,:)=Tq.*ig(i)*i0*eta/r;

end

uua=linspace(0,120,k);

Ff_Fw=M*g*f+C_A.*uua.^2./21.15;

Fw=C_A*uua.^2/21.15;

figure(2)

for z=1:5

plot(ua(z,:),Ft(z,:))

hold on

end

title('汽车驱动力-行驶阻力平衡图')

xlabel('车速ua/ (km/h)')

ylabel('F/N')

plot(uua,Ff_Fw,'r')

text(11,13300,'Ft1')

text(30,6500,'Ft2')

text(45,4000,'Ft3')

text(73,2600,'Ft4')

text(110,1200,'Ft5')

text(105,2400,'Ft+Fw')

%*********加速时间**************

for i=1:5

a(i,:)=(Ft(i,:)-Ff_Fw)/(delta(i)*M);

figure(3)

for i=1:3

plot(ua(i,:),a(i,:))

hold on

end

plot(ua(4,1:fix(0.93*k)),a(4,1:fix(0.93*k))) hold on

plot(ua(5,1:fix(0.82*k)),a(5,1:fix(0.82*k))) hold on

axis([0,100,0,2.5])

title('汽车的行驶加速度曲线')

xlabel('ua/(km/h)')

ylabel('a/(m/s^2)')

grid on

text(11,2.2,'Ⅰ')

text(22,1.25,'Ⅱ')

text(41,0.7,'Ⅲ')

text(62,0.37,'Ⅳ')

text(44,0.2,'Ⅴ')

%*******求加速度倒数曲线******

a_re=1./a;%加速度的倒数

figure(4)

for i=1:3

plot(ua(i,:),a_re(i,:))

hold on

end

plot(ua(4,1:fix(0.8*k)), a_re(4,1:fix(0.8*k)) ) hold on

plot(ua(5,1:fix(0.65*k)),a_re(5,1:fix(0.65*k))) hold on

title('汽车的加速度倒数曲线')

xlabel('ua/(km/h)')

ylabel('加速度的倒数1/a')

%axis([0,80,0,8])

text(5,0.2,'1/a_1')

text(21,0.56,'1/a_2')

text(41,1.3,'1/a_3')

text(60,3,'1/a_4')

text(79,5.5,'1/a_5')

j=1;

while ua(3,j)<40

j=j+1;

end

m1=j;

j=1;

while ua(3,j)<53

j=j+1;

end

m2=j;

j=1;

while ua(4,j)<53

j=j+1;

end

m3=j;

j=1;

while ua(4,j)<70

j=j+1;

end

m4=j;

%********积分出加速时间**********

Ta1=trapz(ua(3,[m1,m2])./3.6,a_re(3,[m1,m2]));

Ta=Ta1+trapz(ua(4,[m3,m4])./3.6,a_re(4,[m3,m4]));

disp('汽车从40km到70km的加速时间/s')

Ta

for i=1:(m2-m1)

Ts(i)=(ua(3,m1+i)-ua(3,m1+i-1))/3.6/a(3,m1+i-1);%除以3.6,化成标准单位end

t(1)=Ts(1);

for i=1:(m2-m1-1)

t(i+1)=t(i)+Ts(i+1);

end

for i=1:(m4-m3)

Ts(m2-m1+i)=(ua(4,m3+i)-ua(4,m3+i-1))/3.6/a(4,m3+i-1);

end

for i=1:m4-m3

t(m2-m1+i)=t(m2-m1+i-1)+Ts(m2-m1+i);

end

figure(5)

plot(t,horzcat(ua(3,[m1:m2-1]),ua(4,[m3:m4-1])))

axis([0,26,35,75])

title('汽车超车时车速—时间曲线图')

xlabel('t / s')

ylabel('ua / (km/h)')

%********满载时爬坡度的计算******

clear i

clear j

phi=acosd(G/sqrt(G^2+G^2*f^2));

for i=1:5

alpha_phi(i,:)=asind((Ft(i,:)-Fw)./sqrt(G^2+G^2*f^2));

end

alpha= alpha_phi-phi;

ai=tand(alpha);

aii=ai.*100; %爬坡度按百分数计算

figure(6)

for i=1:5

plot(ua(i,:),aii(i,:));

hold on

end

title('汽车的爬坡度图')

axis([0,120,0,40]) xlabel('ua/ (km/h)') ylabel('爬坡度i(%)') text(9,37,'i_m_a_x') text(17,30,'Ⅰ')

text(31,15,'Ⅱ ')

text(50,9.2,'Ⅲ')

text(59,4,'Ⅳ ')

text(91,2.2,'Ⅴ')

汽车动力性检测研究_毕业论文

目录 1 绪论 (1) 1.1 研究目的及意义 (1) 1.2 我国目前汽车动力性检测状况 (1) 2 汽车动力性 (2) 2.1 汽车的动力性评价指标 (2) 2.2 影响汽车动力性的主要因素 (3) 2.2.1 结构因素的影响 (3) 2.2.2 使用因素的影响 (4) 3 在用汽车动力性检测现状 (5) 4 在用汽车动力性检测分析 (6) 4.1 台试与路试检测的条件、特点及分析 (6) 4.2 汽车动力性台架检测原理 (6) 4.3 汽车底盘输出功率的检测方法 (7) 4.4 影响底盘测功机测试精度的因素 (7) 4.5 在用汽车动力性合格条件 (8) 5 在用汽车动力性检测对策 (10) 5.1 在用汽车动力性检测存在的问题 (10) 5.2 对在用汽车动力性检测的对策 (11) 5.2.1 正确选择和使用底盘测功机 (11) 5.2.2 采用先进的检测方法 (11) 5.2.3 完善检测规 (12) 6 总结 (12) 参考文献 (13) 致 (14)

1 绪论 1.1 研究目的及意义 汽车动力性是汽车的基本使用性能。汽车属高效率的运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是汽车各种性能中最基本、最重要的性能。随着我国经济的飞速发展,汽车产业也日益壮大并成为我国的支柱产业之一,我国汽车保有量逐年攀升,同时对汽车动力性要求也越来越高,汽车驾驶人都希望汽车具有良好的动力性,以便能多拉快跑,提高运输效率和能力,同时也可减少交通阻塞,保证道路畅通。因此有必要对在用汽车动力性进行检测,以保证汽车安全高效行使。 1.2 我国目前汽车动力性检测状况 近年来我国汽车产业迅猛发展,我国高等级公路里程的增长,公路路况与汽车性能的改善,汽车行驶车速愈来愈高,但在用汽车随使用时间的延续其动力性将逐渐下降,不能达到高速行驶的要求,这样不仅降低了汽车应有的运输效率及公路应有的通行能力,而且存在安全隐患。近年来我国为了规和指导汽车动力性检测,先后制定了一系列法律法规,由此看出,我国对汽车动力性检测的重视。 汽车动力性检测是判断汽车技术状况,评定汽车技术等级的主要项目,是一项关系到提高汽车运输效率和道路通行能力的重要工作,国外对在用汽车的动力性都非常重视,并制定严格的检验方针与标准,要求对汽车动力性进行定期检测。另外动力性检验合格也是营运汽车上路运行的一项重要技术条件。目前我国对在用汽车汽车动力性检测还有待完善和加强。

面向汽车动力学控制的汽车仿真软件开发

面向汽车动力学控制的汽车仿真软件开发1 李幼德,刘巍, 李静 吉林大学汽车工程学院 (130022) E-mail :aweii_liu@https://www.doczj.com/doc/ee5643594.html, 摘 要:汽车动力学仿真软件对汽车电控系统的开发具有重要意义。本文利用Matlab/Simulink 软件编制适用于汽车电控制系统开发的汽车动力学模型,并编制了图形用户界面,并针对样车进行了不同工况的模拟。 关键词:汽车动力学,图形用户界面,仿真 1.引言 随着汽车电子控制系统的发展,特别是汽车电控制系统开发手段的发展,以Matlab/Simulink 和Dspace 为开发平台的V 流程的电控系统开发方法已被越来越多的开发商所采用。在汽车电控制系统的开发中,例如汽车牵引力控制系统(TCS )、汽车制动防抱死控制系统(ABS )和汽车稳定性控制系统(ESP )等,为了研究汽车各控制系统的控制算法,汽车动力学仿真模型是必不可少的。而传统的汽车动力学仿真模型(如Adams 和Simpack 等),由于仿真的实时性较差,并不能够满足汽车电控制系统开发的要求。因此,开发基于Matlab/Simulink 平台的汽车动力学仿真软件对于汽车电控系统具有重要的使用价值。 2.汽车动力学模型 考虑汽车动力学模型运行实时性的要求,汽车动力学模型需要进行适当的简化。因此,忽略汽车的侧倾和俯仰运动,以及悬架的影响,但是考虑了汽车载荷的转移。在汽车动力学模型中,包括:发动机模型、传动系模型、轮胎模型、车轮模型以及整车模型等。 2.1发动机模型 发动机模型的输入包括:油门开度、反馈的发动机转速。整个的发动机将简化为一个一阶惯性环节系统[1]。 1 2 1sT e e T e M sT ?= + (1) 其中:e M 发动机的动态输出力矩;为发动机的静态输出力矩,为系统时间常数,为系统滞后时间常数而拉氏变换变量。 e T 2T 1T s 2.2制动器模型 制动器模型采用的是盘式制动器模型,公式如下: b w T A n s P b μη=????? (2) 1 本课题得到高等学校博士学科点专项科研基金(项目编号:20020183025)资助 - 1 -

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

汽车整车动力性仿真计算

汽车整车动力性仿真计算 1 动力性数学模型的建立 汽车动力性是汽车最基本、最重要的性能之一。汽车动力性主要有最高车速、加速时间t 及最大爬坡度。其中汽车加速时间表示汽车的加速能力,它对平均行驶车速有着很大影响,而最高车速与最大爬坡度表征汽车的极限行驶能力。根据汽车的驱动力与行驶阻力的平衡关系建立汽车行驶方程,从而可计算汽车的最高车速、加速时间和最大爬坡度。其中行驶阻力(F t )包括滚动阻力F R 、空气阻力F Lx 、坡度阻力F St 和加速阻力F B 。 根据图1就可以建立驱动的基本方程,各车节之间的连接暂时无需考虑。而车辆必须分解为总的车身和单个车轮。节点处只画出了x 方向的力;z 方向的力对于讨论阻力无关紧要,可以忽略。 图1 (a )车辆,车轮和路面;(b )车身上的力和力矩; (c )车轮上的力和力矩;(d )路面上的力 如果忽略两个车节间的相对运动,根据工程力学的重心定理,汽车(注脚1)和挂车(注 脚2)的车身运动方程为: ∑=++--=+n j j Lx X αG G F x m m 12121sin )()( (1)

其中1G 和2G 是车节的车身重量,1m 和2m 它们的质量,α是路面的纵向坡度角,∑j X 是n 车轴上的纵向力之和,L F 是空气阻力。 由图1(c ),对第j 个车轴可列出方程 αG F X x m Rj xj j Rj Rj sin -+-= (2) j zj j xj Rj Rj Rj e F r F M φ J --= (3) Rj G 是该车轴上所有车轮的重量,Rj m 是它们的质量,Rj J 是绕车轴的车轮转动惯量之和,xj F 是在轮胎印迹上作用的切向力之和,zj F 是轴荷,Rj M 是第j 个车轴上的驱动力矩。 如果假设车轴的平移加速度Rj x 和车身的加速度x 相等,由式(1)到式(3)在消去力j X 和xj F 以后就得到方程 ∑∑∑ ∑∑=====--++-=+++n j j j zj Lx n j Rj n j j Rj Rj n j j Rj n j Rj r e F F αG G G r M φ r J x m m m 1 1 211 11 21sin )()( 引进总质量和总重量(力) m m m m n j Rj =++∑=121 mg G G G G n j Rj ==++∑=1 21 把车轮角加速度转化为平移加速度x ,即得到 ∑∑∑ ===++++=n j j j zj Lx n j j j Rj n j j Rj r e F F αG x R r J m r M 1 11 sin )( (4) 右边是由4项阻力组成,我们称之为 1)滚动阻力∑==n j j j zj R r e F F 1 (5) 令j j r e f = ,f 为阻力系数,代入式(5),则整车的滚动阻力为 zj n j R F f F ∑==1(5-1) 还常常进一步假定,所有车轮(尽管比如各个车轮胎压不同)的滚动阻力系数相等,又因为所有车轮轮荷zj F 之和等于车重G ,如果车辆行驶在角度为α的坡道上,则轮荷之和等于αcos G (参看图1) ,这样,式(5-1)可改写为 αfG F f F n j zj R cos 1==∑= 因为道路上的坡度较α不是很大,整车滚动阻力因而近似于整车车轮阻力 G f F R R =(5-2) 2)空气阻力2 a D 15 .21u A C F Lx =(6) 3)上坡阻力αG F St sin =(7) 在式(4)中的αG sin 项用以表示上坡阻力 αG F St sin =(7-1) 参看式(7)。如果我们用αtan 以及等价的值p 来取代αsin ,那么上述表达式就更为直

汽车动力性matlab仿真源程序

clc n=[1500:500:5500];%转速范围 T=[78.59 83.04 85.01 86.63 87.09 85.87 84.67 82.50 80.54];%对应各转矩 dt=polyfit(n,T,3);%对发动机输出转矩特性进行多项式拟合,阶数取4 n1=1000:100:5500;%???? t=polyval(dt,n1); figure(1) title('发动机外特性') plot(n1,t,n,T,'o'),grid on%图示发动机输出转矩特性 %汽车驱动力计算 G=input('整车重力/N,G=');%输入970*9.8 ig=[3.416 1.894 1.28 0.914 0.757];%变速器速比 k=1:5;%5个前进档 r=0.272;i0=4.388;eta=0.9; ngk=[800 800 800 800 800]; ngm=[5500 5500 5500 5500 5500]; ugk=0.377.*r.*ngk(k)./(ig(k).*i0);%计算每一档发动机800rpm时的最低行驶速度ugm=0.377.*r.*ngm(k)./(ig(k).*i0);%计算每一档发动机5400rpm最高行驶速度 for k=1:5%依次计算5个档的驱动力 u=ugk(k):ugm(k); n=ig(k)*i0.*u./r/0.377; t=54.8179+2.2441.*(n./100)-4.8003.*(n./1000).^2+2.815e-10.*n.^3 Ft=t.*ig(k).*i0*eta/r; figure(2) plot(u,Ft) hold on,grid on %保证K的每次循环的图形都保留显示 end %行驶阻力计算 f0=0.009; f1=0.002; f4=0.0003;%三者都是轿车滚动阻力系数 % disp'空气阻力系数Cd=0.3--0.41,迎风面积A=1.7--2.1' Cd=input('空气阻力系数Cd=');%输入0.3 A=input('迎风面积/m2,A=');%输入2.3 u=0:10:180; f=f0+f1.*(u./100)+f4.*(u./100).^4; Ff=G*f;%计算滚动阻力 Fw=Cd*A.*u.^2./21.15;%计算空气阻力 F=Ff+Fw;%滚动阻力、空气阻力之和 title('驱动力-阻力图(五档速比为3.416 1.894 1.28 0.914 0.757)') plot(u,F,'mo-'); grid on

汽车动力性检测项目及检测方法

汽车动力性检测项目及检测方法 一、汽车动力性评价指标 汽车动力性是汽车在行驶中能达到的最高车速、最大加速能力和最大爬坡能力,是汽车的基本使用性能。汽车属高效率的运输工具,运输效率的高低在很大程度上取决于汽车的动力性。这是因为汽车行驶的平均技术速度越高,汽车的运输生产率就越高。而影响平均技术速度的最主要因素就是汽车动力性。 随着我国高等级公路里程的增长,公路路况与汽车性能的改善,汽车行驶车速愈来愈高,但在用汽车随使用时间的延续其动力性将逐渐下降,不能达到高速行驶的要求,这样不仅降低了汽车应有的运输效率及公路应有的通行能力,而且成为交通事故、交通阻滞的潜在因素。因此,在交通部1990年发布的13号令中,特别要求对汽车动力性进行定期检测。动力性检测合格是营运汽车上路运行的一项重要技术条件。1995年交通部为了提高在用汽车的技术性能,发布了JT/T198-95《汽车技术等级评定标准》,将动力性作为第一项主要性能进行评定。另外早在1983年国家颁布的GB3798《汽车大修竣工出厂技术条件》第2.6项中对汽车大修后的加速性能规定了最低要求,这都说明了国家对在用汽车动力性的重视。 汽车检测部门一般常用汽车的最高车速、加速能力、最大爬坡度、发动机最大输出功率、底盘输出最大驱动功率作为动力性评价指标。TOP (km/h) 1.最高车速υ amax 最高车速是指汽车以厂定最大总质量状态在风速≤3m/s的条件下,在干燥、清洁、平坦的混凝土或沥青路面上,能够达到的最高稳定行驶速度。TOP 2.加速能力t(s) 汽车加速能力是指汽车在行驶中迅速增加行驶速度的能力。通常用汽车加速时间来评价。加速时间是指汽车以厂定最大总质量状态在风速≤3m/s的条件下,在干燥、清洁、平坦的混凝土或沥青路面上,由某一低速加速到某一高速所需的时间。 (1)原地起步加速时间,亦称起步换档加速时间,系指用规定的低档起步,以最大的加速度(包括选择适当的换档时机)逐步换到最高档后,加速到某一规定的车速所需的时间,其规定车速各国不同,如0-50 km/h,对轿车常用0-80 km/h,0-100 km/h,或用规定的低档起步,以最大加速度逐步换到最高档后,达到一定距离所需的时间,其规定距离一般为0-400m,0-800m,0-100Om,起步加速时间越短,动力性越好; (2)超车加速时间亦称直接档加速时间,指用最高档或次高档,由某一预定车速开始,全力加速到某一高速所需的时间,超车加速时间越短,其高档加速性能越好。 我国对汽车超车加速性能没有明确规定,但是在GB3798-83《汽车大修竣工出厂技术条件》中规定,大修后带限速装置的汽车以直接档空载行驶,从初速20km/h加速到40km/h的加速时间,应符合表 1规定。

汽车理论课程设计:基于Matlab的汽车动力性的仿真

2009 届 海南大学机电工程学院 汽车工程系 汽车理论课程设计 题目:汽车动力性的仿真 学院:机电工程学院 专业:09级交通运输 姓名:黄生锐 学号:20090504 指导教师: 编号名称 件 数 页 数 编 号 名称 件 数 页数 1 课程设计论文 1 3Matlab编程源程序 1 2 设计任务书 1 2012年6月20日 成绩

汽车理论课程设计任务书 姓名黄生锐学号20090504 专业09交通运输 课程设计题目汽车动力性的仿真 内容摘要: 本设计的任务是对一台Passat 1.8T手动标准型汽车的动力性能进行仿真。采用MATLAB编程仿真其性能,其优点是:一是能过降低实际成本,提高效率;二是获得较好的参数模拟,对汽车动力性能提供理论依据。 主要任务: 根据该车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速等参数,结合自己选择的适合于该车的发动机型号求出发动机的最大功率、最大扭矩、排量等重要的参数。并结合整车的基本参数,选择适当的主减速比。依据GB、所求参数,结合汽车设计、 汽车理论、机械设计等相关知识,计算出变速器参数,进行设计。论证设计的合理性。 设计要求: 1、动力性分析: 1)绘制汽车驱动力与行驶阻力平衡图; 2)求汽车的最高车速、最大爬坡度; 3)用图解法或编程绘制汽车动力特性曲线 4)汽车加速时间曲线。 2、燃油经济性分析: 1) 汽车功率平衡图; 完成内容: 1.Matlab编程汽车驱动力与行驶阻力平衡图 2.编程绘制汽车动力特性曲线图 3.编程汽车加速时间曲线图 4.课程设计论文1份

汽车动力性仿真 摘要 本文是对Passat 1.8T 手动标准型汽车的动力性能采用matlab 编制程序,对汽车动力性进行计算。从而对汽车各个参数做出准确的仿真研究,为研究汽车动力性提供理论依据,本文主要进行的汽车动力性仿真有:最高车速、加速时间和最大爬坡度。及相关汽车燃油性经济。 关键词:汽车;动力性;试验仿真;matlab 1. Passat 1.8T 手动标准型汽车参数 功率Pe (kw ) 转速n (r/min ) 15 1000 36 1750 50 2200 66 2850 80 3300 90 4000 110 5100 105 5500 各档传动比 主减速器传动比 第1档 3.665 4.778 第2档 1.999 第3档 1.407 第4档 1 第5档 0.472 车轮半径 0.316(m ) 传动机械效率 0.91 假设在良好沥青或水泥路面上行驶,滚动阻力系数 0.014 整车质量 1522kg C D A 2.4m 2

汽车动力性实验

实验一汽车动力性试验 一、实验内容 测定汽车最高车速和最低稳定车速;进行汽车直接档和起步连续换档加速实验。 二、实验目的要求 掌握汽车动力性能的道路实验的原理和方法,根据实验记录处理和分析实验结果,评价实验。 汽车动力性能的优劣。 三、仪器设备 五轮仪、发动机转速表、秒表、综合气象观测仪、钢卷尺、标杆、实验车等。 四、准备工作 1.实验条件 (1)实验车各总成、部件及附属装置,必须装备齐全,调整状况应符合该车技术条件。 (2)实验车使用的燃料及润滑油应符合该车技术条件,实验时应使用同一批燃料及润滑油。 (3)轮胎气压应符合技术条件的规定,误差不超过规定值±10kPa。 (4)实验车载荷和乘员数应符合规定,载荷物应在车厢内均匀分布。乘员质量按65kg/人计算,也可用相同质量的砂袋代替。 (5)实验前,应按使用说明书要求对实验车进行技术保养。新车在实验前应进行磨合行驶(一般磨合里程不少于2500km)。 (6)实验时,实验车各总成的热状态应符合技术条件的规定,并保持稳定,如技术条件无规定时,应符合下列条件: 发动机出水温度80~90℃;发动机机油温度50~95℃。 (7)实验时的气候条件应是晴天或阴天,风速不超过3m/s;气温应在0~35℃;气压应在99.32~102kPa(745~765mmHg)范围内。 (8)实验道路最好选择专用试验跑道。如没有专用场地,可选择平直、干燥的硬路面(沥青或水泥路面)进行。跑道长度2~3km,宽度不小于8m,纵向坡度在0.1%以内。 2.准备工作 (1)登记实验车的生产厂名、牌号、型号、发动机号、底盘号和出厂日期等: (2)检查车辆外部紧固件的紧固程度,各总成润滑油及润滑状态和密封状况; (3)检查油、电路,并按技术条件进行调整,使其达到最佳工作状态; (4)检查发动机风扇皮带张力,发动机气缸压力、机油压力及发动机怠速转速; (5)检查照明灯、信号灯等能否正常工作; (6)检查转向系、离合器、制动系统工作状况,使其保持良好技术状态;

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

汽车动力性道路试验

实验一汽车动力性道路试验 一、实验目的 1、了解汽车动力性能道路试验的要求; 2、掌握汽车动力性能的道路试验方法; 3、能够了解汽车测试仪器的工作原理,掌握仪器的操作规程; 4、能根据试验记录处理和分析试验结果,评价试验车动力性能的优劣。 5、了解GB/T12534 汽车道路试验方法通则 GB/T12543 汽车加速性能试验方法 GB/T12544 汽车最高车速试验方法 GB/T12547 汽车最低稳定车速试验方法 二、实验仪器设备及要求 1、实验仪器设备 (1)非接触式汽车性能测试仪 型号:AM-2026A 组成:速度传感器、制动传感器和主机。其中主机由8位CPU、EPROM、RAM、键盘、LED显示器、微型打印机及接口电路等组成,配接速度传感器、制动传感器等。速度传感器包括照明灯和探头两部分。 工作原理:以微型电脑为核心部件,配以相应的I/O接口及外设,不需要与路面接触或设置任何测量标准,采用光电空间相关滤波技术,安装在车上的光电路面探测器(即速度传感器)照射路面,把路面图象变换成频率信号,经CPU 分析处理得到汽车在每一时刻的速度,用于汽车动力性、制动性的测试。该速度传感器可克服五轮仪由于接触地面发生滑动、跳动和轮胎气压变化而产生的误差。 测试功能:汽车滑行试验、制动试验(轿车热衰退试验)、最低稳定车速与最高车速的测定、直接档加速和连续换挡加速试验、等速油耗试验、百公里油耗试验、加速油耗试验、多工况油耗试验等。 (2)试验车 (3)DEM6型轻便三杯风向风速表、空盒式大气压表

2、试验要求 (1)车辆条件 ①试验车辆应处于良好状态,如点火系、供油系、制动蹄鼓间隙、车轮轴承紧度、车轮定位、轮胎气压与标准值相差不超过±10kpa等。 ②对于车辆载荷,我国规定动力性试验时汽车为满载,货车内可以按规定载质量均匀放置砂袋;乘用车、客车以及货车驾驶室的乘员可以用重物替代,每位乘员的质量相当于65kg。 ③汽车试验时应具有的正常温度状态为:冷却水温度80~90℃;发动机机油温度60~95℃;变速器及驱动桥齿轮油温度不低于50℃。试验前汽车应通过较高车速的行驶进行预热,以达到上述温度状态。 (2)道路条件 动力性试验的大多数项目应在混凝土或沥青路面的直线段上进行。要求路面平整、干燥、清洁、纵向坡度不大于0.1%,路段长度2~3km,宽度不小于8m,测试路段长度200m。 (3)气候条件 试验应避免在雨雾天进行,气压在99.3~102kpa;气温在0~40℃;风速不大于3m/s;相对湿度小于95%。 三、实验原理 汽车动力性评价指标:加速性能、最高车速和最大爬坡度。 动力性实验可分为道路试验和室内试验两种。本实验的目的是通过道路试验测定汽车在某一固定档位或连续换档从某一较低车速加速到某一较高车速的加速性能以及最低稳定车速。 四、实验内容、方法和步骤 1、实验设备的安装 首先使用螺钉将速度传感器牢靠地安装于安装支架上,再将其安装于被测车辆远离排气口的任意位置,但要满足高度和角度的要求并保证行驶安全可靠。本实验中将其安装于车辆前部进气口位置,照明灯距离地面约600mm,探头前端距离约500mm,光电头侧面的白色刻线应与车辆前进方向严格一致。专用光电

车辆动力学仿真

车辆动力学仿真 课程编码:202060 课程英文译名:Dynamics Simulation of Vehicle System 课程类别:专业课 开课对象:车辆工程专业开课学期:第7学期 学分:2.5学分;总学时: 40学时;理论课学时:32学时;上机学时: 8学时 先修课程:理论力学、材料力学、机械原理、机械设计、机械振动 教材:车辆动力学模拟及其方法,威鲁麦特(德),北京理工大学出版社, 1998.5 ,第1版 参考书:【1】汽车系统动力学,张洪欣,同济大学出版社, 1996 ,第1版【2】汽车系统动力学及仿真,雷雨成,国防工业出版社, 1997 ,第1版一、课程的性质、目的和任务 《车辆系统动力学仿真》是车辆工程专业理论性较强的专业课。本课程的目的是,使学生初步学会汽车动力学分析方法,能够解决工程实际问题,以便增强其研究和解决车辆动力学问题的能力。本课程的任务,是以数学力学模型为基础,结合虚拟样机仿真技术,讲授汽车的垂直动力学、横向动力学、纵向动力学,为继续学习和掌握汽车新科技创造条件。 二、课程的基本要求 对汽车动力学有一定的了解,掌握有关的基本概念、基本理论和基本方法及其应用,掌握汽车多体动力学仿真的方法。具体要求为: 1.对汽车动力学仿真的基本概念和基本分析方法有明确的认识; 2.掌握单自由度系统的振动系统,自由振动、强迫振动的微分方程的建立方法; 3.掌握多自由度系统的振动系统的微分方程,初步掌握多自由度系统振动的模态分析方法; 4.了解随机振动的一些基本概念,掌握路面不平度功率谱密度的概念及其计算方法; 5.掌握汽车垂直动力学模型的建立方法,以及路面激励对汽车振动的影响; 6.掌握汽车弹簧、减震器、橡胶金属部件、轮胎等部件垂向动力学的特性; 7.掌握汽车纵向动力学微分方程,掌握滚动阻力、爬坡阻力、加速阻力的计算方法; 8.掌握驱动附着率、制动附着率对行驶极限的影响; 9.掌握汽车横向动力学的微分方程建立方法,及其横向动力学微分方程的特性; 10.掌握汽车操作稳定性的概念及其影响汽车操作稳定性的因素; 11.掌握轮胎的真实特性,初步掌握轮胎动力学的初步概念。

汽车动力性检测实验指导书

汽车动力性检测实验指导书 汽车动力性检测项目及检测方法 一、汽车动力性评价指标 汽车动力性是汽车在行驶中能达到的最高车速、最大加速能力和最大爬坡能力,是汽车的基本使用性能。汽车属高效率的运输工具,运输效率的高低在很大程度上取决于汽车的动力性。这是因为汽车行驶的平均技术速度越高,汽车的运输生产率就越高。而影响平均技术速度的最主要因素就是汽车动力性。 随着我国高等级公路里程的增长,公路路况与汽车性能的改善,汽车行驶车速愈来愈高,但在用汽车随使用时间的延续其动力性将逐渐下降,不能达到高速行驶的要求,这样不仅降低了汽车应有的运输效率及公路应有的通行能力,而且成为交通事故、交通阻滞的潜在因素。因此,在交通部1990年发布的13号令中,特别要求对汽车动力性进行定期检测。动力性检测合格是营运汽车上路运行的一项重要技术条件。1995年交通部为了提高在用汽车的技术性能,发布了JT/T198-95《汽车技术等级评定标准》,将动力性作为第一项主要性能进行评定。另外早在1983年国家颁布的GB3798《汽车大修竣工出厂技术条件》第2.6项中对汽车大修后的加速性能规定了最低要求,这都说明了国家对在用汽车动力性的重视。 汽车检测部门一般常用汽车的最高车速、加速能力、最大爬坡度、发动机最大输出功率、底盘输出最大驱动功率作为动力性评价指标。TOP (km/h) 1.最高车速υ amax 最高车速是指汽车以厂定最大总质量状态在风速≤3m/s的条件下,在干燥、清洁、平坦的混凝土或沥青路面上,能够达到的最高稳定行驶速度。TOP 2.加速能力t(s) 汽车加速能力是指汽车在行驶中迅速增加行驶速度的能力。通常用汽车加速时间来评价。加速时间是指汽车以厂定最大总质量状态在风速≤3m/s的条件下,在干燥、清洁、平坦的混凝土或沥青路面上,由某一低速加速到某一高速所需的时间。 (1)原地起步加速时间,亦称起步换档加速时间,系指用规定的低档起步,以最大的加速度(包括选择适当的换档时机)逐步换到最高档后,加速到某一规定的车速所需的时间,其规定车速各国不同,如0-50 km/h,对轿车常用0-80 km/h,0-100 km/h,或用规定的低档起步,以最大加速度逐步换到最高档后,达到一定距离所需的时间,其规定距离一般为0-400m,0-800m,0-100Om,起步加速时间越短,动力性越好; (2)超车加速时间亦称直接档加速时间,指用最高档或次高档,由某一预定车速开始,全力加速到某一高速所需的时间,超车加速时间越短,其高档加速性能越好。 我国对汽车超车加速性能没有明确规定,但是在GB3798-83《汽车大修竣工出厂技术条件》中规定,大修后带限速装置的汽车以直接档空载行驶,从初速20km/h加速到40km/h的加速时间,

汽车空气动力学仿真

汽车空气动力学仿真
Vehicle Aerodynamics Simulation
张扬军
Zhang Yang-Jun
清华大学汽车工程系应用空气动力学组 汽车安全与节能国家重点实验室
Applied Aerodynamics Group, Dept of Auto Eng., Tsinghua Univ. State Key Lab of Automotive Safety and Energy

Vehicle Aerodynamics Simulation
汽车空气动力学仿真
1 2 3 4 5 6
汽车空气动力学概述 汽车空气动力学仿真特点 汽车空气动力学仿真难点 汽车空气动力学仿真平台 仿真平台(VASS)应用 总结与展望
1 2 3 4 5 6
Introduction to Road Vehicle Aerodynamics Some Salient Features of Road Vehicle Flow Simulation Main Difficulties of Road Vehicle Flow Simulation Vehicle Aerodynamics Simulation System (VASS) VASS Applications Conclusions and Open Features

1 汽车空气动力学概述
1.1 空气动力学对汽车性能的影响 1.2 汽车空气动力学性能 1.3 汽车空气动力学特点 1.4 空气动力学研究方法
Introduction to Vehicle Aerodynamics
1.1 1.2 1.3 1.4
Vehicle Attributes Affected by Aerodynamics Vehicle Aerodynamics Characteristics Peculiarities of Road Vehicle Aerodynamics Methods for Vehicle Aerodynamic

汽车动力学仿真模型的发展

!汽车动力学发展历史简介 汽车动力学是伴随着汽车的出现而发展起来的 一门专业学科。人们很早就认识到“$%&’()*+”转向和应用弹性悬架可使乘客感到更加舒适等基本原 理[,],但那只是一种感性的认识。在各国学者的不懈 努力下,这门学科逐渐发展成熟。-’.’/在,00#年1)’%23举行的题为“车辆平顺性和操纵稳定性”的会议上发表的论文,对,00"年以前汽车动力学的发 展做了较为全面的总结[ !],见表,。近年来汽车动力学又有了进一步发展,大量的高水平学术论文和经典的汽车动力学专著相继被发表,而且开发出许多专为汽车动力学研究建立模型的软件,如美国密西根大学开发的$456%*(、$45678)等商业软件。汽车是一复杂的连续体系统,要想对其进行动力特性的预测和优化需建立经合理简化的抽象汽车模型,以达到缩短产品开发周期、保证整车性能指标和降低产品成本的目的。 "汽车动力学模型的发展 汽车动力学从严格意义上来讲包括对一切与车 辆系统相关运动的研究,然而最为核心的是平顺性和操纵稳定性这两大领域,一般认为平顺性主要研究影响车身的垂向跳跃、俯仰、侧倾振动的因素,而操纵稳定性主要研究车辆的横向、横摆和侧倾运动。建模时一般假设平顺性和操纵稳定性之间无偶合关系。 "#!汽车平顺性模型 在汽车平顺性的早期研究阶段,限于当时数学、 力学理论、计算手段及试验方法,把系统简化成集中质量—弹簧—阻尼模型,如图,所示。 图,整车集中质量—弹簧—阻尼模型 此类模型一般先以函数的形式给出其动能!和势能"以及表达系统阻尼性质的物理量耗散能 !的表达式: 【摘要】汽车动力学包括对一切与车辆系统相关运动的研究,其最核心的是平顺性和操纵稳定性这两大领域。在简要说明了汽车动力学发展过程的基础上介绍了平顺性和操纵稳定性两大领域的模型发展过程。平顺性模型主要经过集中质量—弹簧—阻尼模型、有限元模型和动态子结构模型阶段;而操纵稳定性模型从低自由度线性模型、非线性多自由度模型发展到多体模型。最后提出了汽车动力学仿真模型的发展动向。 主题词:汽车动力学模型发展 中图分类号:9:;,<,文献标识码:$ 文章编号:,"""=#>"#(!""#)"!=""",=": $%&%’()*%+,(-.%/01’%$2+3*0140*5’3,0(+6(7%’ ?2*+.@’8A?2*+.B8+.2*8AC48D*8/8+AB8*D6+.E’8 (B8/8+9+8F’(785G ) 【89:,;31,】H’28%/’IG+*)8%7754I8’7*//)6F’)’+57(’/’F*+556F’28%/’7G75’)*+I 857%6(’8752’5J6E8’/I76E (8I’K *L8/85G *+I 2*+I/8+.75*L8/85G<1+52’M*M’(AI’F’/6M8+.M(6%’776E )6I’/76E F’28%/’(8I’*L8/85G *+I 2*+I/8+.75*L8/85G *(’8+K 5(6I4%’I *E5’(I’F’/6M)’+5%64(7’6E F’28%/’IG+*)8%78778)M/G 8+5(6I4%’I

电动汽车 动力性试验方法

企业机密 Q/CAF01 电动汽车 动力性试验方法 一汽轿车股份有限公司产品部 发布

前言 为规范一汽轿车股份有限公司新开发的电动汽车进行动力性试验特制定此标准。本标准由一汽轿车股份有限公司产品部提供并归口。 本标准由一汽轿车股份有限公司产品部试制试验科负责起草。 本标准主要起草人:单承标。

电动汽车动力性试验方法 1范围 本标准适用于一汽轿车股份有限公司产品部研发的电动汽车的加速特性、最高车速及爬坡能力试验方法。 本标准适用于最大设计总质量不超过3500kg的电力驱动的电动汽车。 2引用标准 下列文件对于本文是必不可少的,。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 3730.2-1996 《道路车辆质量词汇和代码》 GB/T 12548-1990 《汽车速度表、里程表检验校正方法》 GB/T 18386-2001 《电动汽车能量消耗率和续驶里程试验方法》 3定义 本标准采用GB/T 3730.2定义和下列定义。 3.1试验质量 整车整备质量与试验司机及试验员的质量之和。 3.2动力半径(轮胎) 指电动汽车在承受试验载荷时,轮胎变形后的有效半径。 3.3最高车速 指车辆能够在往返两个方向各持续行驶1km以上距离的最高平均车速(试验程序见7.3)。 3.4 30分钟最高车速(V30) 指车辆能够持续行驶超过30分钟的最高平均车速(试验程序见7.1)。 3.5加速性能(V1到V2) 车辆从速度V1加速到速度V2所需的最短时间(试验程序见7.5和7.6)。 3.6爬坡车速 车辆在给定坡度的坡道向上行驶超过1km的最高平均车速(试验程序见7.7)。 3.7坡道起步能力 车辆能够起动且每分钟向上行驶至少10m的最大坡度(试验程序见7.8)。 4试验条件 4.1试验应在下列环境条件下进行: 室外试验大气温度为5~32℃;室内试验温度为20~30℃;大气压力为91~104 kPa。高于路面0.7m 处的平均风速小于3m/s,阵风风速小于5m/s。相对湿度小于95%。室外试验不能在雨天和雾天进行。4.2试验仪器 如果使用电动汽车上安装的速度表、里程表测定车速和里程时,试验前必须按GB/T 12548进行误差校正。 4.3测量的参数、单位和准确度 表1规定了测量的参数、单位和准确度。

汽车动力性实验

汽车动力性实验 一、实验目的 1.了解TLDCG-2000型底盘测功器的结构与测试原理; 2.学习使用底盘测功机诊断汽车动力性与燃料经济性的试验方法 二、实验内容简述 汽车在底盘测功器上,通过加载装置调节滚简的制动强度,模拟车辆在道路运行时的各种阻力,来诊断汽车的使用性能。主要包括汽车额定扭矩(或额定功率)工况下的底盘输出功率测量、汽车加速性能测量、汽车滑行性能测量、汽车车速表校验、汽车里程表校验检测等。 三、实验设备: TLDCG-2000型底盘测功机;汽车一辆 四、底盘测功机构造及测量原理 1、构造: 底盘测功机主要由滚筒、电涡流测功器、测力传感器、测速传感器及微机测控系统组成。 1-机架2-功能吸收装置3-变速箱4-滚筒5-速度传感器6-联轴节7-举升器8-制动器9-滚筒10-力传感器 转速传感器固定在前滚筒上,通过转速传感器测出车速。左右滚筒通过链式联轴器相连,滚筒通过联轴器与电涡流测功器相连,固定在电涡流机上的测力杆压在测力传感器加头上。 2、底盘输出功率测量 汽车车轮驱动滚筒转动,电涡流机通入激磁电流,产生一个反作用力来吸收汽车底盘输出功率。在测量某一点恒速功率时,在闭环控制系统的作用下电涡流机的反作用力和汽车底盘驱动力达到一个稳定的动态平衡。,这时,通过

力传感器测出滚筒所受的力F(N)和滚筒速度V(Km/h),就可以测出底盘输出功率P d(Kw)。计算公式如下:Pd=F×V/3600 3、发动机功率测量 反拖功率与与底盘输出功率之和就是发动机功率P(Kw)。P=P d+Pf 4、滑行时间和滑行距离测量 汽车车轮驱动滚筒转动,当车速达到预定滑行初速时,挂空挡滑行,开始测时间和距离,当车速达到预定滑行终速时,测出滑行时间和滑行距离。 5、加速时间测量 计算汽车从预设的初速度加速到预设的终速所需的时间。 6、里程表校准 汽车在滚筒上行驶一定的里程后,比较汽车里程表和检验台实测的里程数之间的误差。 7、恒力法百公里油耗测量 恒力法百公里油耗是在一定的加载力的情况下,行驶500米测出的油耗平均值。 五、操作方法: 1、测试前的准备 1)打开变频器控制柜电源 2)待测车辆应空载,轮胎的规格和气压应符合制造厂的规定。 3)待测车辆必须进行预热。

汽车动力性经济性试验报告

汽车动力性和经济性 试验报告 实验内容:汽车加速性能试验 汽车等速燃油消耗率试验

一、汽车加速性能试验 1、实验目的 1)通过实验的环节,了解汽车试验的全过程; 2) 掌握最基本的汽车整车道路试验测试技术,包括试验车的检查准备、测量原理,试验方案的设计、测试设备的选择、试验操作、误差来源和控制、数据的取得和记录、试验结果分析计算整理;3) 巩固课堂上所学的汽车理论和汽车试验知识,提高实践能力; 2、实验条件 1)试验前检查汽油发动机化油器的阻风阀和节气阀,以保证全开;2)柴油发动机喷油泵齿条行程能达到最大位置;3)装载量按试验车技术条件规定装载(满载);4)轮胎气压负荷车上标示规定;5)风速;3/m s ≤6)试验车经充分预热; 7) 试验场地应为干燥平坦且清洁的水泥或沥青路面,任意方向的坡度2% ≤3、主要实验仪器设备与实验车参数 试验车参数列表:

仪器名称型号生产厂家 五轮仪LC1100(931680718)ONO SOKKE 信号采集系统 大气压力、温度表 风速仪风云仪器 五轮仪采样频率100赫兹 4、试验内容 总体的速度-时间曲线如下所示: 4.1 实验一:低速滑行法测滚动阻力系数 1)试验目的: 了解滑行试验条件、方法;学会仪器使用;掌握车速记录、分析方法;计算滚动阻力系数。 2)试验内容: a).在符合实验条件的道路上,选取合适长度的直线路段,作为加速性能试验路段,在两端设置标杆作为标号; b).试验车辆加速到大于20km/h,将变速器置于空挡后,按下采集系统“开始” 键,直至车辆停止,按“结束键”,记录车辆从20km/h到停止这一过程车速

相关主题
文本预览
相关文档 最新文档