当前位置:文档之家› 行列式试题及答案

行列式试题及答案

行列式试题及答案

行列式的定义及其性质证明

行列式的定义及其性质证明 摘要:本文给出了与原有行列式定义不同的定义,利用此定义和引理导出定理,进一步导出行列式的性质,给出了行列式性质与以往教材不同的完整证明,形成了有关行列式的新的知识体系,通过定理性质的证明过程,重点在培养同学们的逻辑思维能力、推理能力和创新能力。 关键词:行列式;定义;性质;代数余子式;逆序数 1 基本定理与性质的证明 引理设t为行标排列q1q2…qn与列标排列p1p2…p n的逆序数之和,若行标排列与列标排列同时作相应的对换,则t的奇偶性不变。 证明根据对换定理:一个排列中的任意两个元素对换,排列改变奇偶性。若行标排列与列标排列同时作相应的对换,则行标排列的逆序数与列标排列的逆序数的奇偶性同时改变,因而它们的逆序数之和的奇偶性不变。 定理1 n阶行列式也可定义为 证明由定义1和引理即可证得。 性质1 行列式与它的转置行列式相等(由定理1即可证得)。 (根据性质1知对行成立的性质对列也成立) 性质2 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。 证明利用定理1和代数余子式的定义即可证得。 性质3 如果行列式中有两行(两列)元素对应相等,则此行列式等于零。 证明(利用递推方法来证)设行列式中第k行和第j行的元素对应相等,由性质2可知 又A is=(-1)i+s(s=1,2,…,n),根据性质2,M i+s又可以展开成n-1项的和,每一项都是一实数与n-1阶行列式的乘积,以此类推,M i+s 总可以展开成一个实数与一个二阶行列式的乘积之和,即 (mi为实数,Di为含有原行列式中k行和j行的二阶行列式),这个二阶行列式的两行就是原n阶行列式中的k行j行对应的元素,由于这

行列式的性质

行列式的性质 基本性质 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。 性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。 性质5 若行列式的某一行(列)的元素都是两数之和,例如第j 列的元素都是两数之和 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 一般利用行列式的定义计算高阶行列式比较繁琐,下面我们将推导出行列式的一些性质,为行列式的计算做准备. 设 111212122212 n n n n nn a a a a a a D a a a = , 112111222212n n T n n nn a a a a a a D a a a = 称行列式T D 为D 的转置行列式.T D 可以看成是D 的元素沿着主对角线旋转180所得,亦可看成是将D 的所有行(列)按序写成所有列(行)所得(即所谓行列互换). 性质1. 1 行列式的值与其转置行列式的值相等,即 111212122212 n n n n nn a a a a a a a a a 112111222212n n n n nn a a a a a a a a a = . 证明 将等式两端的行列式分别记作D 和T D ,对行列式的阶数用数学归纳法. 当2n =时,可以直接计算出T D D =成立,假设结论对小于n 阶的行列式都成立,下面考虑n 阶的情况. 根据定义 1111121211n n D a A a A a A =++ +,

行列式的计算方法

摘要 行列式是高等代数中重要的内容之一,在数学中有着广泛的应用.通过对行列式基本理论的介绍,针对不同类型的行列式,结合具体例题,介绍行列式的计算方法,其中包括降阶法,升阶法,数学归纳法等. 关键词:行列式;范德蒙行列式;计算

Abstract The determinant is an important content of higher algebra, which having wide application in mathematics. Through the introduction of the basic theory of the determinant, combined with concrete examples, the calculation for different types of determinant are introduced, which including the reduction method, order method, mathematical induction, and so on. Key words: determinant;vandermonde determinant;calculation

目录 摘要 ................................................................................................................................I Abstract ....................................................................................................................... II 第1章行列式的形成和性质 .. (1) 第1节行列式的发展史 (1) 第2节行列式的性质 (2) 第2章行列式的计算方法 (4) 第1节化三角形法 (4) 第2节降阶法 (8) 第3节递推法 (9) 第4节加边法 (11) 第5节拆行(列)法 (12) 第6节数学归纳法 (14) 结论 (16) 参考文献 (17) 致谢 (18)

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

行列式的定义及性质

行列式的定义及性质 (张俊敏) ● 教学目标与要求 通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。 ● 教学重点与难点 教学重点:n 阶行列式的定义及性质。 教学难点:n 阶行列式定义的理解。 ● 教学方法与建议 通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。 ● 教学过程设计 1.问题的提出 求解二、三元线性方程组 (二元线性方程组???=+=+22221 211 212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为: 22 21 1211 222121********* 122211a a a a a b a b a a a a b a a b x = --= 二阶、三阶行列式

22 212 1122 211112112221121 12112a b a a a a b a a a a a a b b a x = --= )二阶与三阶行列式 1. 二阶行列式:(回顾高中时的二阶与三阶行列式) 1112 112212212122 det()a a A a a a a a a = =-,其中A 为方程组的系数矩阵。 2. 三阶行列式: 32 3122 21133331232112333223221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a a a a a a a +-= 注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。三阶行列式算出来也是一个数。 (2)三阶行列式 也是方形矩阵上定义的一种运算。 2. n 阶行列式的定义: 1112122 23 221 23 22122211 12 23 1 3 1 2 21 22 2,1 111 2 ,1 (1)n n n n n n nn n n nn n n nn n n n n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-= =-+ +- n 阶行列式中去掉元素ij a 所在行所在列的元素后,得到的 1n -阶行列式叫做ij a 的余子式,记作ij M ,即11 1,11,111,11,11,11,1,11,11,11,1 ,1 ,1 j j n i i j i j n n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+-++-+++-+= 并称(1)i j ij ij D M +=-为ij a 的代数余子式。引入这两个记号则可将(2.4)式简记为 111111********* det (1)(1)k n n n n k k k A a M a M a M a M ++==-+ +-=-∑ (2.5)

行列式的计算技巧与方法总结讲解

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式0 004003002001000. 解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有 41322314a a a a ,而()64321=τ,所以此项取正号.故 004003002001000=() () 241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a 22113 2 1 33323122211100 0000=. 例2 计算行列式n n n n b a a a a a b a a a a ++= + 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 121n 1121000 0D 0 n n n a a a b b b b b += =. 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

雅可比行列式

§ .函数行列式 教学目的 掌握函数行列式. 教学要求 (1).掌握函数行列式 (2) 能用函数行列式解决一些简单的问题 一、函数行列式 由n A R ?到R 的映射(或变换)就是n 元函数,即 12(,,,,)n n x x x y f A R R R ∈????L ,或 1212(,,,),(,,,).n n y f x x x x x x A =∈L L 由n A R ?到n R 的映射(或变换)就是n 个n 元函数构成的函数组,即 1212(,,,,,,,)n n n n n x x x y y y f A R R R ∈????L L ,或 1112221212,12(,,),(,,),(,).(1)(,,). n n n n n n y f x x x y f x x x x x x A y f x x x =??=?∈? ??=?L L L L L L L 表为12(,,)n f f f L ,设它们对每个自变量都存在偏导数 ,1,2,1,2i j f i n j n x ?==?L L ,行列式1 1112222 121 2 n n n n n n f f f x x x f f f x x x f f f x x x ??????????????????L L M M M M L (2) 称为函数组12(,,)n f f f L 在点12,(,)n x x x L 的雅可比行列式,也称为函数行列式,表为 121212,12,(,,)(,,) (,) (,) n n n n f f f D f f f x x x D x x x ??L L L L 或 . 例:求下列函数组(变换)的函数行列式: 1.极坐标变换 cos , sin .x r y r ??=??=?

线性代数行列式基本概念

目录 目录 (1) 一、行列式 (2) 见ppt。 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

行列式的计算方法文献综述

行列式的计算方法 摘要:本文叙述了行列式的发展历程,现状和研究方法分析。概述了一些计算方法,最后提出一些行列式的计算方法值得进一步探讨的问题。 关键词 :行列式;方程组;计算方法;加边法 1. 引言 行列式是人们为了研究二、三元的线性方程组而创建的,它是大学数学学习的一个重要内容,是求解线性方程组,求逆矩阵及求矩阵特征值的基础。而它的应用并不止局限于代数的范围,它也是许多其他学科研究的重要工具,如行列式经常被用于涉及到的电子工程、控制论、数学物理方程的研究等。而行列式的计算具有一定的规律性和技巧性,综合性较强,在行列式计算中需要我们多观察总结,才能更熟练地计算出行列式的值。在行列式的计算过程中,不同特征的行列式适用不同的方法,每一种方法都有它们各自的优点及其独特之处,因此具有非常重要的研究价值。本论文主要从2000 年到2012 年发表的若干期刊中,总结出行列式的计算的发展历程、现状以及研究的方向。 2. 正文 2.1行列式的历史: 行列式的概念最初是因方程组的求解而发展起来的,它的提出是在十七世纪,由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,那时已经使用行列式来确定线性方程组解的个数以及形式。 十八世纪开始,行列式开始作为独立的数学概念被研究。1750 年,瑞士数学家克莱姆在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。后来,数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。 十九世纪以后,行列式理论进一步得到发展和完善。1815 年,柯西在一篇论文中给出了行列式的第一个系统的处理,其中主要结果之一是行列式的乘法定理。1841年,雅可比发表了一篇关于函数行列式的论文,讨论函数的线性相关性与雅可比行列式的关系。十九世纪五十年代,凯莱和詹姆斯·约瑟夫·西尔维斯特将矩阵的概念引入数学研究中。行列式和矩阵之间的密切关系使得矩阵论发展的同时也带来了许多关于行列式的新结果,例如阿达马不等式、正交行列式、对称行列式等等。与此同时,行列式也被应用于各种领域中。 2.2行列式的现状: 行列式的计算一直是代数研究的一个重要课题,国内外学者专家已经总结了很多常用的技巧及方法,研究成果颇为丰硕。文献[1]-[23]黄娟霞、胡乔林、陈黎钦、李辉、毋光先等学者对行列式的一些计算方法做出的归纳,其中有几种是目前较常用的方法,主要有三角化法、拆项法、加边法、递推法、分离线性因子法、数学归纳法等,而几种尚未被广泛使用的方法主要有超范德蒙行列式法、微积分法、软件法、按拉普拉斯定理展开等。这

雅可比行列式

§11.2 .函数行列式 教学目的 掌握函数行列式. 教学要求 (1).掌握函数行列式 的映射(或变换)就是12,,,,,,)n n x y y y f A ∈?,)n f ,设它们对每个自变量都存在偏导数121 212n n n n n n f x f x x x f f f x x x ???????????? 称为函数组12(,,)n f f f 在点12,(,)n x x x 的雅可比行列式,也称为函数行列式,表为 121212,12,(,, )(,, ) (,)(,) n n n n f f f D f f f x x x D x x x ??或.

例:求下列函数组(变换)的函数行列式: 1.极坐标变换 2.柱面坐标变换 . (,)(,)(,) ??? s t x y s t 证明:由复合函数的微分法则,有 由行列式的乘法,有

(,)(,)(,)(,)u u x x x y u v x y s t v v y y x y s t x y s t ??????????==??????????. 若一元函数()y f x =在点0x 某邻域具有连续的导数()f x ',且0()0f x '≠.由连续函数的保号性,在点0x 某邻域0,()()f x f x ''?与保持同一符号,因而在?函数()y f x =严格单调,它 .三、函数行列式的几何性质

一元函数()y f x =是1R 到1R 的映射.取定一点0x ,它的象是00()y f x =.当自变量x 在点0x 有改变量x ?,相应y 在0y 有改变量y ?.线段y ?的长y ?与线段x ?的长x ?之比y x 称 为映射f 在0x 到0x x +的平均伸缩系数,若当0x →时平均伸缩系数y x 存在极限,即 0000()()lim lim '(x x y f x x f x f x x →→+-==是映射 f 在点0x 的伸缩系数. )G ∈,(

习题1-3 行列式的性质

1、用行列式的性质计算下列行列式: () 134215352152809229092 ; 【分析】可见行列式中1,2两列元素大部分数字是相等的,列差同为1000,易于化为下三角行列式,于是, 【解法一】 3421535215280922909221 c c -34215100028092100012 r r -61230 280921000 下三角6123000。 【解法二】 34215352152809229092 12 r r -6123 6123 2809229092 21 c c -6123 280921000 下三角6123000。 () 2ab ac ae bd cd de bf cf ef ---; 【分析】各行、列都有公因,抽出后再行计算。 【 解 】 ab ac ae bd cd de bf cf ef ---123 a r d r f r ←←← b c e adf b c e b c e ---12 3 b c c c e c ←←←1111 111 1 1 adfbce --- 上三角2(1)2abcdef -?-?4abcdef =。 () 31111111111 1 1 1111 ------; 【分析】将第一行加到以下各行即成为上三角行列式, 【解】 1111111111 1 1 1111 ------213141 r r r r r r +++1111022200220002 上三角3 12 ?8=。 2、把下列行列式化为上三角形行列式,并计算其值:

() 12240 4135 31232 051-----; 【解法一】 224 4 1353 1232 5 1 -----21 c c ?2240 143513230 2 5 1 ------21 r r ?1435 2240 13230 2 5 1 ----- 270=-。 【解法二】 2 240 4 1353 1232 5 1 -----1 2 r ←1120 41352 31232 5 1 -----21 c c ?1120 1435 213230 2 5 1 ------ 上三角221(1)(135)??-?-270=-。 () 21234 234134124123 。 【分析】该行列式属于同行元素之和相等的类型,应将2,3,4列加到第1列: 【解】 1234 234134124123 1234 () c c c c +++10234 103411041210123213141 r r r r r r ---10 234011 3 02 22 111 ------ 3242 2 r r r r -+102 340113004 40 4 --- 上三角2 101(4) ??-160=。 3、设行列式 ij a m =(,1,2,,5)i j =L ,依下列次序对ij a 进行变换后,求其结果: 交换第一行与第五行,再转置,用2乘所有元素,再用(-3)乘以第二列加到第四列,最后用4除第二行各元素。 【解】 ()1交换第一行与第五行,行列式变号,结果为m -; ()2再转置,行列式的值不变,m -;

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

矩阵行列式求导

矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵,简单地说就是多个一般函数的阵列,包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量t 的实函数矩阵 ()()()ij m n X t x t ×=,所有分量函数()ij x t 定义域相同。 定义函数矩阵的微分与积分 0()(),()().t t ij ij t t d d X t x t X d x d dx dx ττττ?????????==????????????∫∫ 函数矩阵的微分有以下性质: (1) ()()()()()d d d X t Y t X t t dt dt dt +=+; (2) ()()()()()()()d dX t dY t X t Y t t X t dt dt dt =+; 特殊情形 (a ) 若K 是常数矩阵,则()()()d d KX t K X t dt dt =; (b ) 若()X t 是方阵,则2()()()()()d dX t dX t X t X t X t dt dt dt =+; (3) () 111()()()()d dX t X t X t X t dt dt =----; (4) 对任意的方阵A 和时变量t ,恒有At At At d e Ae e A dt ==; (5) 若AB BA =,则A B B A A B e e e e e +==。如果,A B 可交换,则许多三角不等 式可以推广到矩阵上。如sin(),sin(2)A b A +等。 参考文献:余鄂西,矩阵论,高等教育出版社。

关于行列式的一般定义和计算方法

关于行列式的一般定义和计算方法 n 阶行列式的定义 n 阶行列式 nn n n n n a a a a a a a a a 2 122221112 11=∑ -n n n j j j nj j j j j j a a a 212 1 2121) () 1(τ 2 N 阶行列式是 N ! 项的代数和; 3、N 阶行列式的每项都是位于不同行、不同列N 个元素的乘积; 特点:(1)(项数)它是3!项的代数和; (2)(项的构成)展开式中的每一项都是取自行列式不同行不同列的三个元素之积.其一般项为: (3)(符号规律)三个正项的列标构成的排列为123,231,312. 它们都是偶排列; 三个负项的列标构成的排列为321,213,132, 它们都是奇排列. § 行列式的性质 性质1:行列式和它的转置行列式的值相同。 即nn n n n n a a a a a a a a a 2 122221112 11=nn n n n n a a a a a a a a a 2122212121 11; 行列式对行满足的性质对列也同样满足。 性质2 互换行列式的两行(列),行列式的值变号. 如: D= d c b a =ad-b c , b a d c =bc-ad= -D 以r i 表第i 行,C j 表第j 列。交换 i ,j 两行记为r j i r ?,交换i,j 两列记作 C i ? C j 。 32 2311332112312213a a a a a a a a a ---3221133123123322113332 31 232221 13 1211 a a a a a a a a a a a a a a a a a a D ++==(1

行列式的计算技巧与方法总结(修改版)

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式

构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11=0. 性质5 把一行的倍数加到另一行,行列式不变.即

行列式计算方法归纳总结

数学与统计学学院 中期报告 学院: 专业: 年级: 题目: 学生姓名: 学号: 指导教师姓名职称: 年月日

目录 1 引言 (1) 2行列式性质 (2) 3行列式计算方法 (6) 3.1定义法 (6) 3.2递推法 (9) 3.3化三角法 (9) 3.4拆元法 (11) 3 .4加边法 (12) 3.6数学归结法 (13) 3.7降价法 (15) 3.8利用普拉斯定理 (16) 3.9利用范德蒙行列式 参考文献....................................................................................................... 错误!未定义书签。8

行列式的概念及应用 摘要: 本文先列举行列式计算相关性质,然后归纳总结出行列式的方法,包括:定义法,化三角法,递推法,拆元法,加边法,数学归结法,降价法,利用拉普拉斯定理,利用范德蒙行列式。 关键词:行列式;线性方程组;范德蒙行列式 The concept and application of determinant Summary: This article lists calculated properties of determinants, and then sum up the determinant method, including: Definition, triangulation, recursive method, remove method, bordered by, mathematical resolution method, cut method, using Laplace theorem, using the vandermonde determinant. Keywords: determinant;Linear equations;;Vandermonde determinant 1 引言 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。日本数学家关孝和提出来的,他在1683年写了一部名为解伏题之法的著作,意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国数学家,微积分学奠基人之一莱布尼茨。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。

行列式的性质

教学单元教案设计

教学单元讲稿 一、复习提问与上次课作业典型问题答疑 1. 二、三阶行列式的定义及计算法则 2. n 阶行列式的定义,并讲解P23 T1(1)(2) P23 T2 T3 二、教学单元名称 第三节 行列式的性质 三、课程导入 复习导入 四、分析思路 首先给出对换的概念及对换如何改变排列的奇偶性,再推导出出行列式的6条性质,最后通过讲解几个例题让学生掌握行列式的性 质。 五、讲授内容 第三节 行列式的性质 对换 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换. 将相邻两个元素对调,叫做相邻对换. 例:b b b a a a l ΛΛ11 ——b b a b a a l ΛΛ11. 定理1 一个排列中的任意两个元素对换,排列改变奇偶性. 推论

奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数. 证明 : 由定理1知对换的次数就是排列奇偶性的 变化次数,而标准排列是偶排列(逆序数为0),因此知推论成立 定理2 :n 阶行列式为: .)1(211 21 2322211312 112 1 n p p p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中t 为n p p p Λ21的逆序数. (以4阶行列式为例,对证明过程作以说明) (补充)定理3 n 阶行列式也可定义为 .)1(1 2 121 11 21 2322211312 11n q p q p q p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中n p p p Λ21和 n q q q Λ21是两个n 级排列,t 为行标排列逆序数与列标排列逆序数的和.

雅可比行列式

雅可比行列式 Prepared on 22 November 2020

§ .函数行列式 教学目的 掌握函数行列式. 教学要求 (1).掌握函数行列式 (2) 能用函数行列式解决一些简单的问题 一、函数行列式 由n A R ?到R 的映射(或变换)就是n 元函数,即 12(,, ,,)n n x x x y f A R R R ∈????,或 1212(,, ,),(,, ,).n n y f x x x x x x A =∈ 由n A R ?到n R 的映射(或变换)就是n 个n 元函数构成的函数组,即 1212(,, ,,,, ,)n n n n n x x x y y y f A R R R ∈????,或 1112221212,12(,,),(,,),(,). (1)(,,). n n n n n n y f x x x y f x x x x x x A y f x x x =??=?∈? ??=? 表为12(,, )n f f f ,设它们对每个自变量都存在偏导数 ,1,2,1,2i j f i n j n x ?==?,行列式 11112222 121 2 n n n n n n f f f x x x f f f x x x f f f x x x ?????????????????? (2) 称为函数组12(,,)n f f f 在点12,(,)n x x x 的雅可比行列式,也称为函数行列式,表为 121212,12,(,,)(,,) (,) (,) n n n n f f f D f f f x x x D x x x ??或. 例:求下列函数组(变换)的函数行列式: 1.极坐标变换

线性代数总结汇总+经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1

(6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A|

行列式的性质

教学单元教案设计 授课周次第2周授课时间计划学时数 2 教学单元1-3行列式的性质 授课方式√理论课□实验(实训)课□上机课□其他 教学目标掌握对换的概念; 掌握n阶行列式的性质; 会利用n阶行列式的性质计算n阶行列式的值; 教学重点 及难点 行列式的性质; 教学方法与手段1.教学方法:讲授与讨论相结合; 2.教学手段:黑板讲解与多媒体演示. 教学过程 1.对换的概念及对换如何改变排列的奇偶性 2. 简单推导行列式的6条性质以及性质的应用 课外安排思考题: 1.把排列54132作一次对换变为24135,问相当于作几次 相邻对换?把排列12345作偶数次对换后得到的新排列是奇排列还是偶排列? 2.计算: a b a a a b b a a a b a D . 作业题: ?习题二:P23 T1(3) 7(2)(5)

教研室主任审批意见 教学反思 1.通过学习学员掌握了n阶行列式的定义和对换的概念; 2.对利用n阶行列式的定义和对换等方面的应用有待加强.

教学单元讲稿 一、复习提问与上次课作业典型问题答疑 1. 二、三阶行列式的定义及计算法则 2. n 阶行列式的定义,并讲解P23 T1(1)(2) P23 T2 T3 二、教学单元名称 第三节 行列式的性质 三、课程导入 复习导入 四、分析思路 首先给出对换的概念及对换如何改变排列的奇偶性,再推导出出行列式的6条性质,最后通过讲解几个例题让学生掌握行列式的性 质。 五、讲授内容 第三节 行列式的性质 1.3.1对换 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换. 将相邻两个元素对调,叫做相邻对换. 例:b b b a a a l 11 ——b b a b a a l 11. 定理1 一个排列中的任意两个元素对换,排列改变奇偶性.

相关主题
文本预览
相关文档 最新文档