当前位置:文档之家› 高压直流输电的故障保护

高压直流输电的故障保护

高压直流输电的故障保护
高压直流输电的故障保护

高压直流输电系统的保护

XX班程思锦

摘要:简单介绍高压直流输电组成,重点阐述高压直流系统故障及保护功能配置。

关键词:高压直流输电;直流输电优缺点;直流故障;保护原理;0 引言

我国地势辽阔,地形复杂,主要的电力资源分布在西部,而东部沿海地区却是用电大省,如何让西部的电以最小的损耗输送到东部成为我国电力行业的课题。直流输电线路相对交流几乎无无功损耗,输送距离更远等众多优点,因此,高压直流输电就很值得研究。

1 高压直流系统组成

高压直流系统组成部分:三相电源,换流站,输电电缆或者架空线,换流站,交流电网。三相电源是向电网输出电能。电源端的换流站的功能是将交流电变成直流电。输电电缆或者架空线是将直流电进行远距离输送。交流电端的换流站的作用是将直流电变成交流电并输送到交流电网上去。交流电网的作用是将交流电输送到个电力用户。换流站主要设备包括换流器、换流变压器、平波电抗器、交流滤波器、直流避雷器及控制保护设备等。

2 直流系统故障

直流输电系统发生的典型故障及其基本特点描述见下表。

3 保护原理及方法

3.1 故障原理

直流线路故障发生时,由于线路电容放电,短路点的故障电流会陡然升高,出过冲。初始故障电流与线路波阻抗有关,比稳态电流值大很多,直流电流过冲的大小与平抗、电流调节器增益和时间常数、故

障点距离、直流电压和故障发生的时刻都有关系。定电流调节器的作用会将稳态短路电流限制在一个较小的数值。直流线路故障一般通过电流的暂态分量和电压变化量进行检测。

直流线路保护是以电压导数法为主保护、线路纵差保护、直流欠压保护作为后备保护;目前,许多工程的主保护也采用行波保护。 3.2 直流线路保护策略

直流线路保护策略应考虑:①直流线路保护只在整流侧有效。②为了区分站内故障和直流线路故障,可以测量直流电流的时问变化率dl/dt。正的dl/dt(正向电流增加)表明故障点在IDL测量互感器线路侧;负的dl/dt值表明故障点在直流场内。③应考虑防止保护在下述情况下误动:整流、逆变侧发生交流故障;极起/停;逆变侧换相失败。④通信异常时,电压水平部分将延时820 ms动作,以与交流系统后备保护时间进行配合。

3.3 直流线路保护动作顺序

直流线路保护出口信号会起动再起动逻辑。再起动逻辑起动后,向控制系统发出移相去游离命令,系统将移相到164,并保持一段时间,这段时间是系统的去游离时间(大约200~500 ms),使闪络故障经过充分去游离,线路绝缘性能恢复到能够承受正常电压。移相去游离命令之后立即形成再起动命令,将角度拉到60。左右,进行线路再起动,这种状态维持一个较短的时间(4 ms),防止线路开路引起峰值整流过电压。如果再起动成功,恢复正常送电;如果不成功,可以进行多次再起动,甚至降压再起动,试图将直流电压降低水平运行,这

也是直流输电的优势之一。三常直流输电工程全压再起动次数为3次(去游离时间分别为150、200 ms和300 ms)、降压再起动次数为1次。

4 结论

由于直流输电的特殊性,其保护具有以下特点:

(1)直流系统保护策略设计应综合考虑交、直流系统故障,并予以区别对待,交流保护与直流保护应正确地协调配合。

(2)直流系统保护策略设计应结合直流控制。

(3)保护原理从交流保护中吸取经验,又根据直流故障情况具有自己的特点。

(4)直流系统保护对保护的防拒动性和防误动性要求都较高。

(5)直流保护按极配置,检测到一个极的故障后只能停运故障极,不能影响另一个极的正常运行。

(6)保护动作的执行要区别不同的故障状态或阶段,以改善直流暂态性能,减少停运和避免设备遭受过应力。

(7)直流保护系统的自检功能是保证保护实施可靠性的重要指标,也是保护系统冗余配置和出口逻辑设计的重要保障之一。

参考文献

【1】龙英袁清云高压直流输电系统的保护策略中文科技期刊2期【2】雒铮朱韬析直流线路后备保护研究中文科技期刊2期

控制系统与直流保护介绍

龙泉换流站控制系统与直流保护介绍 一、高压直流输电系统的基本介绍 1、高压直流输电工程的组成部分:交流开关场、换流变、换流阀、直流开关场及直流输电 线路。 2、特点 适合大功率、远距离输电;输电线路相对于交流输电线路要经济的多;为全国大范围联网提供了便利的条件;填补了我国直流输电技术的空白。直流设备对环境的要求较高;我国在直流输电方面起步较晚,主要依靠国外技术支持,因此现阶段直流输电设备较昂贵。 3、前景 随着我国充分利用丰富的水利资源,大力发展水电建设,直流输电将发挥其重大的经济及社会效益。 二、控制与保护系统设备介绍(按位置及控制区域) 1、盘柜介绍: PCP pole control and protection BCP bipole control and protection ACP ac control and protection AFP ac filter control and protection DFT dc field termination BFT bipole field termination AFT ac field termination ASI Auxiliary system interface TFT Transformer Field Termination ATI auto transformer interface CP control pulse CRC cyclic redundancy check DCOCT dc optical current transducer DPM digital signal processor GWS gate workstation OWS operator workstation EWS ENGINERRING WORKSTA TION ERCS electronic reactive control system FP fire pulse I/O input/output LAN local area network CAN Control Area Network TDM Time Division Multiplex LFL line fault recorder MACH2 Modular Advanced Control HVDC(High V oltage Direct Current) and SVC(Static Reactive Power Compensation) 2nd edition DOCT digital optical current transducer OIB optical interface board

直流电与交流电在应用中的优缺点

直流电与交流电在应用中的优缺点 高压直流输电方式与高压交流输电方式相比,有明显的优越性.历史上仅仅由于技术的原因,才使得交流输电代替了直流输电.下面先就交流电和直流电的主要优缺点作出比较,从而说明它们各自在应用中的价值. 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势. 直流电的优点主要在输电方面: ①输送相同功率时,直流输电所用线材仅为交流输电的2/3~l/2 直流输电采用两线制,以大地或海水作回线,与采用三线制三相交流输电相比,在输电线载面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3. 如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交流电所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍.因此,直流输电所用的线材几乎只有交流输电的一半.同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也少. ②在电缆输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流,引起损耗. 在一些特殊场合,必须用电缆输电.例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆.由于电缆芯线与大地之间构成同轴电容器,在交流高压输线路中,空载电容电流极为可观.一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约3×103kw,在每千米输电线路上,每年就要耗电2.6×107kw·h.而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上. ③直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行.交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交流电的频率虽然规定统一为50HZ,但实际上常产生波动.这两种因素引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故.在技术不发达的国家里,交流输电距离一般不超过300km而直

直流输电原理题库

《直流输电原理》题库 一、填空题 1.直流输电工程的系统可分为两端(或端对端)直流输电系统和多端直流输电系统两大类。 2.两端直流输电系统的构成主要有整流站、逆变站和直流输电线路三部分。 3.两端直流输电系统可分为单极系统、双极系统和背靠背直流输电系统三种类型。 4.单极系统的接线方式有单极大地回线方式和单极金属回线方式两种。 5.双极系统的接线方式可分为双极两端中性点接地接线方式、双极一端中性点接地接线方 式和双极金属中线接线方式三种类型。 6.背靠背直流系统是输电线路长度为零的两端直流输电系统。 7.直流输电不存在交流输电的稳定性问题,有利于远距离大容量送电。 8.目前工程上所采用的基本换流单元有6脉动换流单元和12脉动换流单元两种。 9.12脉动换流器由两个交流侧电压相位差30°的6脉动换流器所组成。 10.6脉动换流器在交流侧和直流侧分别产生6K±1次和6K次特征谐波。12脉动换流器在 交流侧和直流侧分别产生12K±1次和12K次特征谐波。 11.为了得到换流变压器阀侧绕组的电压相位差30°,其阀侧绕组的接线方式必须一个为 星形接线,另一个为三角形接线。 12.中国第一项直流输电工程是舟山直流输电工程。 13.整流器α角可能的工作范围是0<α<90°,α角的最小值为5°。 14.α<90°时,直流输出电压为正值,换流器工作在整流工况; α=90°时, 直流输出电为 零,称为零功率工况; α>90°时,直流输出电压为负值,换流器则工作在逆变工况。15.直流输电控制系统的六个等级是:换流阀控制级、单独控制级、换流器控制级、极控制 级、双极控制级和系统控制级。 16.换流器触发相位控制有等触发角控制和等相位间隔控制两种控制方式。 17.直流输电的换流器是采用一个或多个三相桥式换流电路(也称6脉动换流器)串联构 成。其中,6脉动换流器的直流电压,在一个工频周期内有6段正弦波电压,每段60°。

柔性直流输电系统换流器技术规范()

ICS 中国南方电网有限责任公司企业标准 Q/CSG XXXXX—2015 柔性直流输电换流器技术规范 Technical specification of converters for high-voltage direct current (HVDC) transmission using voltage sourced converters (VSC) (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国南方电网有限责任公司发布

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 额定直流电流 rated direct current (1) 3.2最大直流电流maximum direct current (2) 3.3 短时过载(过负荷)直流电流short time overload direct current (2) 3.4 额定直流电压rated direct voltage (2) 3.5 额定直流功率rated direct power (2) 4 文字符号和缩略语 (2) 4.1 文字符号 (2) 4.2 缩略语 (2) 5 使用条件 (2) 5.1 一般使用条件的规定 (3) 5.2 特殊使用条件的规定 (3) 6 技术参数和性能要求 (3) 6.1 总则 (3) 6.2 换流器电气结构 (4) 6.3 阀设计 (5) 6.4 机械性能 (6) 6.5 电气性能 (7) 6.6 冗余度 (7) 6.7 阀损耗的确定 (8) 6.8 阀冷却系统 (8) 6.9 防火防爆设计 (8) 6.10 阀控制保护设计 (8) 7 试验 (9) 7.1 试验总则 (9) 7.2 型式试验 (9) 7.3 例行试验 (11) 7.4 长期老化试验 (11) 7.5 现场试验 (12) 8 其它要求 (12) 8.1 质量及使用寿命 (12) 8.2 尺寸和重量 (12) 8.3 铭牌 (12) 8.4 包装和运输 (12)

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

浅析直流输电控制保护系统

浅析直流输电控制保护系统 摘要:直流输电是电力系统近年来迅速发展的一项新技术,直流输电克服了电 感损耗,只有导线电阻损耗,主要应用于远距离大容量输电、电力系统联网、远 距离海底电缆、大城市地下电缆送电、配电网络轻型直流输电等方面。直流输电 与交流输电相互配合,构成现代电力传输系统。随着电力系统技术经济需求的不 断增长和提高,直流输电受到广泛的注意并得到不断的发展。 关键词:电力系统;直流输出;保护层面;控制保护 一、直流输电概况 (一)直流输电系统概念 直流输电系统由直流线路、逆变站、整流站、交流侧电力滤波器、直流侧电 力滤波器、换流变压器、无功补偿装置、直流电抗器以及保护、控制装置等构成,通常是两端直流输电系统,其中整流站和逆变站属于换流站,通过整流站和逆变 站能够实现交流电力和直流电力的转换,换流站是直流输电系统比较重要的组成 部分。首先由交流系统的送电端将交流功率通过换流变压器送到整流器,完成交 流功率到直流功率的转化,然后将直流功率通过线路传输到逆变器,逆变器又会 将直流功率转化为交流功率,最终传输到交流电力系统的受电端。 (二)换流站的换流技术 整流站和逆变站都属于换流站,他们的核心元件都是换流器,通常由一个或 者是多个基本换流单元组成的,多采取串联模式,其中电路一般应用三相换流桥,较为常用的材料为可控硅阀,即常说的晶闸阀。当换流器进行工作的时候,控制 桥阀能够触发控制调节装置,改变了触发相位,从而达到直流输送功率、流经电 阻的直流电流、直流电压的瞬时值等的调整。与此同时,同样的触发脉冲能够控 制所有桥阀的每一个可控硅元件,在三相电源的波为对称正弦波的时候,线电压 从负到正,经过零点时脉冲会触发桥阀,使得阀两端的电压均变为正电压,完成 阀开通的动作。六个脉冲发生器能够各自独立的完成对位于单桥换流器中六个桥 阀的触发,使得交流正弦波刚好能够经过第一个周期,在线电压行进到下一个零 点的时候,交流弦电源开始触发第二个周期,但是在工程上所应用的多为十二脉 的双桥换流器,因为十二脉双桥换流器能够产生更小脉波的直流输电电压。 二、直流输电控制保护层 直流输电系统的控制根据层级的不同可以分为三个层面,即现场控制层、过 程控制层、运行人员控制层。 (一)现场控制层 现场控制层使得交直流主设备能够在就地进行控制,通过硬线将交直流主设 备与较近距离的设备接口进行连接,通过现场总线将交直流主设备与较远距离的 设备接口进行连接。通过分布式的I/O控制单元实现现场控制,包括高压装置的 联锁、输出控制命令、控制命令的监控、SER事件的产生、自诊断、二进制模拟 量的预处理等功能。通过现场控制层面能够实现控制系统的分层式、分布式,来 自调度中心的控制命令经由高速LAN和现场总线进行传达,监控系统的实时数据 在逐层反馈,保证主系统、从系统的循环数据传输过程。 (二)过程控制层 过程控制层包括交流/直流站控制系统和极控系统,是直流输电控制系统的核 心组成。交流/直流站控制系统的任务是顺序控制交流场和换流站直流系统,为了

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

浅谈高压直流输电与交流输电各自优缺点

浅谈高压直流输电与交流输电各自优缺点 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。当时输电电压仅100V。随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。19世纪80年代末,人类发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国竣工。此后,交流输电普遍代替了直流输电。随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。 在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。

柔性直流输电系统的改进型相对控制策略

柔性直流输电系统的改进型相对控制策略 摘要:电压源换流器(VSC)中交流滤波器可滤除交流网络侧谐波,交流侧换流电 抗器或换流变压器有助于交流网络和VSC的能量交换,直流侧电容器可减小换流 桥切换时的冲击电流,同时也可滤除直流网络侧谐波。 关键词:柔性直流输电;控制策略;应用 前言 在柔性直流输电系统(VSC-HVDC)中电压源换流器采用全控型可关断器件,可实现对交流无源网络供电,同时对有功功率、无功功率进行控制。笔者采用外环 电压控制和内环电流控制,外环电压控制中送端VSC系统采用相对控制策略,通 过分别控制输出电压相对发电机端电压的相位角和幅值,进而控制其与送端系统 交换的有功功率和无功功率。受端VSC系统采用定交流电压和定直流电压控制方法,通过调制比和移相角信号产生器件的驱动脉冲,内环控制采用空间矢量控制 策略,PI控制器实现对d、q轴电流的解耦控制,运用PSCAD/EMTDC暂态仿真软 件建立相应的内外环控制模型,验证所设计控制方案的有效性和可靠性。 1柔性直流输电技术的概述 1.1柔性直流输电技术概念 柔性直流输电技术是由加拿大的科学家开发出来的。这是一种由电压源换流器、自关断器和脉宽调制器所共同构成的直流输电技术。作为一种新型的输电技术,该技术不仅可以向无源网络进行供电,还不会在供电的过程中出现换相失败 的现象。在实际使用的过程中,换相站之间不会直接依赖于多端直流系统进行运作。柔性直流输电技术属于一类新型的直流输电技术。虽然在结构上和高压输电 技术相类似。但是整体结构仍然是由换流站和直流输电线路构成的。 1.2柔性直流输电的特点 柔性直流输电是由高压直流输电改造而来的。应该说在技术性和经济性方面 都有很大的改善。具体来说,柔性直流输电技术内部的特点可以表现为如下几个 方面: (1)在运用柔性直流输电技术的过程中,如果能够有效地采用模块化设计的技术,其生产和安装调试的周期都会最大限度地缩短。与换流站有关的设备都能 够在安装和使用的过程中完成各项试验。 (2)柔性直流输电技术内部的VSC换流器是以无源逆变的方式存在的。在使用的过程中可以向容量较小的系统或者不含旋转机电的系统内部进行供电。 (3)柔性直流输电技术在使用的过程中都伴随有有功潮流和无功潮流 (4)整个柔性直流输电系统可以有效地实现自动调节。换流器不需要经常实现通信联络。这也就在很大程度上减少了投资、运行和维护的费用。 (5)整个柔性直流输电技术内部的VSC换流器可以有效地减弱产生的谐波,并减少大家对功率的要求。一般情况下,只需要在交流母线上先安装一组高质量 的滤波器,就可以有效地满足谐波的要求。目前,多数无功补偿装置内部的容量 也不断地减少。即便不装换流变压器,内部的开关也可以更好地被简化。 2柔性直流输电技术的战略意义 目前,柔性直流输电技术在智能电网中一直都发挥着重要的作用。一般来说,柔性直流输电技术可以有效地助力于城市电网的增容改造和交流系统内的互联措施。目前,多数柔性直流输电技术也在大规模风电场建设的过程中发挥出了较好 的技术优势。如果大面积地选择柔性直流输电技术,将会在很大程度上改变电网

直流输电工程控制系统与阀控接口分析及优化措施研究

直流输电工程控制系统与阀控接口分析及优化措施研究 摘要换流阀与控制保护设备接口技术的应用,使得不同技术路线的控制保护技术与不同技术路线的换流阀之间实现了连接。本文首先对目前直流输电工程中应用的不同技术路线阀控接口进行了全面比较分析,总结出存在的差异,并根据实际运维经验指出存在的问题和隐患,提出了针对性改进意见,为设备功能完善和优化设备选型奠定了良好的基础。 关键词控制保护设备;阀控;接口 前言 高压直流系统传输容量的快速增长使得换流阀技术和控制保护技术得到了飞速的改进和提高,而换流阀与控制保护接口技术的应用,使得不同技术路线控制保护技术与不同技术路线的换流阀之间实现了连接,并在特高压直流输电工程中得到了应用。控制保护系统与阀控之间的接口,主要用于接收控制保护系统下发的控制命令,产生点火脉冲触发换流阀以及监视换流阀中晶闸管的状态信息。控制保护系统与阀控系统之间信号的有效、可靠传递是直流工程高效稳定的保证,因此,有必要对直流控制保护系统与阀控接口进行研究,优化二次回路设计,使直流控制保护系统的性能得到最有效的发挥,为技术方案的制定与设备选型提供技术支持。 1 阀控系统运行状况分析 目前直流输电控制系统一般分为5个层级,从高层次至低层次等级分别为:系统控制级、双极控制级、极控制级、换流器控制级和换流阀控制级。从目前在运的直流系统来看,一般将前4个层级置于直流控制保护系统(以下简称“极控”)中,其可靠运行对提高整个直流输电系统的可用率具有重要作用。而换流阀控制级设有单独的阀控系统(以下简称“阀控”),主要包括阀基电子设备、门级单元以及阀冷却泄露监视器等,负责将极控发出的控制脉冲通过光纤发送至晶闸管,同时负责接收来自晶闸管的监控信号,将其代表的晶闸管状态传递给极控,监视换流阀运行。换流站正常运行时,换流阀每一次触发均需要极控与阀基电子设备之间配合正确,才能保证系统正常工作,否则必然导致阀报警或跳闸,从而导致阀组停运乃至直流闭锁,对系统造成巨大的冲击,威胁到整个电力系统的稳定。 由于各阀和控保厂家采用不同技术路线,使得各厂家阀控与极控间的接口信号不尽相同。目前国内的主流直流控制保护系统有2种技术路线:第一种基于ABB技术路线,主要厂家有ABB和南瑞继保;第二种基于Siemens技术路线,主要厂家有西门子和许继。而换流阀技术路线多达4种,阀控与极控的接口更是多种多样,均已应用于特高压直流输电工程。极控与阀控之间接口的好坏,直接决定了直流输电系统运行的稳定性。因此针对目前形势各样的接口设计,有必要进行分析比较[1]。

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (3) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

交、直流输电的优缺点及比较

交、直流输电的优缺点 直流输电的优势 直流输电的再次兴起并迅速发展,说明它在输电技术领域中确有交流输电不可替代的优势。尤其在下述情况下应用更具优势: (1)远距离大功率输电。直流输电不受同步运行稳定性问题的制约,对保证两端交流电网的稳定运行起了很大作用。 (2)海底电缆送电是直流输电的主要用途之 一。"输送相同的功率,直流电缆不仅费用比交流省,而且由于交流电缆存在较大的电容电流,海底电缆长度超过40km时,采用直流输电无论是经济上还是技术上都较为合理。 (3)利用直流输电可实现国内区网或国际间的非同步互联,把大系统分割为几个既可获得联网效益,又可相对独立的交流系统,避免了总容量过大的交流电力系统所带来的问题。 (4)交流电力系统互联或配电网增容时,直流输电可以作为限制短路电流的措施。这是由于它的控制系统具有调节快、控制性能好的特点,可以有效地限制短路电流,使其基本保持稳定。 (5)向用电密集的大城市供电,在供电距离达到一定程度时,用高压直流电缆更为经济,同时直流输电方式还可以作为限制城市供电电网短路电流增大的措施。 4直流输电与交流输电的技术比较 4.1直流输电的优点 (1)直流输电不存在两端交流系统之间同步运行的稳定性问题,其输送能量与距离不受同步运行稳定性的限制; (2)用直流输电联网,便于分区调度管理,有利于在故障时交流系统间的快速紧急支援和限制事故扩大;

(3)直流输电控制系统响应快速、调节精确、操作方便、能实现多目标控制; (4)直流输电线路沿线电压分布平稳,没有电容电流,不需并联电抗补偿; (5)两端直流输电便于分级分期建设及增容扩建,有利于及早发挥效益。 4.2直流输电的缺点 (1)换流器在工作时需要消耗较多的无功功率; (2)可控硅元件的过载能量较低; (3)直流输电在以大地或海水作回流电路时,对沿途地面地下或海水中的金属设施造成腐蚀,同时还会对通信和航海带来干扰; (4)直流电流不像交流电流那样有电流波形的过零点,因此灭弧比较困难。 5直流输电与交流输电的经济比较 (1)直流架空线路投资省。直流输电一般采用双极中性点接地方式,直流线路仅需两根导线,三相交流线路则需三根导线,但两者输送的功率几乎相等,因此可减轻杆塔的荷 重,减少线路走廊的宽度和占地面积。在输送相同功率和距离的条件下,直流架空线路的投资一般为交流架空线路投资的三分之 二。" (2)直流电缆线路的投资少。相同的电缆绝缘用于直流时其允许工作电压比用于交流时高两倍,所以在电压相同时,直流电缆的造价远低于交流电缆。 (3)换流站比变电站投资大。换流站的设备比交流变电站复杂,它除了必须有换流变压器外,还要有目前价格比较昂贵的可控硅换流器,以及换流器的其它附属设备,因此换流站的投资高于同等容量和相应电压的交流变电站。

高压直流输电课后习题答案

《高压直流输电技术》思考题及答案 一.高压直流输电发展三个阶段的特点? 答:1 1954年以前——试验阶段; 参数低;采用低参数汞弧阀;发展速度慢。 2 1954年~1972年——发展阶段; 技术提高很大;直流输电具有多方面的目的(如水下传输;系统互联;远距离、大容量传输)。 3 1972年~现在——大力发展阶段; 采用可控硅阀;几乎全是超高压;单回线路的输电能力比前一阶段有了很大的增加;发展速度快。 二.高压直流输电的基本原理是什么? 答:直流输电线路的基本原理图见图1.3所示。从交流系统I向系统X输电能时, 换流站CS1把送端系统送来的三相交流电流换成直流电流,通过直流输电线路把直流电流(功率)输送到换流站CS2,再由CS2把直流电流变换成三相交流电流 三.高压直流输电如何分类? 答:分两大类: 1 单极线路方式; A.单极线路方式; 采用一根导线或电缆线,以大地或海水作为返回线路组成的直流输电系统。 B.单极两线制线路方式; 将返回线路用一根导线代替的单极线路方式。 2 双极线路方式; A. 双极两线中性点两端接地方式; B. 双极两线中性点单端接地方式; C. 双极中性点线方式; D. “背靠背”(back- to- back)换流方式。 四.高压直流输电的优缺点有哪些? 答:优点:1 输送相同功率时,线路造价低; 2 线路有功损耗小; 3 适宜海下输电; 4 没有系统的稳定问题; 5 能限制系统的短路电流; 6 调节速度快,运行可靠 缺点:1 换流站的设备较昂贵; 2 换流装置要消耗大量的无功; 3 换流装置是一个谐波源,在运行中要产生谐波,影响系统运行,所以需在直 流系统的交流侧和直流侧分别装设交流滤波器和直流滤波器,从而使直流输 电的投资增大;

±800kV特高压直流输电控制保护系统分析

±800kV特高压直流输电控制保护系统分析 摘要:电力应用于社会十分普遍,而社会对于电力的依赖性也在增加,电力输 送过程会受到多项因素的影响,因此需要应用输电保护系统,确保电力稳定正常 供应。本文就±800kV特高压直流输电控制保护系统分析作简要阐述。 关键词:特高压;直流输电;控制保护系统 物高压输电的特点体现在大容量,低损耗,远距离,是能源配置优化的有效 途径,能够带来良好的社会效益。特高压输电对于电力企业而言提出了新的技术 要求。控制与保护系统需要从其整体结构,控制策略,分层与冗余等方面进行全 面分析,从而使系统稳定安全可靠。 一、特高压直流控制系统 (一)特高压直流控制策略 相比于常规直流系统,特高压控制系统在策略方面没有体现出过大的变化, 直流系统电源控制主要利用的是整流侧快速闭环来实现的,换流变抽头则控制触 发角保持在一定范围内。你变一侧的快速闭环控制作用在于使熄弧角保持为定值,直流电压控制则是由换流变抽头来完成的。由于抽头控制自身存在的非连续性, 采用此种控制策略并应用于逆变一侧时,直流电压控制偏差会由两个部分构成, 分别是抽头步长与测量误差。对于逆变一侧的电压进行控制,还可以利用快速闭环,通过抽头将熄弧角控制在一定范围内,而此种情况下,电流偏差只受到测量 误差的影响,无功补偿设备与交流滤波器总体容量会增加,在经济性方面表现不佳。 (二)控制系统功能划分与结构 控制系统在分层与配置方面,直流系统保护应该保持与控制系统的相对独立,直流控制结构保护系统分层需要保证保护控制以12个脉动单元作为基本配置。 并且基于上述前提,保护功能实现与保护配置需要最大程度保持独立,利于退出 而不会使其它设备运行受到影响,并且保护系统之间的物理连接要简单而不要复杂。控制保护系统如果单一元件出现了故障,12动脉控制单元依然需要保持良好 运行。而高层控制单元出现故障时,控制单元同样能够保持当前工作状态并且依 据人工指令操作。 特高压直流输电需要实现双重化,其范围开始于二次线圈测量,并包括了测 量回路。内容包括了输出回路,信号输入,主机,通信回路,与之相关直流控制 装置等。从功能上划分,直流控制系统可以划分为极控制层,双极控制层,换流 器控制层等。 特高压直流控制层功能划分内容包括双极控制层,极控制层,细分又包括了,低压限流控制,极电流与电压协调控制,直流开路试验,电流裕度补偿等功能。 换流器控制层细分内容又包括点火肪冲控制,电压与电流、熄弧角控制等。 二、DCC800特高压直流控制保护系统介绍 DCC800是某企业研制的控制保护系统,特高压直流控制保护系统采用了拥 有较高性能并产生较低热量的CPU以及新的传导冷却计算机,此散热技术是专 为提高UHVDC的可靠性而设计的。DCC80主机采用自然对流方式来散热,这样 可大幅度减少主机上的积灰。特高压直流控制保护系统采用了冗余的增强型时分 多路复用总线来传输二进制信号和模拟信号。二进制信号包括断路器命令、报警、指令、缓慢变化的模拟信号(如温度等);模拟信号包括电流、电压等测量量。 每根光纤都可处理控制器局域网总线信息、同步信号以及像MACH2TDM母线一

柔性直流输电系统拓扑结构

·12· NO.14 2019 ( Cumulativety NO.50 ) 中国高新科技 China High-tech 2019年第14期(总第50期) 0 引言 随着电子技术的发展和绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor,IGBT)的出现,电压源型换流站(Voltage Source Converter,VSC)技术应运而生,为柔性直流输电奠定了技术基础。柔性直流输电不需要传统交流输电系统的换相容量,并且对无源载荷提供电力,并广泛适用于城市供电、偏远地区供电、新能源发电并网等供电新领域。此外,柔性直流输电系统还具有较高的可控性,较低的成本,较小的电力损耗,可实现动态无功补偿等,因此成为当前输电领域研究的热点之一。 柔性直流输电技术中,输电系统的拓扑结构是关键环节之一。合理的拓扑结构能够有效提高直流输电系统的输电效率和可靠性,因此是目前柔性直流输电系统研究的重点。本文将分析柔性直流输电系统的技术原理,并对柔性直流输电系统的拓扑结构进行研究,从而为我国柔性直流输电系统的设计与建设提供理论参考。 1 柔性直流输电系统的技术原理 目前工程领域常用的柔性直流输电系统主要采用3种方式:两电平电压源换流器、多电平电压源换流器和模块化多电平电压源换流器(MMC)。1.1 两电平电压源换流器的技术原理 两电平电压源换流器的每一相都有2个桥臂,因此共有6个桥臂构成,每个桥臂都是由二极管和 IGBT通过并联方式组成,如图1所示。在工程应用中,为了提高柔性直流输电系统的供电电压和供电容量,一般可将多个二极管和IGBT并联再串联。并联的二极管与IGBT所串联的个数直接决定VSC的额定功率和耐压强度。在两电平电压源换流器的设计中,每一相的2个桥臂上的IGBT均可以单独导通,并单独输出2个电平,最后通过PWM对输出电平进 行调制,最终得到柔性直流输电波形。 图1 两电平电压源换流器示意图 两电平电压源换流器通过增加串联的二极管和GBIT提高供电电压和电流,因此在大容量直流输电方面存在较大技术缺陷。随着串联的二极管和GBIT 个数的增加,将增加动态电压的不稳定性,而且串联的二极管和GBIT也会增加输电系统输电波形的谐波含量,进而降低柔性直流输电系统的功率和效率。1.2 多电平电压源换流器的技术原理 多电平电压源换流器技术在两电平电压源换流 柔性直流输电系统拓扑结构 叶 林 (中国南方电网有限责任公司超高压输电公司广州局,广东 广州 510000) 摘要:柔性直流输电系统具有线路损耗低、可控性强等优势,成为当前电力网大力发展的输电方案。柔性直流输电系统的拓扑结构则是输电工程中的关键技术之一,决定输电网络的性能。文章分析了柔性直流输电系统的技术原理,重点对柔性直流输电系统的拓扑结构进行了研究,为柔性直流输电系统的拓扑结构方案设计与应用提供理论参考。 关键词:柔性直流;输电系统;拓扑结构;输电方案 文献标识码:A 中图分类号:TM131文章编号:2096-4137(2019)14-012-03 DOI:10.13535/https://www.doczj.com/doc/70956463.html,ki.10-1507/n.2019.14.04 收稿日期:2019-04-30 作者简介:叶林(1987-),男,河南信阳人,供职于中国南方电网有限责任公司超高压输电公司广州局,研究方向:超(特)高压输电运维柔性直流输电系统拓扑结构。

柔性直流输电对比

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 (1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 (2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 (3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 (4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大), 不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

1. 换流器阀所用器件的对比。 (1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 (2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 (1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。 (2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。(3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。 3. 换流站控制方式的对比。 (1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。

相关主题
文本预览
相关文档 最新文档