当前位置:文档之家› 第四章高斯光束光学

第四章高斯光束光学

高斯光束的matlab仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, CCD采集的高斯光束光强分布 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。

图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 图3 理论高斯曲线 50 100150200 020406080100120140160 180实验测量高斯曲线 -40 -30-20-10010203040 00.2 0.4 0.6 0.8 1 理论高斯曲线

M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on xlabel('x'),ylabel('y'),zlabel('z'); title('三维强度分布');

大学毕业论文-高斯光束通过梯度折射率介质的传输特性

本科毕业设计论文 设计(论文) 题目高斯光束通过梯度折射率介质中的传输特性 指导教师 姓名___________ 辛晓天________ ____ 学生 姓名___________ 赵晓鹏________ ____ 学生 学号_________ 200910320129___ ___ _院系_______理学院________ _ 专业 ____ 应用物理_____ _ 班级____ 0901___ _

高斯光束通过梯度折射率介质中的传输 特性 学生姓名:赵晓鹏指导教师:辛晓天 浙江工业大学理学院 摘要 本文利用广义惠更斯-菲涅耳衍射积分(Collins公式)法,导出了高斯光束在均匀介质和梯度折射率介质中传输的解析表达式。对高斯光束在均匀介质和梯度折射率介质中传输特性进行了分析,重点分析了梯度折射率系数和传输距离对传输特性的影响。结果表明,高斯光束在梯度折射率介质中传输时,随着梯度折射率的变化,轴上光强分布呈周期性变化;在梯度折射率系数一定时,其轴上光强分布关于光强最大位置是对称的。 关键词:广义衍射积分法、高斯光束、均匀介质、梯度折射率介质、传输特性 - 1 -

Propagation properties of Gaussian beams in Gradient-Index medium Student: Zhao Xiao-Peng Advisor: Xin Xiao-Tian College of Science Zhejiang University of Technology Abstract Using the generalized Huygens Fresnel diffraction integral (Collins formula), this paper deduces the analytical expression of Gauss beam in a homogeneous medium and gradient refractive index medium.The Gauss beam propagation in homogeneous media and the gradient refractive index medium are analyzed, and analyze the influence of gradient refractive index coefficient and transmission distance of the transmission characteristics.The results show that Gauss beams in the gradient index medium transmission, along with the change of gradient refractive index, light intensity on axis changes periodically;In the gradient refractive index coefficient is fixed, the axial intensity distribution of light intensity maximum position is symmetrical. Keywords:Generalized diffraction integral; Gaussian beam; homogeneous medium;Gradient-index media; Propagation properties - 2 -

理想光学系统与共线成像理论 知识点第2章

2-1 #理想光学系统#在任意大的空间以任意宽的光束都成完善像的光学系统。 #共轭#物像点之间一一对应的关系,指物像关系。 #共线成像#点对应点,直线对应直线,平面对应平面的成像变换。 #基点#共轴理想光学系统中已知共轭点(位置和放大率已知),用于表征成像特性,通过他们可以求取任意一点的像。 #基面#共轴理想光学系统中已知共轭面(位置和放大率已知),用于表征成像特性,通过他们可以求取任意一点的像。 2-2 #像方焦点#无限远轴上物点对应的像点。 #像方焦平面#过像方焦点并且垂直于光轴的平面。 #像方主平面#无限远轴上物点发出的平行光轴的入射光线与出射光线相交一点,过该点所作的垂直于光轴的平面。 #像方主点#像方主平面与光轴的交点称为像方主点。 #像方焦距#像方主点到像方焦点的距离。 #物方焦点#无限远轴上像点对应的物点。 #物方焦平面#过物方焦点并且垂直于光轴的平面。 #物方主平面#射向无限远轴上像点的出射光线与对应的入射光线相交一点,过该点所作的垂直于光轴的平面。 #物方主点#物方主平面与光轴的交点称为物方主点。 #物方焦距#物方主点到物方焦点的距离。 2-3 #图解法求像#利用性质已知的典型光线(如过焦点的光线),通过画图追踪典型光线求物或像的方法。

#解析法求像#利用根据几何关系推导出的物像关系数学公式,通过数值计算的方法求像。 #牛顿公式#物距和像距以焦点作为坐标原点的物像关系公式,xx’=ff’ #高斯公式#物距和像距以主点作为坐标原点的物像关系公式,f’/l’+f/l=1 #光组#一个光学系统可由一个或几个部件组成,每个部件可以由一个或几个透镜组成,这些部件被称为光组。 #光学间隔#也称作焦点间隔,相邻两个光组,第一个光组的像方焦点距第二个光组的物方焦点的距离,起算原点是第一个光组的像方焦点。 #主面间隔#相邻两个光组,第一个光组的像方主面距第二个光组的物方主面的距离,起算原点是第一个光组的像方主面。 #理想光学系统垂轴放大率#理想光学系统所成像的大小与物的大小之比。 2-4 #理想光学系统轴向放大率#当物平面沿光轴作微量移动dx或dl时,其像平面就移动一相应的距离dx’或dl’,它们的比值dx/ dx’或dl/ dl’称为理想光学系统轴向放大率。 #理想光学系统角放大率#过理想光学系统的光轴上一对共轭点的任意一对共轭光线,它们与光轴的夹角U’和U的正切之比。 #节点#角放大率等于+1的一对共轭点。 2-5 #光焦度#像方焦距的倒数。 #正切计算法#基于光线投射高度和角度追迹计算来求组合系统的方法。 #远摄型光组#由一正一负两个透镜组成,正透镜在前,负透镜在后,其筒长比焦距短。 #反远距型光组#由一正一负两个透镜组成,负透镜在前,正透镜在后,其焦距比工作距短。 #望远系统#一般与眼睛联用,用于观察远处的物体,由两个光组组成,第一个

激光原理周炳坤

填空 1.线宽极限:这种线宽是由于自发辐射的存在而产生的,因而是无法排除的 2.频率牵引:在有源腔中,由于增益物质的色散,使纵模频率比无源腔纵模频 率更靠近中心频率的现象 3.按照被放大光信号的脉宽及工作物质驰豫时间的相对大小,激光放大器分为 三类:连续激光放大器、脉冲激光放大器和超短脉冲激光放大器。 此时由于光信号与工作物质相互作用时间足够长,因受激辐射而消耗的反转集居数来得及由泵浦抽运所补充,因此反转集居数及腔内光子数密度可以到达稳态数值而不随时间变化,可以用稳态方法研究放大过程。这类放大器称为连续激光放大器;因受激辐射而消耗的反转集居数来不及由泵浦抽运补充,反转集居数和光子数在很短的相互作用期间内达不到稳定状态。这类激光放大器必须用非稳态方法研究,称为脉冲激光放大器;当输入信号是锁模激光器所产生的脉宽为(10 -11~10-15 )s 的超短脉冲时,称为超短脉冲激光放大器 4. 这是由于当脉冲前沿通过工作物质时反转集居数尚未因受激辐射而抽空,而当脉冲后沿通过时,前沿引起的受激辐射以使反转集居数降低,所以后沿只能得到较小的增益,结果是输出脉冲形状发生畸变,矩形脉冲变成尖顶脉冲,脉冲宽度变窄 5. ,工作物质可处于三种状态:①弱激发状态:激励较弱,△n<0,工作物质中只存在着自发辐射荧光,并且工作物质对荧光有吸收作用。②反转激发状态:激励较强。0<△n<△n t,0δ,则可形成自激振荡而产生激光。 6.即在低Q值状态下激光工作物质的上能级积累粒子,当Q值突然升高时形成巨脉冲振荡,同时输出光脉冲,上述方式称作脉冲反射式调。激光能量储存于谐振腔中,这种调Q 方式 称作脉冲透射式调Q。 7. 当(Ωt+β)=2mп时,光强最大。最大光强I m=(2N+1)2E02,锁模时;I m=(2N+1)E02,未锁模时。Ω=2п△V q 8.红宝石激光器Cr3+ 694.3nm 三钕激光器Nd3+ 1064nm 四 He-Ne激光器Ne 632.8nm 四激发方式共振能量转移 CO2激光器CO2 10.6nm 四激发方式直接电子碰撞级联跃迁共振转移

Zemax入门例子一套

如何在Zemax下模拟单模光纤的光束耦合 本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。如下图所示: 供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e 数值孔径0.14 纤芯直径8.3μm 模场直径@1.31μm 9.2±0.4μm 微透镜阵列,SUSS MicroOptics SMO39920 基片材料熔融石英 基片厚度0.9mm 内部透过率>0.99 透镜直径240μm 透镜节距250μm 曲率半径330μm 圆锥常数(Conic constant)0 数值孔径0.17 附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。请注意一下几点: 物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。后面经过优化过程时候,这个尺寸还会发生变化; 透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round); 两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。这就意味着系统的孔径光阑由透镜的实际孔径决定。因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。在这个例子中,光纤的模式要比透镜的实际孔径小很多。 当心“数值孔径”的多种不同定义。它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光

Zemax 2003 中高斯光束计算步骤

Zemax 2003 中步骤: Anaylsis-calculations-gaussian beam中计算高斯光束传输(快捷键 ctrl +B) Gaussian beam data-setting中初始高斯光束 参数设置: M2:光束的模式,为大于1的整数,1为单基模,大于1为多模。 Surf 1 to Waist:1面距离束腰的距离,因此一般做法是在物面和光学组前插一个1面,将束腰“放在”1面上。 Divergence:远场发散角。 Radius:光波的半径,束腰处无穷大。 Rayleigh:瑞利长度,这三个随便一本激光原理的书里都有。 目前我的一个认识:高斯光束计算在zemax 2003中可以也只能计算束腰尺寸,位置,远场发散角等,欢迎大家相互交流。Email: boooq@https://www.doczj.com/doc/f71957381.html, by hust—booq 2008-1-26 PS:没有时间翻译,在这里把Zemax里所有有关资料汇总一下,给出一个简单案例。 -=-=-=-=-=--=-=-=-=-=--=-=-=-=-=--=-=-=-=-=--=-=-=-=-=--=-=-=-=-=- 高斯光束Zemax介绍 Computes Gaussian beam parameters. Wavelength: The wavelength number to use for the calculation. M2 Factor: The M2 quality factor used to simulate mixed mode beams. See the Discussion. Waist Size: The radial size of the embedded (perfect TEM00 mode) beam waist in object space in lens units. Surf 1 to Waist: The distance from surface 1 (NOT the object surface) to the beam waist location. This parameter will be negative if the waist lies to the left of surface 1. Update, Orient, Surface: See below. Discussion: This feature computes ideal and aberrated Gaussian beam data, such as beam size, beam divergence, and waist locations, as a given input beam propagates through the lens system. This discussion is not meant to be a complete tutorial on laser beam propagation theory. For more information on Gaussian beam propagation, see one of the following references: "Lasers", A. E. Siegman, University Science Books (1986), "Gaussian beam ray-equivalent modeling and optical design", R. Herloski, S. Marshall, and R. Antos, Applied Optics Vol. 22, No. 8 pp. 1168 (1983), "Beam characterization and measurement of propagation attributes", M. W. Sasnett and T. F. Johnson, Jr., Proc. SPIE Vol. 1414, pp 21 (1991), and "New developments in laser resonators", A. E. Siegman, Proc. SPIE Vol. 1224, pp 2 (1990). A Gaussian laser beam is described by a beam waist size, a wavelength, and a location in object space. The Gaussian beam is an idealization that can be approached but never attained in practice. However, real laser beams can be well described by an embedded Gaussian beam with ideal characteristics, and a quality factor, called M2, which defines the relative beam size and divergence with respect to the

物理光学 第三章

第三章 高斯光束基本理论 激光由于其良好的方向性、单色性、相干性和高亮度在军事中在已经有了很多应用,激光器发出的光束是满足高斯分布的,因而本章将对高斯光束的基本特性和一些参数进行简单地理论描述。 高斯光束及基本参数 激光器产生的光束是高斯光束。高斯光束依据激光腔结构和工作条件不 同,可以分为基模高斯光束、厄米分布高阶模高斯分布、拉盖尔分布高阶模高斯 分布和椭圆高斯光束等。激光雷达常常使用激光谐振腔的最低阶模00TEM 模。 高斯光束的分布函数: )exp(),(22 0a r I a r I -= (3-1) 从激光谐振腔发出的模式辐射场的横截面的振幅分布遵守高斯分布,即光能量遵守高斯分布,但是高斯光束不是严格的电磁场方程解,而是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以很好地描述基模激光光束的性质。稳态传输电磁场满足赫姆霍兹方程: ()0,,),,(2=+?z y x E k z y x E (3-2) 式中),,(z y x E 与电场强度的复数表示),,,(t z y x E 间有关系: )ex p(),,(),,,(t i z y x E t z y x E ω= (3-3) 高斯光束不是式子(2-3)的精确解,而是在缓变振幅近似下的一个特解。得到 2 20 U(,)exp()11r U r z iz iz Z Z ω= --- (3-4) 是赫姆霍兹方程在缓变振幅近似下的一个特解 ,它可以变形为基模高斯光束的 场强度复振幅的表达式: 2222002(x,y,z)exp exp (z)(z)(z)2(z)x y x y U U i k z R ω?ωω????????++?? =-+-???? ??? ?????????? (3-5) 其中的(z)ω为振幅衰减到中心幅值1/e 时的位置到光束中心的距离,称为光束在

种子注入的短脉冲激光器特性研究

第16卷 第6期强激光与粒子束Vol.16,No.6 2004年6月HIGH POWER LASER AND PAR TICL E B EAMS J un.,2004  文章编号:100124322(2004)0620712205 种子注入的短脉冲激光器特性研究Ξ 赵 卫1, 王 涛1, 朱少岚1, 杨延龙1, 朱宝亮2, 王屹山1, 陈国夫1, 程 昭1, 刘 丽2 (1.中国科学院西安光学精密机械研究所,瞬态光学技术国家重点实验室,陕西西安710068; 2.北京理工大学光电技术系,北京100081) 摘 要: 从LD泵浦固体激光器优化设计原则出发,设计了一种微型二极管泵浦激光器,并对种子激光 器的结构和参数进行了优化。该激光器运转稳定,输出光束质量高,光束发散角小,光2光转化效率为1714%, 斜率效率可达24%,输出功率可达80mW。将此种子激光注入到调Q激光器中,改善了调Q激光器的输出特 性,使得激光脉冲的建立时间缩短了40ns,输出的横模场分布得到了明显改善。 关键词: 种子注入; 调Q激光器; 微型激光器 中图分类号:TN242 文献标识码:A 高功率、高质量光束的短脉冲激光光源在相干检测、激光雷达、光化学、光诱导以及等离子体物理等方面有许多应用。普通高功率激光器,由于激光增益较高而产生的多模(横模、纵模)振荡,空间烧孔效应,热致透镜效应和双折射效应,都会不同程度降低输出光束质量[1]。注入锁定技术是获得高质量、高功率激光输出的一种简单有效的方法[2~7],可以有效地控制激光的时间特性、空间特性和方向性等。在该技术中,性能优良的种子激光是实现注入锁定的关键因素之一[8]。由于LD泵浦薄片激光器可获得很好的基横模分布,且体积小,结构紧凑,总体转换效率高[9~11],因而我们选用了LD泵浦薄片激光器作为种子激光器,并对这种种子注入的短脉冲激光器进行了优化设计和实验研究。 1 系统构成及实验研究 实验系统主要由四部分组成,即种子激光器、耦合系统、功率振荡器和测量装置,如图1所示。 Fig.1 Experiment scheme of seed injection 图1 种子激光注入实验光路图 1.1 种子激光器的输出特性 实验中Nd:YVO4晶体与凹面镜放置在同一个调整架上,与激光二极管固定在同一个平台上。通过调节凹面镜的中心位置和俯仰角来改变激光空间模式特性,由此获得基横模输出。旋转Nd:YVO4晶体,种子激光输出将发生变化。在某个位置,最大输出功率可达80mW,由晶体性质可以确定为π偏振光。将LD温度设定在 Ξ收稿日期:2003203225; 修订日期:2003212204 基金项目:国家自然科学基金资助课题(60078004) 作者简介:赵 卫(1963—),男,研究员,主要从事超快光学技术研究;西安市80号信箱25分箱。

高斯光束

高斯光束的瞬时辐射照度示意图 纳米激光器产生的激光

场强(蓝色)和辐射照度(黑色)在坐标轴上的分布情况 共焦腔基模高斯光束腰斑半径 数学形式

高斯光束作为电磁波,其电场的振幅为: 这里 为场点距离光轴中心的径向距离 为光轴上光波最狭窄位置束腰的位置坐标 为虚数单位(即) 为波数(以弧度每米为单位) , 为电磁场振幅降到轴向的1/e、强度降到轴向的1/e2的点的半径 为激光的束腰宽度 为光波波前的曲率半径 为轴对称光波的Gouy相位,对高斯光束的相位也有影响 对应的辐射照度时域平均值为 这里为光波束腰处的辐射照度。常数为光波传播介质的波阻抗(Wave impedance)在真空中,。 对于在自由空间传播的高斯光束,其腰斑(spot size)位置的半径在光轴方向总大于一个最小值,这个最小值被称为束腰。波长为的光波的腰斑位置在轴上的分布为

这里将定义为束腰的位置。 与束腰轴向距离等于瑞利距离处的束宽为 曲率半径 是光束波前的曲率半径,它是轴向距离的函数 光束偏移 当,参数趋近于一条直线。这条直线与中央光轴的夹角被称为光束的“偏移”,它等于 在原理束腰的位置,光束弯散的总角度为

由于这一性质,聚焦于一个小点的高斯激光在远离这个点的传播过程中迅速散开。为了保持激光的准直,激光束必须具有较大的直径。束宽和光束偏移的这一关系是由于衍射的缘故。非高斯光束同样会表现这一效应,但是高斯光束是一种特殊情况,其束宽和偏移的乘积是可能达到的最小值。 由于高斯光束模型使用了近轴近似,当波前与光传播方向倾斜程度大于30度之后,这种模型将不再适用。通过上述偏移的表达式,这意味着高斯光束模型进队束腰大于的光束适用。 激光束的质量可以用束参数乘积(beam parameter product (BPP))来衡量。对于高斯光束,BBP的数值就是光束的偏移量与束腰的乘积。实际光束的BPP通过计算光束的最小直径和远场偏移量的乘积来获得。在波长一定的情况下,实际光束的BPP数值与理想激光束的BPP数值的比值被称为“M2”。高斯光束的M2值为1,而所有的是激光束的M2值均大于1,并且质量越好的激光的M2值越接近1。 Gouy相位 光束的纵向相位延迟,或称Gouy相位为 当光束通过焦点时,除了正常情况的相移,Gouy相移为。 复数形式的光束参数 光束参数的复数为 为了计算方便,常常使用它的倒数 光束参数的复数形式在高斯光束传播的分析中有着重要地位,特别是分析它在光谐振腔中谐振过程时。利用复数光束参数,具有一个横向维度的高斯光束电磁场与下式成比例 在二维的情况里,可以讲散光的光束表达为乘积的形式

7等束腰超短啁啾脉冲高斯光束在自由空间的传输特性

啁啾脉冲高斯光束在自由空间的传输* 邹其徽, 吕百达 ( 四川大学激光物理与化学研究所四川成都 610064 ) 摘要基于瑞利衍射积分,使用复解析信号法推导出了啁啾脉冲高斯光束在自由空间中的传输方程及其傅里叶谱,给出了远场的光场和空间光强的解析式,研究了啁啾参数C对脉冲光束传输的影响。结果表明,当啁啾参数C较小时,随啁啾参数增加,其轴上光谱蓝移增加C2倍,其轴上谱线宽度增加(1+C2)1/2倍。随衍射角增大,轴外光谱红移比无啁啾参数时快。脉冲宽度较小时,啁啾参数增大,轴上光强增大,横向光强分布越集中于传输轴附近;脉冲宽度较大时,啁啾参数增大对横向光强的影响减小。啁啾参数的正负号不影响横向光强分布和光谱分布。 关键词激光光学;超短脉冲高斯光束;啁啾;复解析信号 中图分类号O435 文献标识码 A Propagation of ultrashort chirped pulsed Gaussian beams in free space Qihui Zou, Baida Lü (Institute of Laser Physics & Chemistry, Sichuan University, Chengdu 610064, China) Abstract Based on the Rayleigh diffraction integral and complex analytical signal representation, the free-space propagation equation and its Fourier spectrum for ultrashort chirped pulsed Gaussian beams are derived, and the far-field analytical electric field and spatial intensity are presented. The effects of chirp parameter on the spatiotemporal and spectral properties are illustrated with analytical formulas and numerical calculation results. It is found that if the chirp parameter C is relatively small, the on-axis spectral blueshifts increase by C2 times, the on-axis spectral bandwidth increases by (1+C2)1/2times, and the off-axis spectral redshifts also increase considerably. On-axis intensity increases with increasing chirp parameter for relatively small values of the pulse duration. The transversal intensity distribution remains nearly unchanged with increasing chirp parameter for relatively large values of the pulse duration. The sign of chirp parameters has no effect on the spectral distribution and transversal intensity distribution. Key words Laser optics ;Ultrashort pulsed Gaussian beam;Chirp;Complex analytical signal representation 1 引言 超短超强激光脉冲在自由空间、线性无损耗介质中和非线性色散介质的传输的研究引起了广泛的关注[1-4],以初始源平面的时间波形为高斯脉冲[2,3]、泊松脉冲[5]、双曲正割脉冲[6,7],洛仑兹脉冲[6]的研究居多。随着超短超强激光脉冲技术的发展,特别是啁啾脉冲放大(CPA)技术的应用,超短脉冲系统中啁啾脉冲的特性一直是所关心和重视的问题,研究啁啾脉冲[8,9,10]在真空或色散介质的时空和光谱特性在光通信等方面具实际应用意义。本文基于瑞利衍射积分,使用复解析信号法推导出了非近轴超短啁啾脉冲高斯光束在自由空间中传输的解析传输方程 *作者简介:邹其徽(1968—)男,四川人,四川大学在读博士研究生,主要研究方向为超短脉冲的传输与变换。 E-mail: qihui_zou@https://www.doczj.com/doc/f71957381.html, Tel. (028)85412819.

ZEMAX优化操作数汇总(全)

ZE M A X优化操作数 ZEMAX Merit Function,是在网上下下来的一个word文档,觉得蛮好的,一般用到的好像就是EFFL。呵呵,这个收集下,以后有用。 一阶光学性能 1. EFFL 透镜单元的有效焦距 2. AXCL 透镜单元的轴向色差 3. LACL 透镜单元的垂轴色差 4. PIMH 规定波长的近轴像高 5. PMAG 近轴放大率 6. AMAG 角放大率 7. ENPP 透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ 透镜单元的PETZVAL半径 10. PETC反向透镜单元的PETZVAL半径 11. LINV 透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR 指定表面的权重 14. EPDI 透镜单元的入瞳直径

15. ISFN 像空间F/# (近轴) 16. OBSN 物空间数值孔径 17. EFLX “X”向有效焦距 18. EFLY “Y”向有效焦距 19. SFNO 弧矢有效F/# MTF数据 1. MTFT 切向调制函数 2. MTFS 径向调制函数 3. MTFA 平均调制函数 4. MSWT 切向方波调制函数 5. MSWS 径向方波调制函数 6. MSWA 平均方波调制函数 7. GMTA 几何MTF切向径向响应 8. GMTS几何MTF径向响应 9. GMTT几何MTF切向响应 衍射能级 1.DENC 衍射包围圆能量2.DENF 衍射能量

3.GENC 几何包围圆能量 4.XENC 像差 1. SPHA 在规定面出的波球差分布(0则计算全局) 2. COMA 透过面慧差(3阶近轴) 3. ASTI 透过面像散(3阶近轴) 4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX 畸变最大值 7. AXCL 轴像色差(近轴) 8. LACL 垂轴色差 9. TRAR 径像像对于主光线的横向像差 10. TRAX “X”向横向色差 11. TRAY “Y”向横向色差 12. TRAI 规定面上的径像横向像差 13. TRAC径像像对于质心的横向像差

使用ZEMAX序列模式模拟激光二极管光源

使用ZEMAX序列模式模拟激光二极管光源 半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。工业激光设备上用的半导体激光器一般为1064nm、532nm、355nm,功率从几瓦到几千瓦不等。一般在SMT模板切割、汽车钣金切割、激光打标机上使用的是1064nm的,532nm 适用于陶瓷加工、玻璃加工等领域,355nm紫外激光适用于覆盖膜开窗、FPC切割、硅片切割与划线、高频微波电路板加工等领域。军事领域半导体激光器应用于如激光制导跟踪、激光雷达、激光引信、光测距、激光通信电源、激光模拟武器、激光瞄准告警、激光通信和激光陀螺等。 半导体激光二极管基本结构:垂直于PN结面的一对平行平面构成法布里—珀罗谐振腔,它们可以是半导体晶体的解理面,也可以是经过抛光的平面。其余两侧面则相对粗糙,用以消除主方向外其他方向的激光作用。激光二极管由于PN结发光位置不同,形成了两个方向的发散角,称之为二极管的快轴和慢轴如图所示,平行于PN结的方向为慢轴方向,垂直于PN结的方向为快轴方向,对于发光角度来说,快轴的发散角要大于慢轴发散角,一般两者的比值在2-3倍左右。 公式如下

公式中:θx和θy是快轴和慢轴的发散角,Gx和Gy是X和Y方向光束的超高斯因子,用来控制二极管光源能量的集中度。若Gx=Gy=1时则为理想高斯光束。αx或αy是光束发散角大小,用来计算激光半功率远场发散全角度因子。通常二极管厂家会给出激光功率衰减至一半时的半宽角度即θFWHM,也称为半功率角。对于高斯光束,光束半径通常定义为处于峰值强度的 1/e2处对应的半径。半功率角是由高斯光束半径确定的半发散角的1.18倍。 图1 OSRAM-SPL PL903 二极管参数表及半功率角图示 一般我们在ZEMAX中使用非序列模式来模拟激光二极管光源,方法较方便快捷。而当遇到较复杂系统运用或要求较高或光路优化时,需要在序列模式下模拟出激光二极管光源,此时光源模拟就较为复杂。

高斯光束

?基本定律/概念 o几何光学基本理论o概念与完善成像 o光路计算/近轴系统o球面光学成像系统?理想光学系统 o共线成像理论 o基点与基面 o物像关系 o放大率 o系统的组合 o透镜 ?平面系统 o平面镜成像 o平行平板 o反射棱镜 o折射棱镜与光楔 o光学材料 ?OS的光束限制 o照相系统和光阑 o望远镜的光束的选择o显微镜的光束限制o光学系统的景深 ?光度学/色度学 o辐射量/光学量 o传播中光学量的变化o系统像面的光照度o颜色分类/表现特征o颜色混合定律 o颜色匹配 o色度学中的几个概念o颜色相加原理 o CIE标准色度学系统o均匀颜色空间 ?光路计算/像差 o概述 o光线的光路计算 o轴上点球差 ?典型光学系统 o眼睛系统 o放大镜 o显微镜系统 o望远镜系统 o目镜 o摄影系统 o显外形尺寸计算 ?现代光学系统 o激光光学系统 o傅里叶变换光学

§8.1 激光光学系统 激光自60年代初问世以来,由于其亮度高、单色性好、方向性强等优点,在许多领域得到了广泛应用。例如激光加工、激光精密测量与定位、光学信息处理和全息术、模式识别和光计算、光通信等。但无论激光在哪方面的应用,都离不开激光束的传输,因此研究激光束在各种不同介质中的传输形式和传输规律,并设计出实用的激光光学系统,是激光技术应用的一个重要问题。 一、高斯光束的特性 在研究普通光学系统的成像时,我们都假定点光源发出的球面波在各个方向上的光强度是相同的,即光束波面上各点的振幅是相等的。而激光作为一种光源,其光束截面内的光强分布是不均匀的,即光束波面上各点的振幅是不相等的,其振幅A与光束截面半径r的函数关系为 其中A0为光束截面中心的振幅,w为一个与光束截面半径有关的参数,r为光束截面半径。光束波面的振幅A呈高斯(Guass)型函数分布所以激光光束又称为高斯光束。高斯光束的光斑延伸到无限远,其光束截面的中心处振幅最大,随着r的增大,振幅越来越小,因此我们常以r=w时的光束截面半径作为激光束的名义截面半径,并以w来表示,即当r=w时 说明高斯光束的名义截面半径w是当振幅A下降到中心振幅A0的1/e时所对应的光束截面半径。 二、高斯光束的传播 由激光谐振腔衍射理论可知,在均匀的透明介质中,高斯光束沿Z轴方向传播的光场分布为 式中, C为常数因子,,为波数,、和分别为高斯光束的截面半径、波面曲率半径和位相因子,它们是高斯光束传播中的三个重要参数. 1、高斯光束的截面半径高斯光束截面半径的表达式为

北交大激光原理第4章高斯光束部分-final

第四章高斯光束理论一、学习要求与重点难点 学习要求 1.掌握高斯光束的描述参数以及传输特性; 2.理解q参数的引入,掌握q参数的ABCD定律; 3.掌握薄透镜对高斯光束的变换; 4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导; 5.理解高斯光束的聚焦和准直条件; 6.了解谐振腔的模式匹配方法。 重点 1.高斯光束的传输特性; 2.q参数的引入; 3.q参数的ABCD定律; 4.薄透镜对高斯光束的变换; 5.高斯光束的聚焦和准直条件; 6.谐振腔的模式匹配方法。 难点 1.q参数,及其ABCD定律; 2.薄透镜对高斯光束的变换; 3.谐振腔的模式匹配。

二、知识点总结 22 ()220 020()()112()lim 2r w z z e w z w w R R z z z w z e z w πλλθπ-→∞??=?? ???????? =+? ???????? ? ?===??? 振幅分布:按高斯函数从中心向外平滑降落。光斑半径高斯光束基本性质等相位面:以为半径的球面,远场发散角:基模高斯光束强度的点的远场发散角, ()0 1/2 221 22 22 00()()1()()()1()11()()() ()()w f w z w z R z R z z R z w z i q z R z w z W z R Z w q z if z q z i z πλλπλππλ--??????=+?? ????? ????→??????=+??? ????????? =-→=+=+=+0(或)及束腰位置w 高斯光束特征参数光斑半径w(z)和等相位面曲率半径R(z), q 参数,将两个参数和统一在一个表达式中,便于研究??????????????? ???? ?? 高斯光束通过光学系统的传输规律

超短脉冲激光和钛宝石飞秒激光器

第23卷第1期2007年8月 山西大同大学学报(自然学科版) Journal of Shanxi Datong University(Natural Science) Vol.23.No.1 Aug.2007超短脉冲激光和钛宝石飞秒激光器 郭玉洁,帕力哈提?米吉提 (新疆大学物理科学与技术学院,新疆乌鲁木齐830046) 摘 要:该文介绍了飞秒激光的特点、应用以及钛宝石激光器的相关理论。 关键词:飞秒激光 钛宝石激光器 自聚焦 中图分类号:TN248.4 文献标识码:A 文章编号:167420874(2007)0120058203 飞秒激光技术是一项能协助多种学科在更深层次上认识客观世界,增强人类改造世界能力的技术.它是目前人类观察微观世界,揭示超快运动过程的重要手段.科学家预测飞秒激光将为未来新能源的产生发挥重要作用. 1 超短脉冲激光及其应用 1.1超短脉冲激光的特点 自从脉冲激光问世以来,激光脉冲的峰值功率及脉冲宽度已经有了前所未有的快速发展.1981年Fork等人利用碰撞锁模技术从染料激光器中首次获得了飞秒激光脉冲[1],从而使人类进入了超短脉冲激光技术时代.超短脉冲激光有两个显著特点:一是脉冲宽度极短,达到了飞秒(10215s)量级,阿秒(10218s)量级;二是经过放大后,脉冲峰值功率极高,可以达到太瓦(1012W)甚至拍瓦(1015W)量级.脉冲持续时间如此之短,峰值功率如此之高,且能聚焦到比头发直径还要小的空间区域,使得聚焦后的光功率密度可以达到1020W/cm2量级以上.这些独有的特点使超短脉冲激光具有广泛而特殊的用途,它将对社会经济的发展起到巨大的带动作用. 1.2飞秒激光的用途 超短脉冲激光的发展直接带动了物理、化学、生物、材料与信息科学等的发展,并开创了一些全新的研究领域,如飞秒化学、量子控制化学、半导体相干光谱、超高强度科学与技术等. 1.2.1飞秒激光在超快领域内的应用 飞秒激光在超快现象研究领域中起的是快速过程诊断的作用.飞秒激光尤如一个极为精准的“时钟”和一架超高速的“相机”,它可以将自然界中特别是原子、分子水平上的一些快速过程分析、记录下来,形成多种时间分辨光谱技术和泵浦/探测技术.由于飞秒激光具有快速和高分辨率特性,它在病变早期诊断、医学成像和生物活体检测、外科医疗及超小型卫星的制造上都有着独特的优点和不可替代的作用. 1.2.2飞秒激光在超强领域中的应用 飞秒激光是研究原子分子体系、高阶非线性和多光子过程的重要工具.飞秒脉冲的峰值功率和光强可以非常高,这样的强光所对应的电磁场会远大于原子中的库仑场,从而很容易将原子中的电子统统剥落,是产生激光等离子体、超短X光、新一代粒子加速器和激光核聚变快速点火的高新技术途径.物质在高强度飞秒激光的作用下会出现非常奇特的现象:气态、液态、固态的物质瞬息间变成了等离子体.这种等离子体可以辐射出各种波长的射线激光.高功率飞秒激光与电子束碰撞能够产生硬X射线飞秒激光、β射线激光以及正负电子对.高功率飞秒激光还可以将大气击穿,从而制造放电通道,实现人工引雷,避免飞机、火箭、发电厂等因天然雷击而造成的灾难性破坏.高功率飞秒激光与物质相互作用,能够产生足够数量的中子,实现激光受控核聚变的快速点火,从而为人类获得新一代能源开辟了一条崭新的途径. 收稿日期:2007203205 作者简介:郭玉洁(19792)女,辽宁辽阳人,硕士,研究方向:激光物理.

相关主题
文本预览
相关文档 最新文档