当前位置:文档之家› 数字信号处理 频率抽样法

数字信号处理 频率抽样法

频率采样法设计高通FIR数字滤波器(范本)

课程设计任务书 学生姓名:胡双印专业班级:通信1005班指导教师:刘新华工作单位:信息工程学院题目:数字高通FIR滤波器设计 要求完成的主要任务: 1.在数字信号处理平台上(PC机﹑MATLAB仿真软件系统)进行软件仿真设计,并进行调试和数据分析。 2. 利用MATLAB仿真软件系统结合频率取样法设计一个数字高通FIR滤波器。 课程设计的目的: 1.理论目的 课程设计的目的之一是为了巩固课堂理论学习,并能用所学理论知识正确分析信号处理的基本问题和解释信号处理的基本现象。 2.实践目的 课程设计的目的之二是通过设计具体的图像信号变换掌握图像和信号处理的方法和步骤。 时间安排: 指导教师签名:年月日系主任(或责任教师)签字:年月日

目录 摘要............................................................................................................................ I Abstrct ........................................................................................................................... II 1 引言. (1) 1.1MATLAB介绍 (1) 1.2MATLAB信号处理工具箱函数介绍 (1) 1.3滤波器的介绍 (2) 2 FIR数字滤波器设计原理 (3) 3 FIR数字滤波器设计方法 (4) 3.1窗函数法 (4) 3.2频率取样法 (5) 4 频率采样法实际FIR高通滤波器 (7) 4.1设计原理 (7) 4.2设计步骤 (9) 5 MATLAB环境下设计FIR数字高通滤波器 (9) 5.1设计要求 (9) 5.2 FIR数字高通滤波器程序设计 (10) 5.3调试结果 (11) 5.4 高通FIR数字滤波器的进一步设计 (12) 6 高通FIR数字滤波器性能测试 (14) 6.1高通FIR数字滤波器性能测试程序 (14) 6.2 性能测试结果 (15) 7 FDATOOL工具箱设计高通FIR滤波器 (16) 7.1 FDATOOL工具箱 (16) 7.2 FIR滤波器参数设置 (17) 8心得体会 (19) 参考文献 (20) 附件:MATLAB程序 (21)

频率采样法设计FIR数字滤波器

实验八频率采样法设计FIR数字滤波器 一、实验目的 掌握频率取样法设计FIR数字滤波器的原理及具体方法。 二、实验设备与环境 计算机、MATLAB软件环境 三、实验基础理论 1.基本原理 频率取样法从频域出发,把理想的滤波器等间隔取样得到,将作为实际设计滤波器的 ,N-1 得到以后可以由来唯一确定滤波器的单位脉冲响应, ()D_Dd___________e??________________求得 其中为内插函数 由求得的频率响应来逼近。 如果我们设计的是线性相位FIR滤波器,则的幅度和相位一定满足线性相位滤波器的约束条件。 我们将表示成如下形式

当为实数,则 由此得到 即以k=N/2为中心呈偶对称。再利用线性条件可知,对于1型和2型线性相位滤波器 对于3型和4型线性相位滤波器 其中,表示取小于该数的最大的整数。 2.设计步骤 (1)由给定的理想滤波器给出和。 (2)由式求得。 (3)根据求得和。 四、实验内容 1.采用频率采样设计法设计FIR数字低通滤波器,满足以下指标 (1)取N=20,过渡带没有样本。 (2)取N=40,过渡带有一个样本,T=0.39。 (3)取N=60,过渡带有两个样本,T1=0.5925,T2=0.1009。 (4)分别讨论采用上述方法设计的数字低通滤波器是否能满足给定的技术指标。

实验代码与实验结果 (1)N=20 过渡带没有样本 N=20; alpha=(N-1)/2; l=0:N-1; wl=(2*pi/N)*l; Hrs=[1,1,1,zeros(1,15),1,1]; *对理想幅度函数取样得到取样样本Hdr=[1,1,0,0];wdl=[0,0.25,0.25,1]; *用于绘制理想函数幅度函数的曲线k1=0:floor((N-1)/2); k2=floor((N-1)/2)+1:N-1; angH=[-alpha*(2*pi)/N*k1,alpha*(2*pi)/N*(N-k2)]; H=Hrs.*exp(j*angH); *计算H(k) h=ifft(H,N); *计算h(n) w=[0:500]*pi/500; H=freqz(h,1,w); *计算幅度响应 [Hr,wr]=zerophase(h); *计算幅度函数 subplot(221); plot(wdl,Hdr,wl(1:11)/pi,Hrs(1:11),'o'); axis([0,1,-0.1,1.1]); xlabel('\omega(\pi)'); ylabel('Hr(k)'); subplot(222); stem(l,h,'filled'); axis([0,N-1,-0.1,0.3]); xlabel('n');ylabel('h(n)'); subplot(223); plot(wr/pi,Hr,wl(1:11)/pi,Hrs(1:11),'o'); axis([0,1,-0.2,1.2]); xlabel('\omega(\pi)'); ylabel('Hr(w)'); subplot(224); plot(w/pi,20*log10((abs(H)/max(abs(H))))); axis([0,1,-50,5]); grid;xlabel('\omega(\pi)'); ylabel('dB');

DSP技术与算法实现学习报告

DSP技术与算法实现学习报告 一.课程认识 作为一个通信专业的学生,在本科阶段学习了数字信号处理的一些基本理论知识,带着进一步学习DSP技术以及将其理论转化为实际工程实现的学习目的,选择了《DSP技术与算法实现》这门课程。通过对本课程的学习,我在原有的一些DSP基础理论上,进一步学习到了其一些实现方法,系统地了解到各自DSP芯片的硬件结构和指令系统,受益匪浅。 本门课程将数字信号处理的理论与实现方法有机的结合起来,在简明扼要地介绍数字信号处理理论和方法的基本要点的基础上,概述DSP的最新进展,并以目前国际国内都使用得最为广泛的德克萨斯仪器公式(TI,Texas Instruments)的TMS320、C54xx系列DSP为代表,围绕“DSP实现”这个重点,着重从硬件结构特点,软件指令应用和开发工具掌握出发,讲解DSP应用的基础知识,讨论各种数字信号处理算法的实现方法及实践中可能遇到的主要问题,在此基础上实现诸如FIR、IIR、FFT等基本数字信号处理算法等等。 1.TI的DSP体系 TI公司主要推出三大DSP系列芯片,即TMS320VC2000,TMS320VC5000,TMS320VC6000系列。 TMS320VC200系列主要应用于控制领域。它集成了Flash存储器、高速A/D转换器、可靠的CAN模块及数字马达控制等外围模块,适用于三相电动机、变频器等高速实时的工控产品等数字化控制化领域。 TMS320VC5000系列主要适用于通信领域,它是16为定点DSP芯片,主要应用在IP 电话机和IP电话网、数字式助听器、便携式音频/视频产品、手机和移动电话基站、调制调解器、数字无线电等领域。它主要分为C54和C55系列DSP。课程着重讲述了C54系列的主要特性,它采用改进哈弗结构,具有一个程序存储器总线和三个数据存储器总线,17×17-bit乘法器、一个供非流水的MAC(乘法/累加)使用的专用加法器,一个比较、选择、存储单元(Viterbi加速器),配备了双操作码指令集。 TMS320VC6000系列主要应用于数字通信和音频/视频领域。它是采用超长指令字结构设计的高性能芯片,其速度可以达到几十亿MIPS浮点运算,属于高端产品应用范围。

DSP常见算法的实现

3.6 常见的算法实现 在实际应用中虽然信号处理的方式多种多样,但其算法的基本要素却大多相同,在本节中介绍几种较为典型的算法实现,希望通过对这些例子(单精度,16bit )的分析,能够让大家熟悉DSP 编程中的一些技巧,在以后的工作中可以借鉴,达到举一反三的效果。 1. 函数的产生 在高级语言的编程中,如果要使用诸如正弦、余弦、对数等数学函数,都可以直接调用运行库中的函数来实现,而在DSP 编程中操作就不会这样简单了。虽然TI 公司提供的实时运行库中有一些数学函数,但它们所耗费的时间大多太长,而且对于大多数定点程序使用双精度浮点数的返回结果有点“大材小用”的感觉,因此需要编程人员根据自身的要求“定制”数学函数。实现数学函数的方法主要有查表法、迭代法和级数逼近法等,它们各有特点,适合于不同的应用。 查表法是最直接的一种方法,程序员可以根据运算的需要预先计算好所有可能出现的函数值,将这些结果编排成数据表,在使用时只需要根据输入查出表中对应的函数值即可。它的特点是速度快,但需要占用大量的存储空间,且灵活度低。当然,可以对上述查表法作些变通,仅仅将一些关键的函数值放置在表中,对任意一个输入,可根据和它最接近的数据采用插值方法来求得。这样占用的存储空间有所节约,但数值的准确度有所下降。 迭代法是一种非常有用的方法,在自适应信号处理中发挥着重要的作用。作为函数产生的一种方法,它利用了自变量取值临近的函数值之间存在的关系,如时间序列分析中的AR 、MA 、ARMA 等模型,刻画出了信号内部的特征。因为它只需要存储信号模型的参量和相关的状态变量,所以所占用的存储空间相对较少,运算时间也较短。但它存在一个致命的弱点,由于新的数值的产生利用了之前的函数值,所以它容易产生误差累积,适合精度要求不高的场合。 级数逼近法是用级数的方法在某一自变量取值范围内去逼近数学函数,而将自变量取值在此范围外的函数值利用一些数学关系,用该范围内的数值来表示。这种方法最大的优点是灵活度高,且不存在误差累积,数值精度由程序员完全控制。该方法的关键在于选择一个合适的自变量取值区间和寻找相应的系数。 下面通过正弦函数的实现,具体对上述三种方法作比较。 查表法较简单,只需要自制一张数据表,也可以利用C5400 DSP ROM 内的正弦函数表。 迭代法的关键是寻找函数值间的递推关系。假设函数采样时间间隔为T ,正弦函数的角频率为ω,那么可以如下推导: 令()()()T T ω?β?αω?-+=+sin sin sin 等式的左边展开为 T T side left ω?ω?sin cos cos sin _+= 等式的右边展开为 ()T T side right ω?βωα?sin cos cos sin _-+= 对比系数,可以得到1,cos 2-==βωαT 。令nT =?,便可以得到如下的递推式: [][][]21cos 2---=n s n s T n s ω

用频率采样法设计FIR数字滤波器

用频率采样法设计FIR 数字滤 波器 信号、系统与信号处理实验Ⅱ 实验报告 实验名称:用频率采样法设计FIR 数字滤波器 一、实验目的 掌握频率取样法设计FIR 数字滤波器,加深过渡点对滤波器性能影响的认 识。 二、实验内容与要求 ( 1)编写好一个设计线性相位FIR 高通滤波器的程序,已知wc=0.8 , N=64,要求在屏幕上显示出h(n) 值,画出|H(e^jw)| 及20lg(|H(e^jw)) 的曲线。 ( 2)实验时,设置0 个过渡点, 1 个过渡点, 2 个过渡点,比较设计所得的|H(e^jw)| 及20lg(|H(e^jw)) 的曲线。

三、实验程序与结果 (1)0个过渡点clear all ; N=64; wc=0.8*pi; k=0:N-1; phase=(-pi*k*(N-1)/N)+pi/2; HK=[zeros(1,26),ones(1,13),zeros(1,25)];

HK1=HK.*exp(j*phase); hn=ifft(HK1,N) figure(1); freqz(hn,1,512); [H,W]=freqz(hn,1,512); figure(2); subplot(3,1,1); stem(k,hn); title( 'h(n)' ) subplot(3,1,2); plot(W/pi,abs(H)); title( '|H(eiw)|' ) subplot(3,1,3); plot(W/pi,20*log10(abs(H))); title( '20lg|H(eiw)|' );

(2)1个过渡点 clear all ; N=64; wc=0.8*pi; k=0:N-1; phase=(-pi*k*(N-1)/N)+pi/2; HK=[zeros(1,25),0.5,ones(1,13),0.5,zeros(1,24)]; HK1=HK.*exp(j*phase); hn=ifft(HK1,N); figure(1); freqz(hn,1,512); [H,W]=freqz(hn,1,512); figure(2); subplot(2,1,1); plot(W/pi,abs(H)); title( '|H(eiw)|' ) subplot(2,1,2); plot(W/pi,20*log10(abs(H))); title( '20lg|H(eiw)|' );

实验设计:多采样率数字信号处理

实验名称:多采样率数字信号处理 一.实验目的:1. 掌握信号抽取和插值的基本原理和实现; 2.掌握信号的有理数倍率转换。 二.实验原理: 多采样率数字信号处理共分为3方面的问题:信号的整数倍抽取、信号的整数倍插值和信号的有理数倍速率转换。 Matlab 信号处理工具箱提供了抽取函数decimate 用于信号整数倍抽取,其调用格式为: y=decimate(x,M) y=decimate(x,M,n) y=decimate(x,M,’fir’) y=decimate(x,M,n,’fir’) 其中y=decimate(x,M)将信号x 的采样率降低为原来的 M 1,抽取前缺省地采用8阶Chebyshev Ⅰ型低通滤波器压缩频带。 y=decimate(x,M,n)指定所采用Chebyshev Ⅰ型低通滤波器的阶数,通常13 n 。 y=decimate(x,M,’fir’)指定用FIR 滤波器来压缩频带。 y=decimate(x,M,n,’fir’) 指定所用FIR 滤波器的阶数。 Matlab 信号处理工具箱提供了插值函数interp 用于信号整数倍插值,其调用格式为: y=interp(x,L) y=interp(x,L,n,alpha) [y,b]=interp(x,L,n,alpha) 其中y=interp(x,L)将信号的采样率提高到原来的L 倍。 y=interp(x,L,n,alpha)指定反混叠滤波器的长度n 和截止频率alpha ,缺省值为4和0.5。 [y,b]=interp(x,L,n,alpha)在插值的同时,返回反混叠滤波器的系数向量。 信号的有理数倍速率转换是使信号的采样率经由一个有理因子M L 来改变,可以通过插值和抽取的级联来实现。Matlab 信号处理工具箱提供了重采样函数resample 用于有理倍数速率转换,其调用格式为: y=resample(x,L,M);

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

频率抽样设计法

第7章 FIR 数字滤波器的设计方法 IIR 数字滤波器最大缺点:不易做成线性相位,而现代图像、语声、数据通信对线性相位的要求是普遍的。正是此原因,使得具有线性相位的FIR 数字滤波器得到大力发展和广泛应用。 1. 线性相位FIR 数字滤波器的特点 FIR DF 的系统函数无分母,为∑∑-=--=-== 1 1 )()(N n n N i i i z n h z b z H ,系统频 率响应可写成:∑-=-= 10 )()(N n jwn jw e n h e H ,令)(jw e H =)()(w j e w H Φ,H(w) 称为幅度函数,)(w Φ称为相位函数。这与模和幅角的表示法有所不同,H(w)为可正可负的实数,这是为了表达上的方便。如某系统频率响应 )(jw e H =w j we 34sin -,如果采用模和幅角的表示法,w 4sin 的变号相当 于在相位上加上)1(ππj e =-因,从而造成相位曲线的不连贯和表达不方便,而用)()(w j e w H Φ这种方式则连贯而方便。 线性相位的FIR 滤波器是指其相位函数)(w Φ满足线性方程: )(w Φ=βα+-w (βα,是常数) 根据群时延的定义,式中α表示系统群时延,β表示附加相移。线性相位的FIR 系统都具有恒群时延特性,因为α为常数,但只有β=0的FIR 系统采具有恒相时延特性。 问题:并非所有的FIR 系统都是线性相位的,只有当它满足一定条件时才具有线性相位。那么应满足什么样的条件?从例题入手。

例题:令h(n)为FIR 数字滤波器的单位抽样相应。N n n ≥<或0时h(n)=0,并假设h(n)为实数。 (a ) 这个滤波器的频率响应可表示为)()()(w j jw e w H e H Φ=(这是按幅 度函数和相位函数来表示的,不是用模和相角的形式),)(w H 为实数。(N 要分奇偶来讨论) (1) 当h(n)满足条件)1()(n N h n h --=时,求)(w H 和)(w Φ(π≤≤w 0) (2) 当h(n)满足条件)1()(n N h n h ---=时,求)(w H 和)(w Φ(π≤≤w 0) (b ) 用)(k H 表示h(n)的N 点DFT (1) 若h(n)满足)1()(n N h n h ---=,证明H(0)=0; (2) 若N 为偶数,证明当)1()(n N h n h --=时,H(N/2)=0。 解:(a )∑-=-= 1 )()(N n jwn jw e n h e H (1))1()(n N h n h --=,当N 为奇数时, +--++-+=---?----)11(1)1(0)11()1()1()0()(N jw jw N jw jw jw e N h e h e N h e h e H 2 123 ) 1()2 1(])[(---=-----++=∑N jw N n n N jw jwn e N h e e n h 2 1)2 1 ( 2 30 )2 1 ( )2 1 ()2 1(])[(-----=----- --++= ∑N jw N jw N n n N jw N n jw e N h e e e n h ) (})2 1 ()]21(cos[)(2{))(2 30 ) 2 1(w H e N h N n w n h e w j N n N jw Φ-=--=-+-- =∑

基于频率抽样法的FIR数字低通滤波器的设计

基于频率抽样法的FIR 数字低通滤波器的设计 1 设计目的 熟悉频率采样法的理论及其应用;掌握频率采样法设计FIR 数字滤波器的方法。了解FIR 数字滤波器的频率特性和相位特性,观察过渡带取样点对滤波器幅频特性的影响。掌握用频率采样法设计线性相位FIR 低通数字滤波器的方法,并掌握该方法的matlab 编程和仿真。 2 FIR 数字滤波器设计的原理 2.1频率抽样设计法 FIR 低通滤波器的设计一般方法有两种,即频率抽样法和窗函数法,频率抽样法设计不同于窗函数法,窗函数是从时域出发,把理想的()d h n 用一定形状得窗函数截取成有限长的()h n ,以此()h n 来近似理想的()d h n ,这样得到的频率响应()jw H e 逼近于所要求的理想的频率响应()jw d H e 。 频率抽样法则是从频域出发,把给定的理想频率响应()jw d H e 加以等间隔抽样,即2()| ()jw d d w k N H e H k π ==然后以此()d H k 作为实际FIR 数字滤波器的频率特性 的抽样值()H k ,即令2()()()| 0,1,,1jw d d w k N H k H k H e k N π====-,知道() H k 后,由DFT 定义,可以用频域的这N 个抽样值()H k 来唯一确定有限长序列()h n ,而由()X z 的内插公式知道,利用这N 个频域抽样值()H k 同样可求得FIR 滤波器的系统函数()H z 及频率响应()jw H e 。这个()H z 或()jw H e 将逼近()d H z 或 ()jw d H e ,()H z 和()jw H e 的内插公式为 1 1 01() ()1N N k k N z H k H z N W z ----=-= -∑ (2.1) 10 2()()()N jw k H e H k w k N π -==Φ- ∑ (2.2) 其中()w Φ是内插函数1() 2 sin( )12()sin() 2 N jw wN w e w N --Φ= (2.3) 将式(2.3)代入(2.2)式,化简后可得

数字信号处理 详细分析 采样

离散傅里叶变换 一、问题的提出:前已经指出,时域里的周期性信号在频域里表现为离散的值,通常称为谱线;而时域里的离散信号(即采样数据)在频域里表现为周期性的谱。 推论:时域里的周期性的离散信号,在频域里对应为周期性的离散的谱线。 由于傅里叶变换和它的反变换的对称性,我们不妨对称地把前者称为时域的采样,后者称为频域的采样;这样,采用傅里叶变换,时域的采样可以变换成为频域的周期性离散函数,频域的采样也可以变换成列域的周期性离散函数,这样的变换被称为离散傅里叶变换,简称为DFT。图3-1就是使用采样函数序列作离散傅里叶变换的简单示例。 (a )时域的采样在频域产生的周期性 (b )频域的采样在时域产生的周期性 图3-1 采样函数的离散傅里叶变换 上图就是使用采样函数序列作离散傅立叶变换的简单示例,在时域间隔为s t 的采样函数 序列的DFT 是频域里间隔为s s t f 1 =的采样函数序列;反之,频域里间隔为s f 的采样函数序列是时域里间隔为w W f T 1=的采样函数序列,如图3-1(b)所示。 由于在离散傅立叶变换中,时域和频域两边都是离散值,因此它才是真正能作为数字信号处理的变换,又由于变换的两边都表现出周期性,因此变换并不需要在),(+∞-∞区间进行,只需讨论一个有限周期里的采样作变换就可以保留全部信息。 表3-1为傅立叶变换和傅立叶级数的关系

二、DFT 的定义和性质 离散傅里叶变换(DFT )的定义为: 1、非周期离散时间信号)(n x 的Fourier 变换定义为:ωωωd e n x e X n j j -∞ ∞-∑ =)()( (1) 反变换:ωπωππωd e e X n x n j j ?-= )(21)( )(ωj e X 的一个周期函数(周期为)π 2,上式得反变换是在)(ωj e X 的一个周期内求积分的。这里数字信号的频率用ω来表示,注意ω与Ω有所不同。设s f 为采样频率,则采样周期为 f T 1 =,采样角频率T s π2=Ω,数字域的频率s s f πω2= 式1又称为离散时间Fourier 变换(DTFT )2、周期信号的离散Fourier 级数(DFS ) 三、窗函数和谱分析 1、谱泄露和栅栏效应 离散傅立叶变换是对于在有限的时间间隔(称时间窗)里的采样数据的变换,相当于对数据进行截断。这有限的时间窗既是DFT 的前提,同时又会在变换中引起某些不希望出现的结果,即谱泄露和栅栏效应。 1)谱泄露 以简单的正弦波的DFT 为例,正弦波具有单一的频率,因而在无限长的时间的正弦波,应该观察到单一δ函数峰,如下图示,但实际上都在有限的时间间隔里观察正弦波,或者在时间窗里作DFT ,结果所得的频谱就不再是单一的峰,而是分布在一个频率范围内,下图(b )示。这样信号被时间窗截断后的频谱不再是它真正的频谱,称为谱泄露。

采用频率采样法的FIR滤波器

吹管乐滤波去噪 ——基于频率采样法的FIR滤波器 学生姓名:焦阳指导老师:胡双红 摘要本课程设计主要内容是设计利用频率采样法设计一个FIR滤波器,对一段吹管乐进行滤波去噪处理并根据滤波前后的波形和频谱分析滤波性能。本课程设计仿真平台为MATLAB7.0,开发工具是M语言编程。首先在网上找到一段笛子独奏,加入一单频噪声,对信号进行频谱分析以确定所加噪声频率,设计滤波器进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析。由分析结果可知,滤波器后的音频信号与原始信号基本一致,即设计的FIR滤波器能够去除信号中所加单频噪声,达到了设计目的。 关键词滤波去噪;FIR滤波器;频率采样法;MATLAB 1 引言 滤波去噪[1]是信号处理中一种非常基本但十分重要的技术。利用滤波可以从复杂的信号中提取所需的信号,一直不需要的信号。滤波器就是这样一种可以在时域和频域对信号进行滤波处理的系统。通常情况下,有用信号和干扰信号是在不同频段上的,于是通过对滤波器的频率特性精心设计就能达到滤波的目的。本课程设计是采用频率采样法设计频率抽样型滤波器,从而对吹管乐信号滤波去噪。通过对比滤波前后的波形图及回放滤波前后的吹管乐信号,来判断滤波器对噪声信号确实有滤除作用。 1.1 课程设计目的 (1)熟悉使用MATLAB; (2)了解FIR滤波器原理及结构; (3)利用所学数字信号处理想干知识用MATLAB设计一个FIR滤波器; (4)提高自己动手能力; (5)对加噪声的语音信号进行滤波去噪处理,比较滤波前后的时域波形和频谱并进行分析;

1.2 课程设计要求 (1)滤波器指标必须符合工程设计; (2)设计完后应检查其频率响应曲线是否满足指标; (3)处理结果和分析结论应该一致,而且应符合理论; (4)独立完成课程设计并按要求编写课程设计报告; 1.3 设计平台 本课程设计仿真平台为MATLAB7.0。MATLAB的名称源自Matrix Laboratory,1984年由美工Mathworks公司推向市场。它是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信号处理等领域的分许、仿真和设计工作。1993年MathWorks公司从加拿大滑铁卢大学购得MAPLE软件的使用权,从而以MAPLE为“引擎”开发了符号数学工具箱(Symbolic Math Toolbox)[2]。 2 设计原理 用网上找一段吹管乐,绘制波形并且观察其频谱,给定相应技术指标,用频率采样法设计的一个满足指标的频率采样型FIR滤波器,对该信号进行滤波去噪处理,比较滤波前后的波形和频谱进行分析。 2.1 FIR滤波器的设计 FIR(Finite Implse Response)[3]滤波器:有限长单位冲激响应滤波器,又称为非递归型滤波器,是数字信号处理系统中最基本的元件,他可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。因此,FIR滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。 有限长单位冲激响应(FIR)滤波器有以下特点: (1)系统的单位冲激响应h(n)在有限个n值处不为0; (2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(因果系统); (3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。 2.2 频率采样型结构 把一个有限长序列(长度为N点)的z变换H(z)在单位圆上作N等分抽样,就得

实验四 用频率取样法设计FIR数字滤波器

实验报告 哈尔滨工程大学教务处制

实验四 用频率取样法设计FIR 数字滤波器 一、实验目的 1、掌握频率取样法设计线性相位FIR 数字滤波器的方法,并用Matlab 工具编程实现。 2、熟悉频率取样理论,熟悉内插函数及其应用。 3、观察过渡带取样点或优化数值对滤波器幅频特性的影响。 二、 实验原理 频率采样法就是根据频域采样理论,由滤波特性指标构造希望逼近的滤波器频响函数H d (e jω),对其在[0,2π]上采样得到。 ()() 20,1,,1j d d k N H k H e k N ωπ ω===-L 然后,就可求出单位脉冲响应h (n ),或是系统函数H (z )。这样,h (n )或是H (z )就是滤波器的设计结果。 ()()()()()1 100,1,,110,1,,1 1N N k k N h n IDFT H k n N H k z H z k N N W z ----===--= =--∑L L ()()() Frequency Sampling 2N 0,1,,1j j d d k H e H k H e k N ωωπ ω= ??????→==-L ()()() j k H k A k e θ= 三、 实验内容 1.用频率取样法设计一个线性相位低通数字滤波器,N=15,[0,π]之间的幅度取样值如下,求出其单位脉冲响应h[k]及幅频和相频特性曲线。尝试增加过渡点,观察并分析过渡点对滤波器性能的影响。 1, k 0,1,2[k]0.5, 30, H k =?? ==??? O t her s /3 1,()/30,d A ωπωπωπ

数字信号处理实验报告

前言 《数字信号处理》是信息电子,通信工程等本科专业及其他相近专业的一门专业必修课。通过本课程的学习,学生应掌握以下基本概念、理论和方法:采样定理、离散序列的变换、离散信号的频谱分析;离散系统的传递函数、频率响应、离散系统的基本分析方法;数字滤波器的设计理论、滤波器的软件实现;离散傅立叶变换理论、快速傅立叶变换方法;有限字长效应。 为了使学生更好地理解和深刻地把握这些知识,并在此基础上,训练和培养学生掌握离散系统的基本概念和分析方法,数字滤波器的设计和实现,以及如何利用快速傅立叶变换等DSP技术对数字信号进行分析、滤波等处理,设置了以下三个实验: (1)离散时间序列卷积和MATLAB实现; 内容:使用任意的编程语言编制一个程序,实现两个任意有限序列的卷积和。 目的:理解线性非移变系统I/O关系和实现 要求:掌握使用计算机实现数字系统的方法 (2)FFT算法的MATLAB实现; 内容:使用MATLAB编程语言编制一个程序,实现任意有限序列的FFT。 目的:理解FFT算法的意义和实现 要求:掌握使用计算机实现FFT算法的方法 (3)数字滤波器的设计; 内容:使用MATLAB编程语言编制一个程序,实现FIR或IIR滤波器的设计目的:理解数字滤波器的设计技术 要求:掌握使用计算机进行数字滤波器设计的方法 (4)窗函数设计FIR滤波器; 内容:使用MATLAB编程语言编制一个程序,实现FIR或IIR滤波器的设计目的:理解数字滤波器的设计技术 要求:掌握使用计算机进行数字滤波器设计的方法 该实验指导书是参照该课程的教学大纲而编制的,适合于信息电子工程、通信工程等本科专业及其他相近专业。

信号处理 FFT算法

实验2 基2时域抽选的FFT 程序设计与调试 一、实验目的 掌握信号处理,尤其是数字信号处理的基本原理和方法。要求能通过实验熟练掌握基2时域抽选的快速傅立叶变换算法(FFT )的基本原理,了解二维及多维快速傅立叶变换算法。 二、实验原理 1.复数类型 对于FFT 算法涉及的复数运算,使用自定义的COMPLEX 来定义复数类型,其使用方法与常规类型(如int,float,double )相似。 typedef struct { float real, imag; } COMPLEX; 2.FFT 基本原理 FFT 改进了DFT 的算法,减少了运算量,主要是利用了旋转因子W 的两个性质: (a )W 的周期性:W = W (b) W 的对称性:W =-W FFT 把N 点DFT 运算分解为两组N/2点的DFT 运算,然后求和: )()()(21k X W k X k X k N += 1,,1,0 ),()()2 (2 21-=-=+ N k N k k X W k X N k X 其中, ∑∑∑∑-=-=-=-=+== = = 1 1 2 21 1 112 2 2 2 2 2 2 2 )12()()()2()()(N N N N N N N N r rk r rk r rk r rk W r x W r x k X W r x W r x k X 在计算X 1(k)与X 2(k)时,仍利用上述公式,把它们看成是新的X(k)。如此递归下去,便是FFT 算法。 3.蝶形运算 从基2时域抽选FFT 运算流图可知: ① 蝶形两节点的距离为2m-1,其中,m 表示第m 列,且m =1,… ,L 。 例如N=8=23, 第一级(列)距离为21-1=1, 第二级(列)距离为22-1=2, 第三级(列)距离为23-1=4。 ② 考虑蝶形运算两节点的距离为2m-1,蝶形运算可表为: X m (k)=X m-1(k)+X m-1(k+2m-1) W N r X m (k+2m-1)= X m-1(k)-X m-1(k+2m-1) W N r 由于N 为已知,所以将r 的值确定即可确定W N r 。为此,令k=(n 2n 1n 0)2 ,再将k 左移(L-m)位,右边位置补零,就可得到(r)2 的值,即(r)2 =(k)22L-m 。 例如 N=8=23

数字信号处理算法研究毕业论文

数字信号处理算法研究毕业论文

毕业论文 论文题目(中文)数字信号处理算法研究--基于人体脉搏信号 论文题目(外文)Research on Digital Signal Processing Algorithm-- based on human pulse signal

数字信号处理算法研究 --基于人体脉搏信号 中文摘要 脉搏信号是一种较为常见的生物医学信号,是人体重要的动力学信号之一,脉搏信号在相当程度上可以反映人体心血管的生理状态信息,它能反映人体心脏器官以及血液循环系统的生理情况变更,在临床健康观察和疾病诊断中位置非常的重要。因此脉搏信号的处理和分析在医学界受到了广泛的关注和重视。随着电子技术与计算机技术的快速发展,将人体脉搏信号转化为电信号进行处理与分析,实现智能化的脉搏检测与分析技术,已是生物医学工程范畴的发展目标。 具体研究工作为: (1)通过采用一款pulsesensor基于光电反射式模拟传感器用于测量脉搏、心率来检测人体模拟脉搏信号。 (2)再通过Arduino等单片机将模拟脉搏信号转换为数字信号通过USB 上传到电脑上。 (3)最后通过matlab对其进行滤波处理消除噪声干扰,得到正确脉搏信号。 (4)处理后发现了脉搏信号可以反映人体的生理特性。 关键词:人体脉搏信号数字信号处理滤波器

Research on Digital Signal Processing Algorithm -- based on human pulse signal Abstract Pulse signal is a common biomedical signal, is one of the important dynamic signals of the human body, the pulse signal to a certain extent, reflects the human cardiovascular physiological status information, it can reflect the human heart organs and blood circulation system physiological changes, It is very important in clinical health observation and disease diagnosis. Pulse signal processing and analysis in the medical world has been widely concerned and attention. With the development of electronic technology and computer technology, the human pulse signal into electrical signals for detection and analysis, to achieve intelligent pulse detection and analysis technology, biomedical engineering is the direction of development.Specific research work: (1)to detect the pulse signal of human body by measuring the pulse and heart rate by using a pulsesensor based analog sensor. (2)and then through the Arduino microcontroller analog pulse signal into digital signal through the USB upload to the computer. (3)Finally, through matlab to filter it to eliminate noise interference, get the correct pulse signal. (4) after treatment found that the pulse signal can reflect the physiological characteristics of the human body. Keywords: human pulse signal, digital signal processing, filter

多采样率数字信号处理及其MATLAB仿真

万方数据

多采样率数字信号处理及其MATLAB仿真 作者:黄硕, 魏亚楠, 安永丽 作者单位:唐山钢铁股份有限公司,唐山,063016 刊名: 科技资讯 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2009,(23) 引用次数:0次 参考文献(3条) 1.杨小牛.楼才义.徐建良软件无线电原理与应用 2005 2.李忠琦.凌翔.胡剑浩软件无线电架构研究[期刊论文]-电信科学 2007(7) 3.尹健华试论软件无线电技术及其应用[期刊论文]-企业技术开发(学术版) 2007(8) 相似文献(10条) 1.学位论文赵启敏中频采样技术的分析与研究2004 该课题结合数字软件化雷达的研制,研究了数字软件化雷达中频采样技术的实现以及对雷达主要技术指标的影响.该论文针对传统模拟相参正交采样技术存在的不足,论述了基于A/D变换和数字下变频的中频采样方法,并在此基础上设计了中频采样数据采集卡,并对该硬件进行了调试和试验,试验结果证明,中频采样技术比传统模拟相参正交采样技术更具优势,较好的解决了传统模拟相参正交采样中存在的幅相误差问题,以及该采集卡具有小的孔径抖动,可以满足中频采样的要求.该论文在中频采样技术中首先研究了数据采集技术对雷达性能的影响,接着根据目前数字下变频器件自身的限制不能适应高速数据流的问题,详细研究了利用欠采样技术的镜频加数字下变频实现解调的方法,以及一种利用多速率信号处理技术将抽取和滤波提前的数字下变频的高效结构,通过仿真证明此两种方法都能较好的解决硬件本身限制与高速数据流不匹配的问题,并通过分析得出此数字下变频的高效结构的运算量大大低于传统数字下变频的运算量.此外该论文还着重讨论了孔径抖动对雷达各项性能的影响. 2.期刊论文张明珊.孟利民.ZHANG Ming-shan.MENG Li-min基于频域采样技术的软件无线电接收机-浙江工业大学学报2005,33(1) 目前软件无线电面临的一个难题是如何对高工作频带内的射频信号进行直接模/数转换.利用频域采样技术提出了一种接收信号进行处理的方法,并用数学理论证明了它的可行性,最后还给出了软件无线电接收机模型.其关键思想是提取接收信号的频域成份,然后在频域中对信号进行处理.这种方法大大降低了A/D转换器的要求,从而使得实现软件无线电接收机成为可能,对当前微电子工艺下的软件无线电系统设计带来很大的理论意义和实用价值,而且克服了传统Rake接收机的一些缺点,特别适合于多径丰富的无线环境. 3.学位论文杨清海软件无线电的功能实现2001 1992年,JeoMitola提出了软件无线电的概念,很快引起了国际通信界的关注。软件无线电结构的关键是在尽可能靠近天线的地方使用宽带A/D和 D/A变换器,将尽可能多的无线电功能用软件来定义,从而实现电台在各种网络中的通用性及电台功能升级换代的连续性,软件无线电已成为无线通信的一个主要发展方向。特别是近年来,软件无线电已经不再仅仅局限于军事方面,在GSMMOU会议中,软件无线电被描述成GSM继续发展进步的基础,甚至被称为第三代(3G)全球移动通信实现的技术基础。本文主要探讨软件无线电思想在接收机设计中的应用,论证了系统硬件实现方案和软件实现方案。重点讨论了用到的信号采样技术和数字信号处理技术,包括多速率信号处理、FIR滤波器的多相结构、低通滤波、免混频正交解调和信号的带通采样技术。最后优化了解调算法,利用我们的试验平台实现了AM、FM、SSB和ASK、FSK、PSK信号解调。 4.学位论文洪亮高速并行交替采样ADC系统的研究与实现2009 模数转换器(ADC)是数字信号处理系统的关键组成部分,广泛应用于通信、雷达、测试仪器等领域。随着超宽带雷达技术研究的深入和软件无线电技术的发展,对ADC的速度和精度的要求越来越高,ADC已经成为现代信号处理的瓶颈。在给定的工艺下,ADC工作的最大采样速率受限于它的分辨率,单片ADC芯片很难同时满足高速高精度的要求,而并行交替采样ADC(TIADC)结构是突破这一瓶颈的有效方法之一。 这种方法在前端利用M片采样率为fs/M的ADC并行交替采样,在后端进行拼接使得整个系统的采样率达到fs。然而受到制造工艺的局限,通道失配误差如偏置误差、增益误差、时间偏差和带宽失配误差的存在,将严重降低系统的信纳比(SINAD)和无杂散动态范围(SFDR)。 本论文主要包括三方面的工作。首先,深入研究了并行交替采样技术,对TIADC结构的通道失配误差进行了全面的分析,特别是对带宽失配误差进行了建模分析,给出了四种通道失配误差联合作用于信号的信号频谱,以及系统设计时误差的容忍范围。 其次,通过合理的近似,提出了通道失配误差的测量算法和联合校正算法,其中关键的是时间偏差和带宽失配误差的联合估算与校正,它是在周期非均匀采样信号完美重构基础上提出来的,并通过仿真验证了算法的有效性。 最后,设计了一个基于并行交替采样技术的12bit420MSPS的高速数据采集系统,该系统由两片12bit210MSPS的AD9430组成。其中,结合系统设计进行的信号完整性分析对高速电路的设计具有一定的指导意义。 5.期刊论文王宏.刘丽.宋晓峰.WANG Hong.LIU Li.SONG Xiaofeng基于频域采样技术的软件无线电接收机-现代电子技术2006,29(23) 目前软件无线电面临的一个难题是如何对高工作频带内的射频信号进行直接模/数转换.利用频域采样技术提出了一种接收信号进行处理的方法,并用数学理论证明了他的可行性,最后还给出了软件无线电接收机模型.其关键思想是提取接收信号的频域成份,然后在频域中对信号进行处理.这种方法大大降低了A/D转换器的要求,对当前微电子工艺下的软件无线电系统设计有很大的理论意义和实用价值,而且克服了传统Rake接收机的一些缺点,特别适合于多径丰富的无线环境. 6.学位论文李裕多信道软件无线电接收机实现技术研究2003 软件无线电的基本思想是将宽带A/D及D/A尽可能靠近天线,将无线电台的各种功能在一个开放性、模块化的通用硬件平台上尽可能多的用软件来实现.软件无线电已成为移动通信中的关键技术之一.本文主要研究了软件无线电接收机中的相关理论及实现方案并进行了相应的系统仿真.本文首先深入讨论了软件无线电接收机的基本理论:采样技术、多速率信号处理和调制解调算法.在此基础上研究了下变频技术和带通采样技术在并行多信道接收机中的应用,提出了利用CIC,HBF和FIR级联设计下变频器的方案,并完成了系统仿真.然后深入研究了多相滤波技术在信道化接收机中的应用,推导和建立了实信号接收机的数学模型,给出了真实信道中心频率和带宽的计算公式,简要分析了算法复杂度,最后完成了基于此模型的4信道软件无线电接收机的系统仿真.本文所建立的两个系统作为后续研究的基础平台,可以利用其移植各种通信系统,并分析系统性能,具有一定的应用价值.

相关主题
文本预览
相关文档 最新文档