原始地貌坐标高程数据
- 格式:xlsx
- 大小:25.10 KB
- 文档页数:4
密级:I 编号:1XXXX中医一附院外科综合大楼东侧场平工程土方开挖原始地形地貌高程点测量报告贵州公司2018年6月XXXX中医一附院外科综合大楼东侧场平工程土方开挖原始地形地貌高程点测量报告批准/审定:审核:编写:测量人员:贵州公司2018年6月目录1. 工程概况 (3)2. 作业依据 (4)3. 已有资料 (4)4. 坐标系统 (5)5. 人员、仪器及施测方法 (6)6. 计算说明 (9)7. 质量控制 (10)8. 成果资料 (10)1. 工程概况受XXXX中医一附院医基建处的委托,我公司承接XXXX中医一附院医外科综合大楼东侧场平工程施工,根据甲方提出工期要求及项目推进计划,甲方组织各参建单位:建设单位、监理单位、场平施工单位、主体施工单位及相关部门于2018年6月22日对地块界线内土方挖填工程量计算的原始地形地貌高程点测量,该项目建设地块位于云岩区宝山北路XXXX中医一附院医范围内,东侧宝山北路,南侧为省休校,西侧为外科综合大楼,北侧为医院门急部,项目测区地块现状为建筑物建渣乱堆土为主。
工程建设规模:占地面积约6200.0平方米。
2. 作业依据2.1 《城市测量规范》CJJ8—99;2.2 《工程测量规范》GB50026-2007;2.3 《国家三、四等水准测量规范》 GB/T 12898—2009;2.4 《全球定位系统(GPS)测量规范》 GB/T 18314—2009。
3.已有资料3.1 控制点资料甲方提供是地勘单位钻探报告中注记的已知控制点。
控制点成果资料:平面坐标系:XXXX独立坐标系高程基准:1985国家高程基准。
如下示意图:3.2图纸资料甲方提供的项目建设工程红线总平面图。
4. 坐标系统4.1 已知控制点根据甲方提供的已知控制点资料对控制点位现场踏勘,控制点位保存完好。
则本次采用KZ-02控点为基准点,KZ-01为检查复核点。
控制点坐标数据如下:4.2 本次采用坐标系4.2.1 平面控制为XXXX市独立坐标系;4.2.2 高程控制为1985国家高程基准。
DEM基础知识DEM即地面数字高程Digital Terrain Model, 是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
如地面温度、降雨、地球磁力、重力、土地利用、土壤类型等其他地面诸特征。
数字地形模型中地形属性为高程时称为数字高程模型。
高程是地理空间中的第三维坐标。
数学表达为:z = f(x,y)DEM是DTM的一个子集,是DTM的基础数据,最核心部分,可以从中提取出各种地形信息,如高度、坡度、坡向、粗糙度,并进行通视分析,流域结构生成等应用分析。
DTM(Digital Terrain Model),数字地面模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一种模拟表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
x、y表示该点的平面坐标,z值可以表示高程、坡度、温度等信息,当z表示高程时,就是数字高程模型,即DEM。
地形表面形态的属性信息一般包括高程、坡度、坡向等。
数字高程模型是地形曲面的数字化表达,就是说,DEM是在计算机存储介质上科学、真实地描述、表达和模拟地形曲面实体,因此它的建立实际上是一种地形数据的建模过程。
DEM的建立首先要对地形曲面进行抽象、总结和提炼,形成高度概括的地形曲面数据模型,然后在此数据模型基础上,将观测数据按照一定的结构组织在一起,形成对数据模型的表述,最后借助计算机实现数据管理和地形重建。
1.DEM质量评价标准保凸性:若逼近面与实际曲面的波动次数相等或接近,而且两者对应的脊线、谷线位置和走向基本一致,则保凸性好,反之保凸性差。
逼真性:逼近面F(x,y)和实际地形曲面f(x,y)对应点之间应满足关系式:MAX|f(x,y)-F(x,y)|≤σ,则认为逼近面达到逼真性要求。
光滑性:光滑性是指曲线上切线方向变化的连续性,或者说曲线上曲率的连续性。
曲线的平顺性指曲线上没有太多的拐点。
dem 生成 dtm 原理
dem生成dtm的原理如下:
1. DEM数据预处理:首先对原始DEM数据进行预处理,包
括数据的校正、填充空白、去除噪声等操作,以减小数据的不确定性和误差。
2. 网格化:将DEM数据按照一定的网格大小进行划分,将每
个网格单元内的高程值进行统计和处理,得到每个网格单元的平均高程值。
3. 拓扑关系建立:根据网格化后的DEM数据,建立每个网格
单元之间的拓扑关系,即确定每个网格单元与其相邻网格单元之间的连接关系。
4. 网格间高程差计算:根据相邻网格单元的高程值,计算网格单元之间的高程差。
可以使用不同的算法计算高程差,常用的有简单求差法、线性插值法等。
5. DTM生成:根据网格间的高程差,生成DTM。
在生成
DTM时,需要考虑地形特征的连续性和平滑度,通常会进行
滤波处理,以消除尖峰和孤立点,并使得地形特征更加真实和连续。
6. 数据分析和校正:对生成的DTM数据进行分析,评估其质
量和准确性,并对可能存在的误差和不确定性进行校正和修正。
这一步主要是对DTM进行验证和精度评定,并进行必要的调
整和修正。
通过以上步骤,DEM数据可以被转换为DTM数据,用于地形分析、地貌研究、地理信息系统等领域的应用。
一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。
DEM表示区域D上的三维向量有限序列,用函数的形式描述为:V i=(X i,Y i,Z i);i=1,2,…,n式中, X i, Y i是平面坐标, Z i是(X i, Y i)对应的高程。
二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。
2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。
3)更新的实时性,容易实现自动化,实时化。
4)具有多比例尺特性。
三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1.来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。
2.数字高程数据类型1)分辨率①.10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。
数据像素值记录了点位高程。
高程值计量单位为米。
②.12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。
该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。
该数据水平及垂直精度可达12米。
ALOS(AdvancedLand Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(A VNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。
③.不同分辨率下的晕渲图对比图 1 不同分辨率下的晕渲图2)遥感测量方法a)SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。
DEM基础知识DEM即地面数字高程Digital Terrain Model, 是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
如地面温度、降雨、地球磁力、重力、土地利用、土壤类型等其他地面诸特征。
数字地形模型中地形属性为高程时称为数字高程模型。
高程是地理空间中的第三维坐标。
数学表达为:z = f(x,y)DEM是DTM的一个子集,是DTM的基础数据,最核心部分,可以从中提取出各种地形信息,如高度、坡度、坡向、粗糙度,并进行通视分析,流域结构生成等应用分析。
DTM(Digital Terrain Model),数字地面模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一种模拟表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
x、y表示该点的平面坐标,z值可以表示高程、坡度、温度等信息,当z表示高程时,就是数字高程模型,即DEM。
地形表面形态的属性信息一般包括高程、坡度、坡向等。
数字高程模型是地形曲面的数字化表达,就是说,DEM是在计算机存储介质上科学、真实地描述、表达和模拟地形曲面实体,因此它的建立实际上是一种地形数据的建模过程。
DEM的建立首先要对地形曲面进行抽象、总结和提炼,形成高度概括的地形曲面数据模型,然后在此数据模型基础上,将观测数据按照一定的结构组织在一起,形成对数据模型的表述,最后借助计算机实现数据管理和地形重建。
1.DEM质量评价标准保凸性:若逼近面与实际曲面的波动次数相等或接近,而且两者对应的脊线、谷线位置和走向基本一致,则保凸性好,反之保凸性差。
逼真性:逼近面F(x,y)和实际地形曲面f(x,y)对应点之间应满足关系式:MAX|f(x,y)-F(x,y)|≤σ,则认为逼近面达到逼真性要求。
光滑性:光滑性是指曲线上切线方向变化的连续性,或者说曲线上曲率的连续性。
曲线的平顺性指曲线上没有太多的拐点。
房建工程原始地貌测量方案一、前言随着城市化进程的加速,房建工程的建设需求也随之增加。
在房建工程的规划和设计过程中,需要对原始地貌进行测量,以便合理利用地形地貌资源,确保地基工程的稳定和耐久,从而确保建筑物的安全和稳定。
因此,本文旨在探讨房建工程原始地貌测量方案,以期对房建工程的规划和设计提供参考。
二、测量目的1. 了解原始地貌的地形和地质特征,为后续工程设计和施工提供依据。
2. 确定地形地貌特征,为房建工程的地基设计提供准确数据。
3. 保障工程的安全、稳定和持久性。
三、测量内容1. 地形测量:包括测量地表地形的高程、坡度、方向等。
2. 地质测量:包括测量地下地质构造、岩性、风化程度等。
3. 土层测量:包括测量土层的厚度、分布、孔隙率等。
四、测量方法1. 地形测量:采用全站仪、GPS等现代测量仪器进行测量,获取地形的高程、坡度、方向等数据。
2. 地质测量:采用地质钻探、岩石采样等方法进行测量,获取地下地质构造、岩性、风化程度等数据。
3. 土层测量:采用土壤取样、试坑等方法进行测量,获取土层的厚度、分布、孔隙率等数据。
五、测量流程1. 编制测量方案:根据工程要求和实际情况,编制测量方案,确定测量内容、方法、仪器等。
2. 布设测量控制点:根据测量要求,布设测量控制点,确保测量数据的准确性和可靠性。
3. 进行地形测量:采用全站仪、GPS等仪器进行地形测量,获取地形的高程、坡度、方向等数据。
4. 进行地质测量:采用地质钻探、岩石采样等方法进行地质测量,获取地下地质构造、岩性、风化程度等数据。
5. 进行土层测量:采用土壤取样、试坑等方法进行土层测量,获取土层的厚度、分布、孔隙率等数据。
六、测量数据处理1. 对测量数据进行整理和分析,制作测量成果图和报告,提供给建筑设计单位和地基工程施工单位参考。
2. 对地质测量数据进行地质条件评价,确定地基工程的基础类型和处理方法。
3. 对土层测量数据进行土质分析,确定地基工程的承载力和变形特性。
土方工程量计算几种比较经常计算土方量的方法有:公式法预估、方格网法、等高线法、断面法、DTM法、区域土方量平衡法和平均高程法等。
一、公式法预估方法原理:即把地形近似的假定为锥体、棱台、球缺、圆台等几何体,利用立体几何公式计算土方量此法简单易于操作但精确度差,所以一般多用于方案规划、设计阶段的土方量估算。
二、方格网法方法原理:系统将方格的四个角上的高程相加(如果角上没有高程点,通过周围高程点内插得出其高程),取平均值与设计高程相减。
然后通过指定的方格边长得到每个方格的面积,再用长方体的体积计算公式得到填挖方量。
方格网法计算的设计面可以是平面或斜面(A.一个方向放坡:斜面【基准点】、B.二个不同方向放坡:斜面【基准线】),也可以是多个坡面(利用三角网文件完成),能够满足不同情况下的土方计算,尤其是在处理多级放坡非常出色。
方法原理:两条等高线所围面积可求,两条等高线之间的高差已知,可求出这两条等高线之间的土方量。
适用于用户将白纸图扫描矢量化后得到的图形,因为这样的图形没有高程数据文件,所以无法用前面的几种方法计算土方量。
用等高线法可计算任两条等高线之间的土方量,但所选等高线必须闭合。
山体水方法原理:道路断面、场地断面、任意断面、二断面线间土方计算。
其工作原理为根据纵断面上各个里程处实际测量的地面横断面线与设计横断面线,获得各个里程处的横断面的填挖面积,并由相邻两横段面的间距计算出土石方量,最终汇总出纵断面上所有两相邻横断面间的土石方量,并绘出土石方量计算表。
五、DTM法方法原理:根据实测的地面点坐标(X,Y,Z )和设计高程,建立三角网并计算每一个三棱锥的填挖方量,最后累加得到指定范围内填挖方量,并绘制出填挖分界线。
DTM法主要适用于设计面为平面或单一斜面情况,DTM法可以进行坡边设置,根据坡度及放坡方向计算填挖方量,因此可用于道路施工的土方测量;DTM法还可以将两次观察数据建模后叠加(蓝色部分表示高程已经变化,红色部分表示没有变化),因此可用于计算同一区域两时期间的土方量变化。
南方CASS计算两期间土方与方格网法土方计算相结合准确计算土方量欧陆(荣县经纬国土资源测绘有限公司四川荣县 643100)摘要:单纯的方格网法测量土方是将其方格均视为独立的规则平面,这与计算场地的实际地形是有差别的,精度也无法评估,有其局限性;而三角网法测量土方量虽然精度高,但可读性差,客户不愿采用。
针对这种情况,本文采用南方CASS计算两期间土方与方格网土方计算相结合的方法计算土方量,既提高了土方测量的效率,又保证了土方计算成果的正确性,很好地解决了这一难题。
关键词:CASS7。
1;方格网法;计算两期间土方。
在工程建设中,不管是工业与民用建筑、道路建设还是其它工程建设常需要将自然地貌改造为水平的或一个或多个坡度的场地,以便适用于布置各类建筑物和构筑物,这些都涉及到土石方的开挖与回填量的计算问题。
随着数字测图技术的发展,南方数码科技有限公司研发的地形地籍成图软件CASS7。
1是目前市面上较常见的一套测量软件,其中所包含的土方计算功能为大家所普遍使用,它不仅上手容易,内业操作简便,而且计算结果准确性良好,可信度较高,为广大使用者所认可。
土方量的计算,实际上就是计算设计标高与自然地面标高之间的土石方体积。
设计面有平面、单一斜面、曲面,其中,对于设计面是平面和单一斜面的土方量计算,南方CASS7。
1中提供了比较简单的操作方法进行计算;而以曲面或连续不同坡度的斜面作设计面来计算土方量时,操作就相对复杂了.南方CASS7。
1中提供了DTM法、断面法、方格网法、等高线法四种计算方法,其中用得最多的是方格网法和DTM法两种方法,它们各有优点,又各有缺点;方格网法计算土方量,成果直观易懂,是绝大部分客户的首选方法,但方格网法土方量计算中,一旦确定了方格的边长,容易出现如图1所示的情况,方格的一端远离坎底,另一端正好在坎顶边,和如图2所示的情况,方格内有起伏较大的区域,该起伏区域的土方量是没有进行统计的,这就不能满足计算成果的精度要求.不规则三角网(TIN)是数字地面模型DTM表现形式之一,该法直接利用外业所采集的地形碎部点、特征点进行三角构网,对计算区域按三棱柱法计算土方。
断面法测量在线路工程原地貌复测中的运用2中国十九冶集团有限公司四川成都610000摘要:为了评估地貌变化的程度和特征,确定路基填挖土方量,需要对设计原始地面线的高程进行复测。
在线路工程实施中,我们常采用断面法进行测量,将获取的实际断面成果与设计断面进行土方复核计算,得到复测的成果,再与设计文件给出的土石方量进行比对,获取偏差值。
通过分析判断原地面复测情况,在控制允许误差范,则设计文件与实际地形相吻合;否则,说明现状地貌与设计上出现偏差,需要进行工程量的设计变更,复测成果也是作为实际结算的参考依据。
关键词:断面法、设计断面线、原地貌复测、横断面数据1原地貌复测意义原地貌复测[1],是工程建设中的首要任务。
原地貌复测,是对工程所在区域现状进行测量的工作,是对设计文件及时有效性检查的基本工作,是施工单位与建设单位(或者监理单位)、审计单位(或过程控制单位)等相关单位共同测量或鉴证测量,共同认可其测量成果的基本性工作。
经过共同测量或鉴证测量,及时发现设计文件成果编制到工程开工日期间实际现状地貌的变化情况,同时也是工程建设的实施的基本工作,也体现工程建设中公平、公正、客观的计量原则。
2原地貌复测实施流程第一步:通过测量手段获取工程所在区域的现状地面空间数据(坐标和高程);第二步:获取的测量基础数据与设计断面文件进行方量计算;第三步:经过计算的方量与设计成果文件中给出的方量进行比较,计算复测成果差值报告;第四步:通过复测成果差值报告,参照相应的施工规范要求,编制复测成果报告,作为工程基础资料,作为工程计量的基础资料。
3原地貌复测实施技术性问题3.1复测断面数据获取复测断面数据,利用测量手段,包括全站仪电子测量、RTK数据采集、航测影响处理等方式,获取实测现状数据,然后通过相应的处理,获取相应的断面数据。
高速公路、一级、二级公路横断面测量应采用水准仪-皮尺法、GPS RTK方法、全站仪法进行[2]。
横断面测量应逐桩施测,其方向应与路线中线切线垂直;横断面测量的宽度应满足设计的需要,一般宽余设计10m。
DEM地形分析范文DEM地形分析是通过数字高程模型(DEM,Digital Elevation Model)来研究和分析地表地形的方法。
DEM地形分析主要应用于地质、地貌、水文以及土地利用等领域,具有非常重要的研究价值和实际应用意义。
下面将从DEM的获取方法、数据处理、地形参数和应用等方面进行详细介绍。
DEM的获取可以通过多种途径,常见的方法包括遥感获取、气象雷达测量、激光测高仪等。
其中最常用的是激光雷达技术。
该技术通过激光束扫描地表,测量激光从发射到接收的时间,从而得到地表的高程信息。
激光雷达获取的DEM具有高精度和较大的空间覆盖范围,能够满足大部分地形分析的需求。
在进行DEM地形分析之前,需要对DEM数据进行处理。
首先,对原始DEM数据进行滤波处理,去除残余噪声和突出点。
然后,进行地表平滑处理,消除DEM数据中的局部波动和峰谷现象。
最后,进行数据投影和坐标转换,将DEM数据转换为所需的坐标系统和单位。
DEM地形分析的一个重要内容是地形参数的计算。
地形参数是用来描述地表地形特征的数值指标,包括高程、坡度、坡向、曲率、流域等。
高程是指地表相对于参考水平面的海拔高度。
坡度是指地表的垂直变化率,可以通过计算两个相邻格网之间的高程差得到。
坡向是指地表的最大降水方向,可以通过计算两个相邻格网之间的高程差和相对方位得到。
曲率是指地表高程的曲率变化情况,可以通过计算二阶导数得到。
流域是指一定区域内的地表水收集和排泄的区域,可以通过计算流向和累积面积得到。
DEM地形分析在许多领域有着广泛的应用。
在地质领域,DEM地形分析可以用来研究地壳运动、断裂和地震等现象,从而更好地理解地球内部的构造和演化。
在地貌学领域,DEM地形分析可以用来研究地表的起伏和形态,分析河流的发育过程和侵蚀特征,揭示地貌演化的规律和机制。
在水文学领域,DEM地形分析可以用来研究流域的水文特征,如坡度、坡向、曲率和流域面积等,为洪水预测、水资源管理和水土保持等提供科学依据。