当前位置:文档之家› 函数的基本性质及其应用

函数的基本性质及其应用

函数的基本性质及其应用
函数的基本性质及其应用

1、函数的概念:设A B 、是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数(f x )和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数.记作:(,y f x

x A =∈).其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}(f x

x A ∈)}叫做函数的值域.

2、函数的单调性

(1)设[]2121,,x x b a x x ≠∈?那么

[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数. (2) 设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.

注意:如果函数

)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数

)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数。

3、函数的奇偶性:对于函数f(x)的定义域内任意一个x ,

f(x)是奇函数0)()()()(=+-?-=-?x f x f x f x f f(x)是偶函数()()()()0f x f x f x f x ?-=?--=

注意:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.

4、函数的对称性:(1)函数)(x f y =和)(1

x f

y -=的图象关于直线y=x 对称;

(2)函数关于点(a,b )对称:f(x+a)+f(a-x)=2b ;

(3)函数)(x f y =关于a x =对称?)()(x a f x a f -=+

5、复合函数的构成:设()u g x =是A 到B 的函数,()y f u =是'B 到'C 上的函数,且B

'B ?,当u 取遍B 中的元素时,y 取遍C ,那么(())y f g x =就是A 到C 上的函数;此函

数称为由外函数()y f x =和内函数()u g x =复合而成的复合函数。

知识回顾

6、复合函数分析法:

设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。如下表:

当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数,即我们所说的“同增异减”规律。

1.求下列函数的定义域:

(1)若函数)(x f y =的定义域[-1,2],求)1(2-=x f y 的定义域; (2)已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域.

(3)已知函数y=)2(2-x f 的定义域为[1,3],求函数)23(+x f 的定义域。

解题方法:由复合函数的定义我们可知:要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中;(1)y=f(x)的定义域[m,n],求y=f(g(x))的定义域就是求不等式m ≤g(x)≤n 的解集,即为y=f(g(x))的定义域(2)已知y=f(g(x))定义域[m,n],求y=f(x)的的定义域就是求内函数t=g(x)在区间x ∈[m,n]的值域(t 的取值范围),即为y=f(x)的定义域 (3)已知y=f(g(x))定义域[m,n],求y=f(h(x))定义域的就是由y=f(g(x))定义域求y=f(x)的定义域,再y=f(x)的定义域求y=f(h(x))的定义域。 2.求有关复合函数的解析式,

①已知 ,1)(2

+=x x f 求)1(-x f ;②已知x

x x f 1

)1(+

=- ,求)(x f ; ③已知221

)1(x

x x x f +=-,求)1(+x f .

()y f u =()u g x =[,]x a b ∈[,]u m n ∈[()]y f g x =[,]a b

解题方法:(1)已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。 (2)已知

)]([x g f 求)(x f 的常用方法有:配凑法和换元法;配凑法就是在)]([x g f 中把关于变量x 的表达

式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f ;换元法就是先设t x g =)(,从中解出

x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直

接换成x 即得

)(x f .

3.已知函数()f x 对任意实数x y 、,均有()()()f x y f x f y +=+,且当0x >时,

()0,(1)2,f x f >-=-求()f x 在区间[-2,1]上的值域。

4.设()f x 定义在+∞(0,)上的单调增函数,满足()()+()f xy f x f y =,(3)1f =。 求:(1)(1);f

(2) 若()+(8)2,f x f x -≤求x 的取值范围。

5.已知函数f (x )在(-1,1)上有定义,f (

2

1

)=-1,当且仅当0

xy

y

x ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.

6.已知函数()f x 定义在(1,1)-上,对于任意的,(1,1)x y ∈-,有()()()1x y

f x

f y f xy

++=+,且当0x <时,()0f x >.(1)验证函数1()ln

1x

f x x

-=+是否满足这些条件; (2)若(

)1,()211a b a b

f f ab ab +-==+-,且||1,||1a b <<,求(),()f a f b 的值. (3)若1()12f -=,试解关于x 的方程1

()2

f x =-.

7.函数1()x y e x R +=∈的反函数是( )

A .1ln (0)y x x =+>

B .1ln (0)y x x =->

C .1ln (0)y x x =-->

D .1ln (0)y x x =-+>

8.已知(31)4,1

()log ,1a a x a x f x x x -+?

是(,)-∞+∞上的减函数,那么a 的取值范围是( )

(A )(0,1)

(B )1

(0,)3 (C )11[,)73

(D )1[,1)7

9.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,

1221|()()|||f x f x x x -<-恒成立”的只有( )

(A )1

()f x x

=

(B )()||f x x = (C )()2x f x =

(D )2()f x x =

10.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =

设63(),(),52a f b f ==5(),2

c f =则( ) (A )a b c << (B )b a c << (C )c b a << (D )c a b <<

11.

函数2()lg(31)f x x =

+的定义域是( )

A .1(,)3-+∞

B . 1(,1)3-

C . 11(,)33-

D . 1(,)3

-∞-

12.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈D . x 1() ,2

y x R =∈

13.已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;

14.已知函数2()1f x x x =+-,,αβ是方程f (x )=0的两个根()αβ>,'()f x 是f (x )的导数;设

11a =,1()

'()

n n n n f a a a f a +=-

(n =1,2,……) (1)求,αβ的值; (2)证明:对任意的正整数n ,都有n a >a ;

(3)记ln n n n a b a a

β

-=-(n =1,2,……),求数列{b n }的前n 项和S n 。

4 对数函数及其性质(1)

高中数学教学设计大赛 获奖作品汇编 4、对数函数及其性质(1) 一、教材分析 本小节主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计

专题一 函数图象与性质的综合应用

专题一 函数图象与性质的综合应用 (时间:45分钟 满分:100分) 一、选择题(每小题7分,共35分) 1.下列函数中,在其定义域内既是增函数又是奇函数的是 ( ) A .y =x 3+x B .y =-log 2x C .y =3x D .y =-1 x 2.设函数f (x )是定义在R 上周期为3的奇函数,若f (1)<1,f (2)=2a -1 a +1 ,则 ( ) A .a <1 2且a ≠-1 B .-10 D .-10f (x +1)+1,x ≤0,则f ????43+f ???? -43的值为________. 7.已知函数f (x )=? ??? ? x 2+x (x ≥0),-x 2-x (x <0), 则不等式f (x )+2>0的解集是________. 8.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,则不等式log a (x -1)>0的解集为 ___________.

数学教案-指数函数与对数函数的性质及其应用.doc

数学教案-指数函数与对数函数的性质 及其应用 教案 课题:指数函数与对数函数的性质及其应用 课型:综合课 教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。 重点:指数函数与对数函数的特性。 难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。 教学方法:多媒体授课。 学法指导:借助列表与图像法。 教具:多媒体教学设备。 教学过程: 一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。 二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

指数函数与对数函数关系一览表函数 性质 指数函数 y=ax (a>0且a≠1) 对数函数 y=logax(a>0且a≠1) 定义域 实数集r 正实数集(0,﹢∞) 值域 正实数集(0,﹢∞) 实数集r 共同的点 (0,1) (1,0) 单调性 a>1 增函数 a>1 增函数 0<a<1 减函数 0<a<1 减函数

函数特性 a>1 当x>0,y>1 当x>1,y>0 当x<0,0<y<1 当0<x<1, y<0 0<a<1 当x>0, 0<y<1 当x>1, y<0 当x<0,y>1 当0<x<1, y>0 反函数 y=logax(a>0且a≠1)y=ax (a>0且a≠1) 图像 y y=(1/2)x y=2x (0,1)

x y y=log2x (1,0) x y=log1/2x 三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关 于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反 函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的 值域与y=ax的定义域相同。 y y=(1/2)x y=2x y=x (0,1) y=log2x (1,0) x y=log1/2x

函数性质综合应用专题

函数及其性质专题 A 组题 1. 已知函数()133x x f x ?? =- ??? ,则()f x ( ) A. 是奇函数,且在R 上是增函数 B. 是偶函数,且在R 上是增函数 C. 是奇函数,且在R 上是减函数 D. 是偶函数,且在R 上是减函数 【答案】A 【解析】()()113333x x x x f x f x --?? ??-=-=-=- ? ??? ??,所以该函数是奇函数,并且3x y =是增函数, 13x y ??= ??? 是减函数,根据增函数?减函数=增函数,可知该函数是增函数,故选A. 2.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( ) A .(,())a f a -- B .(,())a f a - C .(,())a f a - D .(,())a f a --- 【解析】可验证函数()f x 满足()()f x f x -=,()f x 是偶函数,故选B . 3.已知函数21,0 ()cos ,0x x f x x x ?+>=?? ≤,则下列结论正确的是( ) A .()f x 是偶函数 B .()f x 是增函数 C .()f x 是周期函数 D .()f x 的值域为[)1,-+∞ 【解析】当0x ≤时,()cos [1,1]f x x =∈-,当0x >时,),1(1)(2+∞∈+=x x f ,故选.D 4.如果奇函数()f x 在区间[3,7]上是增函数且最大值为5,那么()f x 在区间[7,3]--上是( ) A .增函数且最小值是-5 B .增函数且最大值是-5 C .减函数且最大值是-5 D .减函数且最小值是-5 【解析】奇函数图像关于原点对称,故由题()f x 在[7,3]--上递增,故在[7,3]--上, m i n ()( 7)(7)5f x f f =-=-=-,故选.A 5.若函数()f x 是R 上周期为5的奇函数,且满足(1)1,(2)2f f ==,则(3)(4)f f -=( ) A.1- B.1 C. 2- D. 2 【解析】因为函数()f x 是R 上周期为5的奇函数,所以(3)(4)(2)(1)(1)f(2) 1.f f f f f -=---=-=-故选.A 6.函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数 【解析】当,x k k Z π≠∈时,()()f x f x -=且()lg |sin()|lg |sin |()f x x x f x ππ+=+==,故选.C 7. 已知函数f (x )恒满足()(2)f x f x =-,且当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f 1 ()2 - ,b =f (2),c =f (e),则a ,b ,c 的大小关系( )

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

对数函数性质及练习(有答案)

对数函数及其性质 1.对数函数的概念 (1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的特征: 特征???? ? log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数 log a x 的真数:仅是自变量x 判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征. 比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因 是不符合对数函数解析式的特点. 【例1-1】函数f (x )=(a 2 -a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2 -a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________. (1)y =log (a >0,且a ≠1);(2)y =log 2x +2; (3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析: 2.对数函数y =log a x (a >0,且a ≠1)的图象与性质

(1)图象与性质 谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用. (2)指数函数与对数函数的性质比较 (3)底数a对对数函数的图象的影响 ①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上

函数性质综合运用(讲义)

函数性质综合运用(讲义) ?课前预习 1.填空: ①如果我们将方程组中的两个方程看作是两个函数,则方程组的解恰好对应 两个函数图象的__________________;方程x2+3x-1=2x+1的根对应两个函数图象交点的__________. 特别地,一元二次方程ax2+bx+c=0(a≠0)的根是二次函数______________的图象与______交点的横坐标.当?>0时,二次函数图象与x轴有_____个交点;当?=0时,与x轴有_____个交点;当?<0时,与x轴______交点. ②y=2x+1与y=x2+3x+1的交点个数为__________. 2.借助二次函数图象,数形结合回答下列问题: ①当a>0时,抛物线开口_____,图象以对称轴为界,当x_____时,y随x 的增大而增大;该二次函数有最____值,是_______; ②当a<0时,抛物线开口____,图象以对称轴为界,当x_____时,y随x的 增大而增大;该二次函数有最___值,是______. ③已知二次函数y=x2+2x-3.当-5<x<3时,y的取值范围为__________;当 1<x≤5时,y的取值范围为__________. 注:二次函数y=ax2+bx+c的顶点坐标为 2 4 () 24 b a c b a a --,. ?知识点睛

a b c k ???? ?? ????? ?????? ???????①坐标代入表达式,得方程或不等式表达式与坐标②借助表达式设坐标①判断,,,等字母符号函数图象与性质②借助图象比大小、找范围 ③图象平移:左加右减,上加下减 将方程、不等式转化为函数,函数与方程、不等式数形结合,借助图象分析 ?????????????????? ??????????????? ?? 第一步:设坐标 利用所在函数表达式或坐标间关系横平竖直第二步:坐标相减竖直线段:纵坐标相减,上减下水平线段:横坐标相减,右减左表达线段长①倾斜程度不变借助相似,利用竖直线段长表达斜放置②倾斜程度变化 ? 精讲精练 1. 抛物线y =ax 2+bx +c 上部分点的横坐标x 、纵坐标y 的对应值如表所示. y 轴的右侧;③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小;⑤一元二次方程ax 2+bx +c =4的解为x =-1或x =2.由表可知,正确的说法有______个. 2. 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况 下,与其对应的函数值y 的最小值为5,则h 的值为( ) A .5或1 B .-1或5 C .1或-3 D .1或3 3. 已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0), 当a -b 为整数时,ab 的值为( ) A .34或1 B .14或1 C .34或12 D . 14或34 4. 二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(-1,0),对称 轴为直线x =2.给出下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④

对数性凸函数的性质及应用解读

对数性凸函数的性质及应用 王传坚 (楚雄师范学院数学系2003级1班) 指导老师郎开禄 摘要:在本文中,得到了对数性凸函数的四个性质,并讨论了对数性凸函数的性质的应用。 关键词:凸函数;.对数性凸函数; 基本性质; 应用. The research and application on some properties of logarithmatic convex function Wang Chuanjian (Department of Math, Chu Xiong Normal University, Chu Xiong,Yun Nan ,675000) Abstract: In this paper, the author gives some properties of logarithmatic convex function by studying the fundamental properties, and give some application about the properties of logarithmatic. Key Words:Convex Function; Logarithmatic Convex Function; Fundamental Property; Application. 导师评语: 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用.在文[1]( [1] 刘芳园,田宏 根. 对数性凸函数的一些性质[J].《新疆师范大学学报》,2006,25(3):22-25.)中,刘芳园,田宏根 引入对数性凸函数的概念,研究获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数基本性 质的一些应用. 受文[1]的启发,在文[1]的基础上,王传坚同学的毕业论文<<对数性凸函数的性性质及其应用>>进一步研究了对数性凸函数性质,获得了对数性凸函数的两个性质(推论1,推论2)和四个基本结果(定理3, 定理4, 定理5, 定理6),并讨论了对数性凸函数的性质及其应用. 王传坚同学的毕业论文<<对数性凸函数的性质及其应用>>选题具有理论与实 际意义,通过研究所获结果具有理论与实际意义.该论文的完成需要较好的数学分析基础,主要结果 的证明有一定的技巧,论文的完成有一定的难度,是一篇创新型的毕业论文.论文语言流畅,打印行文 规范.该同学在撰写论文过程中,悟性好,独立性强.

《对数函数及其性质》教案及设计说明

对数函数及其性质教学设计 三亚市第四中学邓影 课题:对数函数及其性质 使用教材:人教A版《普通高中课程标准实验教科书数学(必修1)》 第二章第2.2.2节第一课时 一、教材分析 1.本节教材的地位和作用 基本初等函数是函数的核心内容,而对数函数又是重要的基本初等函数之一。在此之前,学生已经学习了指数函数及对数运算,为本节的学习起着铺垫作用,同时对数函数作为常用数学模型是解决有关自然科学领域中实际问题的重要工具,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。因此本节课具有承前启后的作用。 2.教学重难点 重点:本节课是新授课,,因此我把本节课重点定为对数函数的概念、图象,和性质。 难点:学生在探究对数函数性质时可能会遇到障碍,因此我把探究对数函数性质作为本节课的难点。 二、教学目标 根据上述教材结构与内容分析,考虑到学生实际情况及其认知结构心理特征制定教学目标如下: 1.知识与技能: (1)理解对数函数的概念; (2)掌握对数函数的图像和性质,并在探索过程中学会运用数形结合的方法研究问题; 2.过程与方法: (1)经历对数函数概念的形成过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,由具体到一般,提高学生归纳概括能力; (2)学生通过自己动手作图,分组讨论对数函数的性质,提高动手能力、合作学习能力以及分析解决问题的能力; (3)通过类比指数函数性质研究对数函数,培养学生运用类比的思想研究数学问题的素养;

3.情感、态度与价值观: 在知识形成的过程中,体会成功的乐趣,感受数学图形的美,激发学生学习数学的热情与爱国主义热情,培养学生勇于探索敢于创新的精神。 三、教法学法 1.教学方法 建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。 高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟. 在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式 ...”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。 2. 学法指导 新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。 3. 教学手段 本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务. 4.教学流程

函数图象与性质的综合应用

《函数图象与性质的综合应用》教学设计 一、内容及其解析 1.内容:函数图象与性质的综合应用。 2.解析: (1)函数图象是高考的必考内容,其中作图、识图、用图也是学生必须掌握的内容。 (2)函数的性质是高考的必考内容,它是函数知识的核心部分.函数的性质包括函数的定义域、值域、单调性、奇偶性、周期性、对称性与最大值、最小值等,在历年的高考试题中函数的性质都占有非常重要的地位。 (3)函数图象形象地显示了函数的性质(如单调性、奇偶性、最值等),为研究数量关系问题提供了“形”的直观性,因此常用函数的图象研究函数的性质。 二、目标及其解析 1.目标:(1)能根据要求作图、识图、用图,(2) 会用函数的性质比较函数值的大小、求函数值、解不等式、求二次函数的最值问题。 2.解析: (1)作图一般有两种方法:描点法、图象变换法.特别是图象变换法,有平移变换、伸缩变换和对称变换,要记住它们的变换规律;识图时,要留意它们的变化趋势,与坐标轴的交点及一些特殊点,特别是对称性、周期性等特点,应引起足够的重视;用图,主要是数形结合思想的应用。 (2)利用函数的性质比较函数值的大小、求函数值、解不等式、求二次函数的最值问题,其实是考查考生能否用运动变化的观点观察问题、分析问题、解决问题,特别是函数的最值问题,它是高考中的重要题型之一,所以要掌握求函数最值的几种常用方法与技巧,灵活、准确地列出函数模型。 三、问题与例题 问题1:函数有哪些性质,用这些性质可以解决哪些数学问题? 题型一 函数求值 例1 已知f (x )=????? 2t x (x <2),log t (x 2-1) (x ≥2), 若f (2)=1,则f [f (5)]=________. 设计意图:求解分段函数的函数值应注意验证自变量的取值范围.易错点是忽视自变量取值范围的限制。 变式训练1 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2 009)+f (-2 010)的值为( ) A .-2 B .-1 C .1 D .2 题型二 函数与不等式

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 https://www.doczj.com/doc/f09578961.html,work Information Technology Company.2020YEAR

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式 最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).

函数的性质综合应用

一、选择题 1.(2016·广西桂林中学高一期中上)下列函数中,既是单调函数又是奇函数的是( ) A .y =log 3x B .y =3|x | C .y =x 12 D .y =x 3 2.(2016·荆州模拟)已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ????20152等于( ) A.3+1 B.3-1 C .-3-1 D .-3+1 3.(2016·西安模拟)设f (x )是定义在实数集上的函数,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( ) A .f ????130的解集为( ) A .{x |x >2或x <-2} B .{x |-2

C .{x |x <0或x >4} D .{x |03,若在其定 义域内存在n (n ≥2,n ∈N *)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n ) x n ,则n 的

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

函数性质综合应用1

1、不等式)2(log log )1()32()1(->---x x x x 成立的一个充分不必要条件是 ( ) (A )2>x (B )4>x (C )21<x 2、若)(x f 满足+∈R x x 21,时,恒有2)()()2(2121x f x f x x f +>+,则)(x f 可能是( ) (A )2x y = (B )x y 2= (C )x y 2log = (D )x y 2 1log = 3、设)0()(2≠++=a c bx ax x f ,对任意的实数t ,都有)2()2(t f t f -=+成立,在函数值 )5(),2(),1(),1(f f f f -中,最小的一个不可能是 ( ) (A ))1(-f (B ))1(f (C ))2(f (D ))5(f 4、若函数62.1)1(,)1lg(2)(22=-+++=h x x x x h ,则=)1(h ( ) (A )38.0 (B )62.1 (C )38.2 (D )62.2 5、(选作题)定义在区间),(+∞-∞的奇函数)(x f 的增函数,偶函数)(x g 在区间[)+∞,0的图象与)(x f 的图象重合。设0>>b a ,给出下列不等式,其中成立的是 ( ) (1))()()()(b g a g a f b f -->-- (2))()()()(b g a g a f b f --<-- (3))()()()(a g b g b f a f -->-- (4))()()()(a g b g b f a f --<-- (A ))4)(1( (B ))3)(2( (C ))3)(1( (D ))4)(2( 填空题: 6、已知函数)(x f 满足对任意实数21x x <,有)()(21x f x f <, 且)()()(2121x f x f x x f +=+,写出一满足这些条件的函数_________________ 7、函数)12(log 22-+=x ax y 的值域为R ,则a 的取值范围为____ ___ . 8、(选作题)若存在常数0>p ,使得函数)(x f 满足R x px f p px f ∈=- ,)()2(,则)(x f 的一个正周期为_________

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which

必修1随堂练.2对数函数的图象及性质的应用

【金版教程】2015-2016高中数学 2.2.2.2对数函数的图象及性质的 应用随堂练习 新人教A 版必修1 1.[2015·宁夏银川高一期中]已知y =(14 )x 的反函数为y =f (x ),若f (x 0)=-12,则x 0=( ) A .-2 B .-1 C .2 D.12 [解析] y =(14)x 的反函数是f (x )=log 14 x , ∴f (x 0)=log 14 x 0=- 12. ∴x 0=(14)-12 =[(12)2] -12 =2. [答案] C 2.已知y =log a (2-ax )在[0,1]上为x 的减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) [解析] 题目中隐含条件a >0. 当a >0时,t =2-ax 为减函数, 故要使y =log a (2-ax )在[0,1]上是减函数, 则a >1,且t =2-ax 在x ∈[0,1]时恒为正数, 即2-a >0,故可得1log 53>0, 1>log 53>0, ∴log 54>(log 53)2 即a >b . 又∵log 45>1>log 54, 即c >a . ∴c >a >b . [答案] D 4.[2014·天津高考]函数f (x )=log 12 (x 2-4)的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(2,+∞) D .(-∞,-2)

数值分析第二章复习与思考题

第二章复习与思考题 1、什么就是拉格朗日插值基函数?它们就是如何构造得?有何重要性质? 答:若次多项式在个节点上满足条件 则称这个次多项式为节点上得次拉格朗日插值基函数、 以为例,由所满足得条件以及为次多项式,可设 , 其中为常数,利用得 , 故 , 即 ()()()()()()()()∏≠=+-+---= --------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)(ΛΛΛΛ、 对于,有,特别当时,有 、 2、什么就是牛顿基函数?它与单项式基有何不同? 答:称为节点上得牛顿基函数,利用牛顿基函数,节点上得次牛顿插值多项式可以表示为 其中、与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次得插值多项式,例如 , 其中就是节点上得阶差商,这一点要比使用单项式基方便得多、 3、什么就是函数得阶均差?它有何重要性质? 答:称为函数关于点得一阶均差,为得二阶均差、 一般地,称 为得阶均差、 均差具有如下基本性质: (1) 阶均差可以表示为函数值得线性组合,即 []() ()()()() ∑=+-----= n j n j j j j j j j n x x x x x x x x x f x x x f 0 11010,,ΛΛΛ, 该性质说明均差与节点得排列次序无关,即均差具有对称性、 (2) 、 (3) 若在上存在阶导数,且节点,则阶均差与阶导数得关系为 ,、 4、写出 个点得拉格朗日插值多项式与牛顿均差插值多项式,它们有何异同? 答:给定区间上个点 上得函数值,则这 个节点上得拉格朗日插值多项式为 , 其中、 这个节点上得牛顿插值多项式为 ,

相关主题
文本预览
相关文档 最新文档