当前位置:文档之家› ETAP软件在海洋石油平台电力系统谐波分析中的应用

ETAP软件在海洋石油平台电力系统谐波分析中的应用

ETAP软件在海洋石油平台电力系统谐波分析中的应用
ETAP软件在海洋石油平台电力系统谐波分析中的应用

SHIP&BOAT April,2012 2012年4月

0引言

随着电力电子设备的发展,海洋石油平台上越来越多的电气设备开始应用变频器等非线性设备,这些非线性装置产生大量谐波,使电压和电流形成畸变,严重影响了海洋石油平台电源的质量。

基于海洋石油平台谐波问题的日益突出,需要认识海洋石油平台谐波的特点,并结合谐波分析的结果制定出滤波方案。本文首先介绍ETAP软件在谐波程序的主要内容,随后通过南海某油田项目实例,介绍如何采用ETAP对平台的电力系统进行谐波分析计算,并给出计算报告和初步确定滤波方案。1谐波的产生与治理

海洋石油平台谐波污染主要来自变频器,变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,向电网中注入了大量的高次谐波。变频器谐波的表现形式主要为电流谐波与电压谐波两种方式,其中电流谐波主要取决于负载大小及相关的回路阻抗等,电压谐波取决于回路阻抗与总谐波电流[1]。

谐波的危害十分严重。它能使电气设备过热,产生振动和噪声,使设备绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波还会引起继电保护和自动装置的误动作,对通信设备和电子设备产生严重的干扰。对于电能质量,许多国家和国际组织都制定了谐波的相应标准,如IEEE Std.519-1992中对

[船舶电气]

ETAP软件在海洋石油平台电力系统谐波分析中的应用

张强

(中海油研究总院北京100027)

[摘要]随着电力系统的复杂性和规模的不断扩大,使用电力系统分析仿真软件对系统进行仿真计算已成为电气工程师的主要应用工具。通过对谐波的特点与治理以及ETAP软件的功能特点介绍,结合南海某油田项目实例,讲述如何采用ETAP对系统进行谐波分析,并给出计算结果和初步确定滤波方案。

[关键词]海洋石油平台;ETAP软件;谐波分析;滤波器

[中图分类号]U674.381[文献标志码]A[文章编号]1001-9855(2012)02-0060-05

Application of ETAP software in power system harmonic

analysis for offshore oil platform

ZHANG Qiang

(CNOOC Research Institue,Beijing100027,China)

Abstract:With the complexity and the growing of the scale of power systems,numerical simulation by analyzing and simulation software becomes primary tool for electrical engineers.This paper introduces the characteristics of harmonic wave and its control,and the features of ETAP software.It also explains how to carry out harmonic analysis by ETAP based on a practical oilfield project in South Sea,and provides the numerical results and the preliminary filter scheme.

Keywords:offshore oil platform;ETAP software;harmonic analysis;filter

[收稿日期]2011-11-02;[修回日期]2011-12-08

[作者简介]张强(1979-),男,汉族,工程师,研究方向:海洋平台电力系统设计。

谐波电流允许值作了相关规定:

当I sc /I L <20,TDD 限值为5%;当20<I sc /I L <50,

TDD 限值为8%[2]

。其中:I sc 为公共连接点的短路电

流;I L 为公共连接点的负载电流基波分量;TDD 为总需求电流畸变率。

我国国家标准GB/T 14549-1993《电能质量公用电网谐波》中也对电压和电流谐波分量作出了具体规定,如表1和表2所示。

表1

公用电网电压谐波分量限制表

电网标称电压/kV

电压总谐波畸变率/%

各次谐波电压含有率/%奇

0.38 5.0 4.0 2.06

4.0

3.2

1.6

10

表2

注入公共连接点的谐波电流允许值

谐波次数

0.381078623962264419211628132411129.7188.6167.88.97.114 6.512610043342134142411118.5167.113 6.1 6.8 5.310 4.79.0 4.3 4.9 3.97.4 3.6 6.810

100

262013208.515 6.4 6.8 5.19.3 4.37.9 3.7 4.1 3.2 6.0 2.8 5.4 2.6 2.9 2.3 4.5 2.1 4.1

标准电压/kV

基准短路

容量/MVA 2

345678910111213141516171819202122232425

谐波电流允许值/A

针对谐波产生的原理,可以采用下列方法减小谐波:

(1)增大整流回路的脉冲数;

(2)加大电流侧的电抗,对电流谐波进行平波;(3)增加有源或无源滤波器进行滤波;(4)设备选型计算要合理,在满足要求的前提下尽可能减少容量。

考虑使用的经济性,海洋石油平台通常采用无源滤波器来降低平台的谐波水平。

2

使用ETAP 软件进行谐波分析及滤波器选型

2.1ETAP 软件介绍

ETAP 软件是由美国OTI 公司开发的一套全图

形化的电力系统仿真分析、计算应用软件,该软件拥有直观、友好的操作界面以及强大而完善的计算分析功能,适用于核电站、海上石油平台、炼油厂、发电厂等场合的电力系统分析和计算[3]。

该软件集成了包括潮流计算、短路计算、暂态稳定性分析、发电机/电机启动分析、谐波计算、优化潮流计算和继电保护配合在内十余种计算模块,实现了在一个工程内通过模块切换按钮即可完成所有计算,给使用者带来了极大的方便。

ETAP 谐波分析程序遵从IEEE 519标准,包含

谐波潮流计算、频率扫描分析,可对电压与电流的总

有效值(RMS )、合成峰值(ASUM )、各次谐波分量及总谐波畸进行计算,并可根据谐波计算的结果进行滤波器的设计及系统的共振检查。

2.2工程应用实例

本文针对南海某油田项目,利用ETAP 软件建

立模型、进行谐波分析,然后根据分析结果利用

ETAP 软件进行滤波器设计,并观察滤波后的效果。

钻采平台DPP 设有3台额定功率为5530kW

的原油发电机组作为平台的主电站,正常运行时为两用一备;同时低压480V 还设有一台1000kW 的天然气发电机与主电站并联运行,为平台上的工艺、公用、钻机以及采油电潜泵等负荷提供电源。整个平台的电力系统如下页图1所示。

2.2.1谐波分析计算

本项目钻采平台DPP 的母线LC 段及LD 段专门用来为电潜泵负荷供电,先期工程中先投入8口井,电潜泵均采用一对一交流变频控制,变频器使用的是施耐德6脉冲的ATV61系列,容量为400kW 及500kW 两种。本实例采用由施耐德提供参数建立的谐波源模型,变频器中各次谐波的百分含量如下页表3所示。

为了使用ETAP 软件进行谐波计算,首先要建立钻采平台的电力系统单线图,将工程中需要使用的元件拖拽到图纸OLV1中,并将各种电气参数进行输入,这些元件包括发电机、母线、开关、电缆、变压器、等效静态负荷、电机、变频器等。平台的用电

SHIP &BOAT

April ,2012

2012年4月

表3

变频器谐波电流信息

负荷及发电机的容量如表4所示。

图1钻采平台DPP 电力系统图

变频器容量

电流谐波水平

H1H5H7H11H13H17H19H23H25

H29H31H35H37H41H43H47H49

kW A %

40050934.610.6 6.59 3.14 2.6 1.83 1.18 1.120.650.650.40.40.360.290.250.24500

637

31.8

8.62

5.98

3.14

2.15

1.74

0.95

0.93

0.62

0.51

0.46

0.34

0.31

0.28

0.2

0.2

表4

平台发电机容量及平台用电负荷统计表

电潜泵设备容量

变频器容量

低压负荷

用电容量

发电机

电潜泵1310kW 400kW LA 段负荷1915kVA 主发电机1

运行

电潜泵2310kW 400kW LB 段负荷944kVA 5530kW

电潜泵3340kW 500kW LC 段负荷574kVA 主发电机2

运行

电潜泵4330kW 500kW LE1段负荷702kVA 5530kW

电潜泵5310kW 400kW LE2段负荷

363kVA

主发电机3

备用

电潜泵6290kW 400kW 中压负荷—

5530kW

电潜泵7320kW 500kW 钻机回路12285kVA 天然气发电机

运行

电潜泵8

330kW

500kW

钻机回路2

2285kVA

1000kW

点击运行“谐波潮流计算”程序,可以得到母线总的谐波电压畸变度(%)以及单次谐波电压畸变度,支路的各次谐波电流及其总的畸变度。通过计算可以看到8套变频器产生了大量的谐波电流,恶化了系统内电源的质量。钻采平台DPP中4.16kV、0.48kV的母线电压畸变报告以及母线LC段、LD 段的进线电流畸变报告分别见表5、表6,其电压、电流谐波畸变率远超过IEEE519和国标GB/T14549限制值。

表5母线电压畸变报告

母线次数合计571113171923252931353741

LC0.48kV

畸变度(%)14.6011.91 4.67 4.54 2.63 2.50 2.09 1.48 1.55 1.12 1.090.930.840.86

LD0.48kV14.3211.72 4.57 4.44 2.56 2.44 2.03 1.44 1.51 1.09 1.060.900.820.83 MA4.16kV 6.21 5.31 2.01 1.800.990.870.700.460.460.310.290.230.200.19 MB4.16kV 6.21 5.31 2.01 1.800.990.870.700.460.460.310.290.230.200.19

表6变压器二次侧电流畸变报告

变压器二次侧电流次数合计571113171923252931353741

LC进线0.48kV畸变度

(%)34.3532.039.23 6.06 3.03 2.29 1.72 1.020.990.610.560.420.360.32

LD进线0.48kV34.3732.059.24 6.07 3.04 2.29 1.72 1.030.990.610.560.420.360.32

2.2.2滤波器设计

LC段、LD段母排电压、电流谐波畸变率远超过

IEEE519限制值,应采取合理的滤波方式消除谐

波,采用就地滤波方式可以减小对电力系统的谐波

影响范围,增强电力系统稳定性。因此,首先可确定

滤波器应加装在LC、LD段母排处进行滤波,滤波器

通常采用室内安装方式。

滤波方式主要有两种,无源滤波器方案或有源

滤波器方案。海洋石油中针对电潜泵供电常用的是

“一对一的变频器加无源滤波器”方案,如图2所示。

无源滤波器通常由一组或几组单调谐滤波器和

高通滤波器构成,该装置与谐波源并联后,除了能滤

波外,还能起到无功补偿的作用,以无源滤波器为例

说明ETAP如何进行滤波器设计。从先前的分析可

知,谐波污染主要来自5次、7次、11次谐波,针对每

个谐波源依次添加5次、7次、11次单调谐滤波器。

ETAP软件有调谐滤波器容量计算功能,通过该功

能可以很快得到需要的合适滤波器容量。使用该功能需要填入以下几项参数[4]:

(1)要滤波的次数及谐波电流的大小;

(2)用于做滤波器的电容的额定电压、最大电压、电抗器最大允许电流和品质因数;

(3)滤波器投用前的现有功率因数、负荷的容量以及补偿后期望的功率因数。

给出这些条件后,软件会自动计算给出电容、电抗器的参数,并可以直接将计算结果替换到滤波器参数里。本实例计算得到5次、7次、11次滤波器中单相电容容量分别为10.14kvar、10kvar、10kvar,单相电容值分别为350.6μF、345.7μF、345.7μF,图2电潜泵“一对一变频控制方式”

QF QF

QF

供电回路供电回路

供电回路

谐波滤波器谐波滤波器

谐波滤波器

变频控制盘变频控制盘

变频控制盘

正弦滤波器正弦滤波器

正弦滤波器

变频变压器变频变压器

变频变压器

EX EX

EX

防爆接线盒防爆接线盒

防爆接线盒

电潜泵电潜泵

电潜泵

M M

M

SHIP &BOAT

April ,2012

2012年4月

电感值分别为0.3ohm 、0.16ohm 、0.06ohm 。将设计好的滤波器投入,再次进行谐波潮流计算,得到滤波后母线总的谐波电压畸变度以及单次谐波电压畸变

度的大小,支路的各次谐波电流及其总的畸变度的大小,见表7和表8,其结果满足IEEE 519和国标

GB/T 14549限制值。

通过比较与滤波前的电压波形(图3)及滤波后的电压波形(图4),可以看到滤波后的电压更加平滑,基本接近于正弦波,可见,采用合适的无源滤波器能够解决平台谐波的问题。

3

结论

随着海洋石油平台非线性设备(特别是采用交流变频的设备)越来越多,电网中的谐波也越来越严重,因此对电力系统进行谐波分析以及如何有效治理谐波,是平台电力系统设计的重要工作之一。

通过使用ETAP 软件,能够对系统进行谐波分析计算,并给出滤波器的选型设计。工程实践表明,

ETAP 作为全球范围内领先的电力系统仿真分析、

计算软件,其功能强大、计算准确,尤其是在电网谐波分析领域,能够简化设计工作量、提高工作效率,

对了解并解决当前海洋石油平台日益严重的谐波污染问题具有一定的指导作用。

[参考文献]

[1]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿[M ].第2版.北京:机械工业出版社,2006.

[2]

IEEE Std.519-1992.IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems [S ].

[3]

凌卫家,吕东晓,戴江江,等.面向用户的电力系统模拟计算高级应用软件[J ].湖北电力,2002,26(2):33-35.

[4]ETAP User Guide 5.5.0[M ].Irvine :OTI ,2006.

母线

次数

合计

571113171923252931353741LC 0.48kV 畸变度(%)

2.410.560.090.020.75 1.070.950.730.780.580.570.490.450.46LD 0.48kV

2.380.570.080.020.74 1.050.940.720.770.570.560.480.440.45MA 4.16kV 0.780.260.040.010.290.380.320.230.230.160.150.120.110.10MB 4.16kV

0.78

0.26

0.04

0.01

0.29

0.38

0.32

0.23

0.23

0.16

0.15

0.12

0.11

0.10

变压器二次侧电流

次数合计

571113171923252931353741LC 进线0.48kV 畸变度(%)

2.59 1.640.190.030.96 1.080.870.560.550.350.320.250.210.19LD 进线0.48kV

2.68

1.75

0.18

0.03

0.97

1.10

0.88

0.57

0.56

0.36

0.33

0.25

0.21

0.19

表7

母线电压畸变报告

表8

变压器二次侧电流畸变报告

图4滤波器投入后LC 母线电压波形

图3

滤波器投入前LC 母线电压波形

150

100

50

-50

-100

-150

0.10.20.30.40.50.60.70.80.9 1.0

Time (Cycle)

100

50

-50

-100

0.10.20.30.40.50.60.70.80.9 1.0

Time (Cycle)

电力谐波治理的几种方法

电力谐波治理的几种方法 目前常用的电力谐波治理的方法无外乎有三种,无源滤波、有源滤波、无功补偿。下面就谈谈这二种方法的优缺点以及市场前景及其经济效益的分析。6.1、无源谐波滤除装置无源滤波器的主要是用电抗器与电容器构成,无源滤波装置的成本较低,经济,简便,因此获得广泛应用。无源滤波器可以分为并联滤波器与串联滤波器。6.1.1、无源并联滤波器现有的谐波滤除装置大都使用无源并联滤波器,对每一种频率的谐波需要使用一组滤波器,通常需要使用多组滤波器用以滤除不同频率的谐波。多组滤波器的使用造成结构复杂,成本增高,并且由于通常的系统中含有无限多种频率的谐波成分,因此无法将谐波全部滤除。不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流,谐振在不同频率的滤波器还会互相干扰,例如7次谐波滤波器就可能会放大5次谐波。因此,如果有人将并联滤波器安装前后的谐波情况做过对比,就会发现:虽然滤波器安装以后影响系统的谐波电流减小,但是各滤波器中以及进入系统的谐波电流之和远远超过未安装滤波器之前,谐波源产生的谐波电流也超过未安装滤波器之前。从广义的角度来讲,频率不等于工频频率的成分统统都是谐波。因此,工频是单一频率,而谐波有无限多种频率,可见谐波具有无限的复杂性,使用并联滤波器的方法显然无法对付无限频率成分的谐波。6.1.2、无源串联滤波器由电感与电容串联构成的LC串联滤波器,具有一个阻抗很低的串联谐振点,如果我们构造一个串联谐振点为工频频率的串联滤波器,并将其串联在线路中,就可以滤掉所有的谐波。这就是本文介绍的串联滤波器,串联滤波器由电感和电容串联而成,并且串联连接在电源与负荷之间,因此串联滤波器的“串联”二字具有双重意思:一个意思表示电感与电容串联,另一个意思表示串联在电路中使用。在三相电路中均接入串联滤波器,由于串联带通滤波器对基波电流的阻抗很小,而对谐波电流的阻抗很大,于是只用一组滤波器就可以滤除所有频率的谐波。串联滤波器对于谐振点频率的电流具有极低的阻抗,对于偏离谐振点频率的电流,则阻抗增大,偏离的越多,阻抗越大。对于比谐振点频率高的电流成分,电感的阻抗为主,对于比谐振点频率低的电流成分,电容的阻抗为主。由于谐波成分通常比基波频率高,因此滤除谐波的工作主要由电感完成,电容的作用是抵消电感对工频基波的阻抗。由于滤除谐波的作用主要由电感完成,因此电感量越大滤除谐波的效果越好。但是电感量越大则价格越高,损耗越大,因此从成本及损耗上去考虑问题则希望电感量越小越好。当电感的基波感抗小于负荷等效基波阻抗的50%时,不能实现良好的滤波效果(负荷等效基波阻抗就是负荷相电压有效值与相电流有效值的比值)。因此电感的基波感抗必须大于负荷等效基波阻抗的50%。对于电容器的选择与电感的选择情况不同,电感的匝数可以随意设计,而电容器的耐压只有固定的若干等级,不能随意设计。比如在低压配电系统中,就只有耐压230V与400V的电力电容器可供选择。由于电容器串联在电路中,电容器中的电流即为负荷电流,当电容器的实际工作电压等于其额定电压时,电容器中流过的电流等于电容器的额定电流,电容器得到充分的利用,因此,当

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

基于MATLAB的电力谐波分析

目录 摘要 (2) Abstract (2) 1:绪论 (2) 1.1课题背景 (2) 1.2谐波的产生 (3) 1.3电网中谐波的危害 (5) 1.4研究谐波的重要性 (5) 2:谐波的限制标准和常用措施 (7) 2.1国外谐波的标准和规定 (8) 2.1.1谐波电压标准 (8) 2.1.2谐波电流的限制 (9) 2.2我国谐波的标准和规定 (9) 2.2.1谐波电压标准 (10) 2.2.2谐波电流的限制 (11) 2.3谐波的限制措施 (12) 3:谐波的检测与分析 (15) 3.1电力系统谐波检测的基本要求 (15) 3.2国内外电力谐波检测与分析方法研究现状 (15) 3.3谐波的分析 (18) 3.3.1电力系统电压(或电流)的傅立叶分析 (19) 3.3.2基于连续信号傅立叶级数的谐波分析 (19) 4:电力谐波基于FFT的访真 (21) 4.1快速傅立叶变换的简要和计算方法 (21) 4.1.1快速傅立叶变换的简要 (21) 4.1.2快速傅立叶变换的计算方法 (21) 4.2 FFT应用举例 (22) 5:结论 (28) 附录: (28) 参考文献: (30) 致谢: (30)

基于MATLAB的电力谐波分析 学生: 指导老师: 电气信息工程学院 摘要:电力系统的谐波问题早在20世纪20年代就引起人们的注意,到了50年代和60年代,由于高压直流输电技术的发展,发表了有关换流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分的关注。 本文首先对目前国内外电力谐波检测与分析方法进行了综述与展望,并对电力谐波的基本概念、性质和特征参数进行了详细的分析,给出了谐波抑制的措施。并得出基于连续信号傅立叶级数的各次谐波系数的计算公式,推导了该计算公式与MATLAB函数FFT计算出的谐波系数的关系。实例证明:准确测量各次谐波参数,对电力系统谐波分析和抑制具有很大意义,可确保系统安全、可靠、经济地运行。同时实验结果表明,该法对设备要求不高,易于实现。 关键字:MA TLAB电力谐波分析 Harmonic Analysis of Electric Power System Based On Matlab Student: Teacher: Electrical and Information Engineering Abstract:The harmonic problem of electric power system has caused the attention of people in1920s and 1930s.Until 1950s,owing to the development of high voltage direct current transportation electricity technology,people published a large number of theses about the electricity power system harmonic problem,which caused by the current transform device.Since 1970s,because of the speedly development of eletricity power electronics technology,the various electric power electronics devices were applied extensively in the electric power system,industry,traffic and family,but the harm which the harmonic creates was serious more and more.Many country of the world all pay attention to the harmonic problem. Summary and Prospects of the first domestic and international power harmonics detection and analysis methods, and power harmonics of the basic concepts of the nature and characteristic parameters of a detailed analysis, given a harmonic suppression measures. Obtained based on the

浅谈海洋石油平台变压器差动保护误动原因

浅谈海洋石油平台变压器差动保护误动原因 发表时间:2017-12-11T17:05:21.527Z 来源:《电力设备》2017年第23期作者:张利霞1 任冬2 [导读] 摘要:随着我国海上油气田的开发和利用,海上油气田规模在逐步扩大,海洋石油平台电力系统的供电范围也逐步扩大,对电力系统设计的可靠性要求也越来越高,而变压器是作为电力系统的重要组成部分,它的正常运行及工作是电力系统正常运行的有力保障,起了极大的积极作用。 (1湛江南海西部石油勘察设计有限公司广东湛江 524057; 2中海石油(中国)有限公司湛江分公司广东湛江 524057) 摘要:随着我国海上油气田的开发和利用,海上油气田规模在逐步扩大,海洋石油平台电力系统的供电范围也逐步扩大,对电力系统设计的可靠性要求也越来越高,而变压器是作为电力系统的重要组成部分,它的正常运行及工作是电力系统正常运行的有力保障,起了极大的积极作用。当然,在变压器的各个部件中,差动保护对其作用是非常明显的,变压器的主保护也是由它担任的。差动保护有着使用原理简单,保护范围清晰等优势,但是在差动保护的日常运行中,难免会因为各种原因而出现一些无法避免的差动保护误动现象。基于此,本文针对变压器差动保护误动原因进行了分析与探讨。 关键词:海洋石油平台;变压器;差动保护;误动原因 1变压器差动保护基本原理 1.1基本原理 一般情况下,变压器正常工作或者有区外故障发生时,由基尔霍夫电流定律可知,变压器的电流是不会发生变化的,因此,差动继电器装置是不会发生动作的。但是当变压器的内部发生故障时,变压器内部的电流就会发生故障,差动保护装置接触到的二次电流之和和故障点的电流成正相关,这时,差动继电器保护装置就会发生动作。 1.2主要作用 在海洋石油平台电力系统中变压器的差动保护装置主要对电路上的短路故障进行检测预防,该短路一般发生在双绕组变压器绕组内部和其引出线上,同时也会对变压器中的单相匝中的短路故障进行保护。电流互感器装置会接在变压器的两端,并且按循环电流的接法对二次侧进行相接,也就是说电流互感器的同极性端都向母线一侧涌入,则将同极性端子进行相连,并将电流继电器并联接入两接线之间。继电器中感受到的电流是两侧电流互感器值的差值,这也说明差动回路上进行差动继电器的连接。根据前文可知,理论上来讲,当变压器正常运行或者出现外部故障时,差动回路的电流是零。但是实际情况中,两侧机器存在系统误差,特性并不是完全一样,当正常运行或出现外部故障时,仍然会出现细小的不平衡电流Iumb(Ik=I1-I2=Iumb)经过。虽然该误差是无法避免的,但是应该确保该电流应该尽量的小,继电器的保护装置不会出现误动。当出现内部故障时,差动回路中的I2改变了以前的方向或为零,这个时候继电器中流过的电流为I1和I2之和,这个时候就会使继电器稳定的工作。 1.3保护范围 变压器差动保护的电流互感器中间的电气设备以及连接这些设备的导线构成了差动保护的范围。差动保护的操作较为简单,不需要和相邻元件之间进行配合。

电力系统谐波治理的四种方法

谐波,这个新鲜的电力系统名词,在当今的电力行业中,已广为“传播”,几乎在电力行业工作,以及与电力行业有直接关系的人,都对这个名词不陌生,尤其是用电大户单位,谈之色变,一是“谐波”直接影响了工厂的正常工作,由于谐波的存在,工厂的负荷上不去,即便上去了,无功也特高,而传统的“无功补偿”又不能凑效。而是即便无功补偿达到了要求,但谐波含量超标,管理部门不答应,自身的电费多交了不说,还讨不了好。 那么,是否拿“谐波”的肆虐就没有办法了,不!“办法总比问题多”,上海坤友电气有限公司集多年治理“谐波”的经验,针对不同的工况,总结了几种解决问题的方法,公布如下,与各位同仁共勉。 首先,我们讨论谐波的产生原因: 近年来,电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS)、节能荧光灯系统等,这些非线性负载导致电网污染,电力品质下降,引起供、用电设备故障,甚至引发严重火灾事故等。电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。 其次,我们讨论谐波的危害: 电源污染会对用电设备造成严重危害,主要有: 增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益: 谐波电流使输电线路的电能损耗增加。当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。 干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。 影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。 引起电气自动装置误动作,甚至发生严重事故。 使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。

浅谈海洋石油钻井平台安全生产管理(标准版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅谈海洋石油钻井平台安全生 产管理(标准版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅谈海洋石油钻井平台安全生产管理(标 准版) 和平年代,人们最关注的问题是什么?应该是安全问题。安全需要是人类生存和发展中仅次于生理需要的基本需要,在中国现阶段,生理需要基本得到满足的条件下,人们更加关注安全问题应该是顺理成章的。而安全问题在生产领域尤为突出,在此,笔者结合自身多年的工作经验,蜻蜓点水般谈谈海洋石油平台的安全生产管理。 海洋石油钻井平台用于海洋石油的勘探与开发,是一条特殊用途的船舶,因此除了要配备作为船舶的几乎所有系统(如动力系统、锚泊系统、起浮压载系统、通信系统、消防系统等)与设施(如救生设施、生活污水处理设施、油污水处理装置设施、垃圾处理设备设施等)外,还要配置满足其特殊功能专业系统装备,如钻井要用到

钻井绞车、顶驱、泥浆泵;处理泥浆需要配浆设备(配浆漏斗、配浆泵、搅拌器)、三除设备(振动筛、除砂器、除泥器、除气器);物体吊运需要用到各种起重设备如吊机、行车、铲车、气动和手拉葫芦;井控需要防喷器、导流器;监控检测需要硫化氢检测设施、摄像检测设备、泥浆池液面检测设备;对于半潜式或浮式平台还需要升沉补偿器、张紧器等设备系统。整个钻井作业过程还要涉及到录井、测井、下套管、固井等花样繁多的作业,这其中使用或设计到的设备设施更是五花八门。以上所列举的设备中有起重设备、锅炉、压力容器、压力管道等国家法律规定的特种设备;对于有的设备的使用和操作还需要起重工、电工、电焊工等特殊工种;在设备上或作业过程中还要用到危险化学品,如电气焊用到的氧气乙炔、防喷器控制系统和泥浆泵中要用到氮气以及试油时点火用到的液化石油气等压缩气体和液化气体属于危险化学品中的第二类,处理井底事故时爆炸松扣或爆炸切割工艺要用到的爆炸品属于危险化学品中的第一类,配置泥浆中用到的烧碱和蓄电池中用到的酸或碱液属于危险化学品中的第八类腐蚀品。其它几类危险化学品在平台上也

电力系统的谐波治理

电力系统的谐波治理 谐波及其产生 理想情况下,电网电压和电流波形为频率为50Hz(有些国家为60Hz)的正弦波。但是现实情况并非如此,电压和电流波形不是完美的正弦波,这被称为“畸变”。利用傅立叶分析法,这个畸变的波形可以分解为一系列不同频率的正弦波的叠加,其中序数为1的是我们需要的50Hz (或60Hz)的基波,其余的分量的频率是基波频率的整数倍,这些频率的电能是我们不希望看到的,被称为谐波。 谐波由非线性用电设备产生,这些设备被称为“谐波源”。主要的谐波源有: ○电力电子装置,如变频器、整流器、晶闸管。 ○电弧装置,如电弧炉、点焊机、荧光灯、水银灯。 ○饱和设备,如变压器、发电机、电动机。 谐波的影响 现有的用电、供电设备都是按基波频率设计的,谐波的存是一个很大的负面影响。主要有以下几方面: 1.电容器、变压器、电动机的发热和故障,寿命大大减少。 2.保护电路和控制系统的误动作。 3.仪器仪表的测量误差,如计量电费的电度表读数误差。 4.损坏电子设备,尤其是一些精密的电子设备 5.缩短白炽灯寿命 6.干扰通讯线路。 7.在一定条件下,与变压器产生谐振,导致供电系统崩溃。 ——谐波实质上是对供电系统的污染。 典型的谐波波形

典型的谐波波形 谐波术语 1.公共连接点PCC——point of common coupling 用户接入公用电网的连接处,在PCC上至少连接两个用户。 2.基波(分量)fundamental (component) 周期量的傅立叶级数中序数为1的分量,即频率与工频相同的分量。 3.谐波(分量)harmonic (component) 周期量的傅立叶级数中序数大于1的分量,即频率为基波频率整数倍的分量。 4.谐波次数harmonic order 谐波频率与基波频率的整数比。有时也写作harmonic number. 5.谐波含量harmonic content 从周期性交流量中减去基波分量后所得的量。

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

电力系统谐波的危害与治理

电力系统谐波的危害与治理 【摘要】谐波污染是影响电力系统安全稳定运行的主要因素之一,谐波影响了电力系统中的电能质量,会产生附加的谐波损耗,降低发电、输电及用电设备的效率。对谐波污染的有效治理,对于保证电力系统的经济运行具有重要的意义。本文介绍了电力系统中常见的谐波污染源种类,分析了谐波污染的危害,并对谐波治理方法进行了总结。 【关键词】电力系统谐波治理 1 电力系统中谐波的来源 谐波是指对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量,而基波是指其频率与工频相同的分量。就电力系统中的三相交流发电机发出的电压来说,其正常波形是正弦量,即电压波形基本上无直流和谐波分量。随着电网中各种电力电子设备的增加,电网的谐波污染日益严重。谐波会使电网中电压和电流波形发生畸变,严重影响电力系统中的电能质量。对电力系统中谐波污染的有效治理,对于保证电力系统的安全稳定运行具有重要的意义。 电力系统中的谐波主要由非线性或者对电流进行周期性开断控制的电气设备产生。电力系统中的谐波源主要有以下两种:一是具有非线性电流电压特性的设备,如感应炉、电弧炉、变压器等。还有就是装有电力电子器件对电流进行控制的设备,如变流装置、变频器、交流控制器等。 这些谐波源中,在设备的电源侧有整流回路的都会产生因其非线性引起的谐波。在输出侧的逆变电路中,对于电压型电路来说,输出电压是矩形波。对电流型电路来说,输出电流是矩形波。矩形波中含有较多的谐波,对负载会产生不利影响,因此即使电力系统中电源的电压是正弦波,也会由于这些非线性元件的存在使得电网中总有谐波电流或电压的存在。因此电网谐波的存在主要在于电力系统中存在各种非线性元件。 2 电力系统谐波的危害 电力系统中由于谐波所引起的不良反应十分广泛。谐波污染会使系统中的设备产生附加的谐波损耗,降低发电、输电及用电设备的效率。大量的三次谐波流过中性线会使线路过热甚至发生火灾。谐波会引起电网中局部的并联谐振和串联谐振,从而使谐波放大,引起严重事故。谐波影响各种电器设备的正常工作,使电机发生机械振动、噪声和过热,使变压器局部严重过热,使电容器、电缆等设备过热,使绝缘老化,寿命缩短以至损坏。谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量,重者导致信息丢失,使通信系统无法正常工作。谐波会导致继电保护和自动装置的误动作,并使电气测量仪表计量不准确。

电力系统谐波检测与分析毕业设计论文

毕业设计(论文)题目:电力系统谐波检测与分析

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

海洋石油平台微电网的建模分析

Journal of Electrical Engineering 电气工程, 2016, 4(4), 187-194 Published Online December 2016 in Hans. https://www.doczj.com/doc/ef3096147.html,/journal/jee https://www.doczj.com/doc/ef3096147.html,/10.12677/jee.2016.44024 文章引用: 龚华麟, 张金泉, 杨志强, 张欢. 海洋石油平台微电网的建模分析[J]. 电气工程, 2016, 4(4): 187-194. Modeling Analysis of Micro Grid of Offshore Oil Platform Hualin Gong 1, Jinquan Zhang 2, Zhiqiang Yang 2, Huan Zhang 2 1State Grid Chengdu Electric Power Supply Company, Chengdu Sichuan 2 School of Electrical and Information, Southwest Petroleum University, Chengdu Sichuan Received: Nov. 18th , 2016; accepted: Dec. 2nd , 2016; published: Dec. 8th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/ef3096147.html,/licenses/by/4.0/ Abstract Offshore oil platform micro grid is a very important part of offshore oil platform, and its stability plays an important role in the safety of offshore oil platform. Therefore, establishing mathematical model of offshore oil platform of the micro grid and studying its stability helps monitor and access the safety state of offshore oil platform of the micro grid, and this provides early warning strategy and suggestions for the electrical engineers and management personnel operating platform and does good for improving the safe operation level of the offshore platform. These actions are of much theoretical value and realistic meaning. This paper first introduces the characteristics of offshore oil platform of the micro grid, then analyzes the main components of gas turbine, sets up the model by PSCAD, and establishes the model according to the circuit structure of the micro grid diagram. It carries out a series of simulation in different operating conditions and different motor load proportion by assuming the motor as the main load first and gets relevant conclusions. Keywords Offshore Oil Platform, Micro Grid, PSCAD, Modeling Analysis 海洋石油平台微电网的建模分析 龚华麟1,张金泉2,杨志强2,张 欢2 1成都供电公司,四川 成都 2 西南石油大学电气信息学院,四川 成都 Open Access

浅谈海洋石油平台电气设备防爆措施

浅谈海洋石油平台电气设备防爆措施 发表时间:2019-01-16T11:24:27.200Z 来源:《电力设备》2018年第26期作者:薛成平 [导读] 摘要:近年来,随着我国海洋石油事业的发展,各种海洋设备数量逐渐上升。 (中国石油集团海洋工程有限公司天津分公司天津塘沽 300451) 摘要:近年来,随着我国海洋石油事业的发展,各种海洋设备数量逐渐上升。这其中尤其是以电气设备为主,并且是确保海洋作业安全的关键点之一。随着全社会对安全意识的提高,人们对机械电气设备的安全因素的考虑也逐步加强,海洋石油平台是一个特殊的作业环境,活动范围相对封闭,作业过程中人和设备会触及到易燃易爆性气体,故石油平台电气设备的防爆性能和防爆措施就显得格外重要。 关键词:海洋平台;电气设备;防爆措施 一、电气设备防爆区域的划分 1、爆炸是物质由一种状态迅速转变成另一种状态,并在瞬间放出大量能量,同时产生具有声响的现象,是一种极为迅速的物理或化学的能量释放过程。爆炸必须具备的三个条件:(1)爆炸性物质,(2)空气和氧气,(3)点燃源。 2、爆炸区域的划分: 1)爆炸性气体环境:0区:爆炸性气体环境连续出现或长时间存在的场所。1区:在正常运行时,可能出现爆炸性气体环境的场所。2区:在正常运行时,不可能出现爆炸性气体环境,如果出现也是偶尔发生并且仅是短时间存在的场所。 2)可燃性粉尘环境:20区:在正常运行过程中可燃性粉尘连续出现或经常出现,其数量足以形成可燃性粉尘与空气混合物和/或可能形成无法控制和极厚的粉尘层的场所及容器内部。21区:在正常运行过程中,可能出现粉尘数量足以形成可燃性粉尘与空气混合物但未划入20区的场所。 二、海洋平台电气设备的使用 海洋平台电气设备的应用结合外部环境因素及应用条件进行综合考虑分析。海洋平台电气防爆设备不完全都是防海浪、风雨设备。其结构和外壳还要充分适应周围的环境。相关规定曾指出,不同电气设备的外壳防护都有明确的规定。而防爆设备的使用条件包括:船舶电源、电压及频率的波动。船舶电网的波动幅度较大也比较频繁,按照相关规定,交流电压的电网电压波动要达到+6%-10%。 三、海洋平台防爆电气设备的分类 海洋电气防爆设备一般有以下几种类型: 1、增安型:此型号的电气设备在结构和类型上都有很大安全保障,在运行过程中不会出现电弧、火花等带有爆炸型危险因素的存在,降低了爆炸的可能性。 2、本质安全型:在海洋平台电气设备运行过程中利用限制电流和电压等方法,即使在发生故障都不会出电火花和热效应,因为点燃爆炸性气体没有达到爆炸的规定范围。 3、隔爆型:此类电气设备实现隔爆是通过对止内部零部件点燃外部爆炸性气体的外壳进行阻止。隔爆外壳的机械强度十分强,爆炸时所造成的冲击和压力都可以承受,外壳的各个结合面的配合间隙都很小,间隙内部的火焰向外壳外部传递能够得到阻止。 4、正压通风型:外壳内部之所以接受不到外部易燃、易爆气体的冲击,则是因为正压通风型设备通过采取措使外壳内部在接受大气时产生了一定的正压,以此来达到防爆的目的。 5、防爆冲砂型:防爆充砂型电气设备与防爆充油型防爆电气设备相似,前者是将所有的带电零部件都放置于细颗粒装的填充物,使不会产生电弧或电火花点燃外部爆炸性气体。 6、防爆充油型:电弧的零部件可以通过此电气设备都沉浸在油中,之后通过其他技术手段来保护不产生电弧的所有带电零部件,以此来阻止点燃油面上可能存在的爆炸性气体。 四、海洋平台防爆电气设备常见的安全隐患 1、选型错误 防爆电气设备应该根据不同的危险等级和类别来进行选型,一般在对平台的检查的过程中发现错误较多的地方则是在系统中部分电气设备选型方面。如在爆炸性气体环境采用粉尘环境用设备,Ⅱ类环境采用I类设备,上述都是典型的选型错误。所安装环境如果不能配备正确的设备,有效防爆的目的则不能完成。 2、防爆电气产品本身存在安全隐患 比如防爆电气设备外壳出现破损现状,防爆电气产品铭牌缺失或者模糊不清,防爆增安复合型产品的隔爆腔和接线腔的隔离密封填料不符合要求。 3、设备使用不当造成的安全隐患 在对用于爆炸危险性环境中非防爆电气设备检查过程中,常常发现危险区域现场施工人员使用的手工具、温湿度传感器、仪表、电动工具等都是非防爆电气设备。而在危险区域使用上述物品会导致直接构成安全生产隐患,严重造成人员财产双亡。 4、使用防爆电气设备未经批准 海洋平台电气设备中的防爆设备往往的使用的过程中工作人员未能按照相关标准来操作,有些甚至对设备擅自更改。如将光源换成更大功率的,设备的温度组别就会受到影响,如果最高温度组别高于周围环境,此光源很可能会成为引爆周围环境因素,成为爆炸点,造成爆炸事故,后果不堪设想。 5、防爆电气设备隔爆间隙超差 考量隔爆型电气设备的重要参数之一则是隔爆型电气设备的隔爆间隙,也是保证设备不传爆的重要因素之一。隔爆型电气设备在海洋平台上由于采购验收程序不够规范,存在大量漏洞,尤其在后期使用过程中环境的间接影响,使隔爆间隙超差成为海洋电气设备防爆中最常见的问题之一。 6、防爆型电气社设备隔爆面严重锈蚀 海洋平台电气防爆设备中最常用的就是防爆型电气设备,而影响设备隔爆型能的关键因素在于隔爆面的粗糙度和清洁度。设备在很大程度上会因为严重腐蚀的隔爆面而失去防爆性能,海洋平台上隔爆面腐蚀缺乏正常维护,长此以往也成为设备出现的问题之一。

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

电力谐波的治理及方法研究文献综述

电力谐波的治理及方法研究文献综述

电力谐波的治理及方法研究文献综述

电力谐波的治理及方法研究文献综述 随着非线性负荷的普遍增加,电力系统中的谐波成分也日趋增多,严重影响着用电设备的效率和安全运行,严重时甚至会引起事故。同时,精密制造业对各种微电子装置的广泛应用,也使得对电能质量要求的显著提高。所以,对于电力谐波的检测是解决其他谐波问题的基础,对于有效抑制谐波具有非常重要的意义。 1.谐波危害 (1)谐波对供配电线路产生的危害。电力系统中的电力谐波会使电网中的电压和电流发生变化。民用配电系统中的中性线会产生大量奇次谐波。在三相配电线路中,相线上的3的整数倍谐波在中线上会产生叠加,导致中线上的电流值存在超过相线上电流的可能。[1] (2)谐波对电力设备的危害。当谐波作用于电容器、电缆等电力设备时,会使电容器的功耗增加,温度升高,绝缘老化甚至损坏。[2]电缆中在一定数值下电容与电感都有发生谐振的可能。另外,由于谐波频率较高,趋肤效应则越明显,使得交流电阻变大,通过的电流变小。对于一些低压开关设备,由于发热会使配电断路器产生误动作。 2.谐波检测 (1)模拟电路检测法:该检测方法在国内较常用,但造价昂贵,对频率和温度的反应较敏感,容易产生较大误差。 (2)基于傅里叶变换:根据国内电力系统谐波的现状,现阶段主要采用傅里叶转换方法进行检测,且主要适用于数字领域。缺点是采样信号长度有一定限制,无法对无限长度信号进行采样。 (3)小波变换检测:小波变换相对于以上两种方法应用更为广泛,

尤其在信号分析、图像处与分析、语音识别与合成及自动控制等领域等到了应用。小波变换弥补了傅里叶变换的不足,精确度高,可自动调焦,还能追踪一些较为复杂的信号。 3.谐波的治理 通常电网中的谐波一半来自三个方面:[3](1)输送电力系统产生的谐波;(2)发电源质量低产生谐波;(3)用电设备产生谐波。其中主要是用电设备产生的谐波比较多。 3.1 提高电能质量治理谐波 一方面,要了解现阶段已有的谐波源用户设备,加强谐波治理的宣传工作。对于检测不合格的用户应当停止供电;另一方面,要选择合适的变压器、电动机和电抗器等相关设备,保证其接近满负荷运行,在源头上防止谐波的产生并及时进行处理。 3.2 加装设备治理谐波 1.减少非线性用电设备与电源间的电气距离。也就是减少系统阻抗,换句话说就是提高供电电压等级。例如,在丽水电业局的遂昌钢厂就取得了不错效果,该钢厂原是用35kV供电,由两个110kV变电所各架设一回35kV专线供电,而它的主要用电设备是电弧炉,虽然进行了五次、七次谐波治理,但在110kV的35kV母线上测得谐波分量仍接近或稍超国家标准。但在丽水局在遂昌新建了一个220kV变电所而且离该钢厂仅4km左右,用5回35kV专线供电,使35kV母线的谐波分量控制在国家标准以内,此外该厂还使用了较大容量的同步发电机,使这些非线性负荷的电气距离大大下降,使该厂生产的谐波对电网的危害性下降,这种方法投资是最大的,往往需要和电网发展规划

相关主题
文本预览
相关文档 最新文档