当前位置:文档之家› 木塑复合材料的应用领域

木塑复合材料的应用领域

木塑复合材料的应用领域
木塑复合材料的应用领域

木塑复合材料的应用领域

Principia Partners咨询公司2003年的一项研究表明,北美和西欧市场上共有六亿公斤的木塑复合材料需求量,而北美占有总需求量的85%。地板、扶手、门窗等建筑材料占有北美木塑材料需求量的80%。在北美地区,其它的主要市场应用有地面铺设(木板路和平台)、车用部件(车用仪表板和备用轮胎罩)和工业和民用消费品(餐桌、公园长椅和垫板)。

木塑复合材料的一个主要应用是庭院铺板

在西欧同样的调查表明车用材料占到了木塑复合材料需求量的一半以上,而建筑用材料占有30%的市场。木塑复合材料在北美和西欧预计到2010年的年增长量分别为14%和18%。

木塑复合材料在亚洲同样受到欢迎,尤其是在日本,木塑材料在平台、地板、墙壁和室内家具等方面的应用越来越普及。

木塑复合材料的另外一个主要用途是码头结构材料

在国内,木塑复合材料的应用领域包括:

包装、运输类:托盘、军品和民品包装箱、玻璃包装箱、周转箱,插车货板、仓储垫板、铁路枕木等

木塑复合材料包装托盘

木塑复合材料可以应用铁路运输领域,用做铁路的枕木等。

园林景观类:凉亭、座椅、栅栏、铺板等市政产品

木塑复合材料室外产品

车辆船舶类:汽车等内装材、风扇罩、仪表架等部件、船舶内装和隔热材等

木塑汽车内饰产品

家装及建筑类:活动房屋,窗框,门板,门褴,混凝土模板,楼梯拍手,墙壁,天棚,装饰各种异型材,地板、家具等建材用品

木塑套装门

其它类:农用大棚支架及用桶、钓鱼用舢板、水产箱、教学用品、枪托、球拍、滑雪板、高尔夫球棒、舞台用品以及各种模型等

木塑复合材料概述汇总

木塑复合材料 摘要:木塑复合材料具有比单独的木质材料和塑料产品更优异的品质,是实木的理想替代品,它的出现可以减少废弃木料和塑料对环境的污染,也适应现代材料复合化发展的规律。本文介绍了木塑复合材料的定义、特点、加工工艺、分类和应用以及未来发展的趋势,并对木塑复合材料的优缺点进行了分析,充分肯定了发展木塑复合材料的必要性和可行性。 关键词:木塑;性能;加工工艺;分类;应用;发展趋势 随着森林资源的减少,木材供应量逐渐下降,已不能满足人们的生产生活需要。同时,塑料制品废旧物的处理也日益成为一个急待解决的环境问题。一种新型材料——木塑复合材料成为木材的理想代用品。木塑复合材料系使用木粉或植物纤维超高份额填充热塑性塑料树脂或热塑性塑料再生料,添加部分相关改性剂,经挤出成型为板材、型材、管材而成。此类产品可替代相应木制品,人们由此可节约大量的森林资源,处理掉大量的废旧塑料及木材加工中产生的废弃木粉,故可大大有利于保护并改善生态环境,是符合2l世纪发展方向的环保型化工新材料。 1 木塑复合材料定义及特点 1.1 木塑复合材料的定义 木塑复合材料是以锯末、木屑、竹屑、稻壳、麦秸、谷糠、大豆皮、花生壳、甘蔗渣、棉秸杆等初级生物质材料为主原料,利用高分子界面化学原理和塑料填充改性的特点,配混一定比例的塑料基料,经特殊工艺处理后加工成型的一种可逆性循环利用、涵盖面广、产品种类多、形态结构多样的基础性材料,目前国内外对此称谓不一,也有将其称之为:塑木、环保木、科技木、再生木、聚合木、聚保木、塑美木或保利木,英文名称:Wood-Plastic Composites,缩写为WPC。一般说来,以生物质材料为基添加一定比例的塑料原料制成的材料,或以塑料原料为基添加一定比例的生物质材料制成的材料,均可称为木塑复合材料。 1.2 木塑复合材料的特点: (1)原料资源化,其生物质材料部分基本分为废弃物利用,来源广泛,价值低廉;塑料组分要求不高,新、旧料或混合料均可,充分体现了资源的综合利用和有效利用; (2)产品可塑化,木塑产品为人工整体合成制品,可根据使用要求随机调整产品工艺和配方,从而生产出不同性能和形状的材料,其型材利用率接近100%; (3)应用环保化,木塑材料的木/塑基料及其常用助剂均环保安全,无毒无害,其生产加工过程中也不会产生副作用,故对人体和环境均不构成任何危害; (4)成本经济化,即木塑制品实现了低价值材料向高附加值产品的转移,不仅维护费用极低,而且产品寿命数倍于普通天然木材,综合比较具有明显的经济优势; (5)回收再生化,即木塑材料的报废产品及回收废品均可100%的再生利用,且不会影响产品使用性能,能够真正实现“减量化、再生化、资源化”的循环经济模式。

新材料的产业链、分类及应用

新材料学习资料 一、新材料分类: 按材料的属性划分有金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。 1、金属材料:包括纯金属、合金、金属材料金属间化合物和特种金属材料等。 2、无机非金属材料:陶瓷、砷化镓半导体等 3、有机高分子材料:主要是碳、氢、氧、氮等 4、先进复合材料:指可用于加工主承力结构和次承力结构、其刚度和强度性能相当于或超过铝合金的复合材料。 按材料的使用性能分,有结构材料和功能材料。 1、结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求。 2、功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。 二、新材料类型: 1、复合新材料:由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。 复合材料的基体材料分为金属和非金属两大类: 金属基体常用的有铝、镁、铜、钛及其合金。 非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合新材料在新能源和交通市场上的应用: (1)清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器。 (2)汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等。 (3)民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。中国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套。 (4)船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于中国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。 2、超导材料:有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。 超导材料主要分为合金材料(如铝合金、铜合金、铁合金、镁合金和高温合金等)和化合物材料(如超导陶瓷)两种。 超导材料最诱人的应用是:(1)发电、输电和储能。(2)超导磁悬浮列车。(3)超导计算机等

木塑复合材料

***公司 年产1万吨木塑复合材料技改项目资金申请报告

编制时间:2011年11月 第一章项目单位基本情况及财务状况 1.1项目单位基本情况 ***公司是***人民政府2007年重点招商引资的一家以发展红椿木种植及林产品精加工的涉林企业。企业于2009年入住***工业园区,注册资金1000 万元。主要从事林地流转,发展红椿木种植基地和林产品精加工。公司于2009年被增补授予“***林业产业化龙头企业”称号。 企业现在拥有木材加工厂两座,一座是位于***的木材粗加工厂,一座是位于***木材精加工厂。厂区占地面积总计21938.4平方米。至2010年底公司已投入资金2000余万元,建设宿舍楼及钢结构厂房9446.71平方米,引进先进的木材精加工设备35台套。 企业现阶段主要产品是出口包装箱的围板,连接板及托盘,通过采取销售联盟合作方式产品远销欧美市场,公司已与***木业包装、江苏***木业、江苏***木业签订10年的产业基地、技术、销售三联盟合作协议。通过不断的技术革新,公司已形成年加工2万方的木材加工能力。公司2010年完成销售2561万元。 企业现有职工136人;其中工程技术人员19人。公司领导班子共7人,其中总经理1人,副总经理3人,经理助理1人,工会主席1人,监事会人员1人,公司管理层平均年龄35岁,全部具有大专及以上学历。 企业通过现代社会先进的管理模式与经验,企业管理正步入科学化、人性化。企业有严谨的人、财、物、生产、技术、经营、管理制度,产品生产成本核算可以量化、细化到每一道细小环节,为独成本核算提供科学、切实可行的依据。 ***公司拟在现在现有厂区设备基础上,进行年产1万吨木塑复合材料项目技改,截止2011年11月,已初步完成地坪整理及钢结构厂房建造,项目进度完成40%。 1.2项目单位财务状况 ***公司经过不断的连续投入与飞速发展,截止2010年底公司总资产已达到3946万元。各类财务数据详见下表:

木塑复合材料

木塑复合材料 一,木塑复合材料定义 以木材为主要原料,经过适当的处理使其与各种塑料通过不同的复合方法生成的高性能、高附加值的新型复合材料。又称WPC. 木塑复合材料的基础为高密度聚乙烯和木质纤维,决定了其自身具有塑料和木材的某些特性。 如下图所示

二,木塑复合材料的主要特点 1)良好的加工性能。木塑复合材料内含塑料和纤维,因此,具有同木材相类似的加工性能,可锯、可钉、可刨,使用木工器具即可完成,且握钉力明显优于其他合成材料。机械性能优于木质材料。握钉力一般是木材的3倍,是刨花板的5倍。 2)良好的强度性能。木塑复合材料内含塑料,因而具有较好的弹性模量。此外,由于内含纤维并经与塑料充分混合,因而具有与硬木相当的抗压、抗弯曲等物理机械性能,并且其耐用性明显优于普通木质材料。表面硬度高,一般是木材的2——5倍。 3)具有耐水、耐腐性能,使用寿命长,木塑材料及其产品与木材相比,可抗强酸碱、耐水、耐腐蚀,并且不繁殖细菌,不易被虫蛀、不长真菌。使用寿命长,可达50年以上。 4)优良的可调整性能,通过助剂,塑料可以发生聚合、发泡、固化、改性等改变,从而改变木塑材料的密度、强度等特性,还可以达到抗老化、防静电、阻燃等特殊要求。 5)具有紫外线光稳定性、着色性良好。6)其最大优点就是变废为宝,并可100%回收再生产。可以分解,不会造成“白色污染”,是真正的绿色环保产品。 7)原料来源广泛。生产木塑复合材料的塑料原料主要是高密度聚乙烯或聚丙烯,木质纤维可以是木粉、谷糠或木纤维,另外还需要少量添加剂和其他加工助剂。

8)可以根据需要,制成任意形状和尺寸大小。随着对木塑复合材料的研发,生产木塑复合材料的塑料原料,除了有高密度聚乙烯或聚丙烯以外,还有聚氯乙烯和PS。工艺也由最早的单螺杆挤出机发展成第二代锥形双螺杆挤出机,再到由平行双螺杆挤出机初步造粒,再由锥形螺杆挤出成型,可以弥补难以塑化,抗老化性差、抗蠕变性差、色彩的一致性和持久性差和拉伸强度低的特点,徐州汉永塑料新材料有限公司在这方面取得了显著的成果。所制造的WPC材料完全可以达到GB/T24137和ASTM D7031;ASTM D7032;BS DD CEN/TS15534-3的要求 三,木塑复合材料适用范围 木塑复合材料的最主要用途之一是替代实体木材在各领域中的应用,其中运用最广泛的是在建筑产品方面,占木塑复合用品总量的75%。 塑木板材产品具有广阔的应用前景和市场前景,其应用场合非常广泛。根据材料性能的应用范围和国内外的有关报道,目前已经开发的用途及使用场合如下:公园、球场、街道等场合,特别适合露天桌椅;建筑材料、吊板、屋顶、高速公路噪音隔板等;市政交通方面标记牌、广告板,格栅板,汽车装饰板材等;包装材料、搬运垫板、托盘和底盘;家庭围墙、花箱、篱笆、走道、地板、防潮隔板;各种体育馆装饰板材、地板;铁路枕木、矿井坑木;军事用具、武器附属品;计算机、电视机、洗衣机、冰箱等家电物品的外壳;汽车配件等。将来使用最大市场是逐步替代塑钢、铝合金建材市场

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

最新版木塑复合材料(WPC)可行性研究报告

木塑复合材料(WP)C 项 目 建 议 书 二0 一一年九月

二、项日提出的背景和发展概况 三、项目研究的依据 四、项日建设的必要性和意义 五、项目建设的有利条件 六、产品市场预测和项目建设规模 七、工程技术方案 八、环境保护与劳动安全 九、项目进度安排 十、投资估算和资金筹措 H^一、经济效益和社会效益分析十二、财务与敏感性分析 十三、结论及建议

第一章项目概况 一、项目名称:木塑复合材料(WPC )项目 二、承办单位:** 木业有限公司 三、项目负责人:** 四、项目性质:新建 五、建设地址:** 六、建设规模: 项目占地8000 平方米。新建厂房4200 平方米,办公楼1600 平方米,宿舍900 平方米,仓库1800 平方米,购进先进设备。建设年产1.5 万吨木塑复合材料生产线。 七、项目总投资与资金筹措: 项目总投资人民币3600 万元,固定资产投资2800 万元,流动资金800 万元。资金为企业自筹。 项目分二期实施,计划第一期(2011 年12 月-2012 年 5 月)投资800 万元,在** 经济区内规划整理土地15 亩,进行基础设施的建设。第二期(2012 年6 月-2013 年5 月)投资1800 万元完善基础设施建设和购进设备进行试生产。 八、项目经济效益分析: 该项目顺利投产后预计年销售额5000 万元,生产成本投入2840 万元。销售税金及附加560 万元。年实现利润2040 万元。项目投资回收期为 2.45 年,投资利润率为40.8% 。 九、合作方式:独资或合资 第二章项目提出的背景和发展概况 一、项目建设背景和意义 随着人们环保意识的加强,要求保护森林资源,减少利用新木材的呼声日趋高涨,回收利用成本低的废旧木材和塑料成为工业界和科学界普遍关注的问题,促进和推动了对木塑复合材料WPC (Wood Plastic Composite)的研究和开发工作,并取得了实质性进展,其应用也呈加速发展态势。 众所周知,废木材和农业纤维以前都只能焚烧处理,产生的

木塑复合材料

物流管理1班 木塑复合材料 木塑复合材料是以废旧塑料、木粉为原料,按一定比例混合,并添加特制的助剂,经高温、挤压、成型等工艺制成的一种新型复合材料。其性能优良、用途广泛、利于环保,并有广阔的发展远景,值得大力研发推广。 木塑复合材料的加工工艺:木塑材料的技术特点是把两大类差异较大的不同材料相互混合在一起,即将木材塑料合二为一成复合材料。 木粉作为塑料的一种有机填料,具有来历广泛、价格低廉、密度低、绝缘性好等许多其他无机填料所无法相比的优良性能。但它并没有像无机填料那样得到广泛应用,主要原因在于:一是与基体树脂的相容性较差;二是在熔隔的热塑性塑猜中分离效果差,造成活动性差和挤出成型加工困难。由于木粉中主要成份是纤维素,含有大量的羟基,这些羟基形成分子间氢键或分子内氢键,使木粉具有吸水性,且极性很强。而热塑性塑料多数为非极性,具有流水性,所以二者之间的相容性较差,界面的粘接力很小,需要通过使用添加剂改性塑料和木粉的表面,进步它们之间界面的亲和力。改性的木粉具有加强性质,能够很好地传递填料与塑料之间的应力,从而到达加强复合材料强度的作用。 挤出成型、热压成型、注射成型是加工木塑复合材料的主要成型方法。由于挤出成型加工周期短、效率高,因此挤出成型方法是一种较为常用的工艺线路。 从木塑复合材料工艺技术特点来看,主要有以下几类:从原料使用方面来看,一类使用的塑料原料为纯塑料或贸易级塑料;另一类是使用具有一定特性的单组分废旧塑料。从加工工艺方法来看,一类是二步成型法,即塑料与木粉造粒后再进行成型加工;另一类是一步成型法,即塑料与木粉混合后直接进行成型加工。 从成型机理方面来看,一类是物理成型,即使用热隔性粘合剂,在成型过程中将塑料与木粉粘合在一起;另一类是物理化学成型,即通过加入添加剂,在压力和温度的控制下,使原料混合物同相对低分子的添加剂一起转变为高分子状态的网状纤维材料。采用这种工艺制成的材料,内部结构完全是融合后重生的网状分子结构,比其他工艺生产出的木塑产品的抗弯、抗压、抗冲击强度要好。木塑复合材料的性能特点与应用: 木塑复合材料具有如下优点:易于加工。木塑材料内含聚酯和纤维,因此具有同木材相类似的加工性能,可锯、可钉、可刨,使用木匠工具便可完成,且握钉力明显优于其他合成材料;强度高、耐用性好。木塑复合材料具有较好的弹性模量。另外,由于内含木质纤维并经树脂固化,因而具有与硬木相当的抗压、抗冲击等物理机械性能,并且其耐用性明显优于普通木质材料;耐水、耐腐蚀。木塑材料及其产品可抗强酸碱,耐水、耐腐蚀,并且不繁殖细菌,不容易被虫蛀,不长真菌;可调整性强。通过加入不同的助剂,聚酯可以发生聚合、发泡、固化、改性等变化,从而改变木塑材料的密度、强度等特性,符合抗老化、防静电、阻燃等特殊要求;原料来历广泛。木塑材料除了使用一定数目的助剂以外,95%以上的原料均为聚酯和木质纤维,其来历广,价格低廉。 木塑复合材料应用于包装行业主要是托盘、包装箱、集装用具等。仅以托盘为例,目前,北美地区托盘用量每一年高达 2 亿多个;日本托盘用量每一年约 600 万个;据预测,往后几年内我国木托盘的年均匀使用量可能会突破 2000 万个。因而在国内外有很大的市场需求。 木塑材料因具有耐潮、防虫蛀等特点,适用于仓储行业使用的货架铺板、枕木、铺梁、地板等。在我国,仓储行业应用木塑材料虽刚开始,但需求量却在迅速增加。

木塑复合材料在景观中的应用

木塑复合材料在景观中的应用 摘要:人们需求的提高促进了我国景观园林的快速发展,对景观园林也提出了更高的要求。园林绿化建设的飞速发展迫使需要大量新技术,新材料。木塑复合材料属于新型材料之一,在园林景观设计中也得到了广泛的应用。 关键词:园林;新型;材料;木塑复合材料;应用

1.引言 随着我国经济持续高速发展, 我国的城市建设再次成为了全球注目的焦点, 而园林建设逐步被人们重视起来, 其在两型社会建设中的多重功能也越来越受到社会的关注。高质量、高速度、低能耗、低成本的开展园林绿化, 是当前城市建设的迫切需要,也是园林绿化施工养护单位必须追求的目标。但是园林行业飞速发展使原来便用的施工技术和施工材料的缺点及不足逐渐显露出来, 所以园林绿化建设的快速发展迫切需要大量引进新技术、新材料、新工艺和新理念, 来提高绿化建设的水平和速度, 同时也符合节约、环保的要求。近些年来, 一些新的园林施工技术及新的材料逐步被研发出来, 这些新的技术及新的材料必将主导今后的园林绿化建设。 城市景观伴随着近现代城市的兴起与发展已经有近两个世纪的历史,城市景观中材料的发展见证了城市景观在这两个世纪的发展历程。城市景观的“材料”是构成景观的物质主体,是设计构想转化为现实景观的直接承载者。在城市景观发展过程中,景观材料的运用也是在不断发展。每一个历史阶段材料的运用与选择都有显著的时代特征。 2.定义 新型装饰材料是一种绿色、环保、节能、保温防火性能优越的新型大板墙体可与国内、外的框架结构、钢结构、异形柱结构体系配合。大大降低了生产工人的劳动强度。 木塑复合材料(Wood-Plastic Composites,WPC)是国内外近年蓬勃兴起的一类新型复合材料,指利用聚乙烯、聚丙烯和聚氯乙烯等,代替通常的树脂胶粘剂,与超过50%以上的木粉、稻壳、秸秆等废植物纤维混合成新的木质材料,再经挤压、模压、注射成型等塑料加工工艺,生产出的板材或型材。主要用于建材、家具、物流包装等行业。将塑料和木质粉料按一定比例混合后经热挤压成型的板材,称之为挤压木塑复合板材。 在美国ASTMD7031-04《评价木塑复合材料制品物理力学性能的标准指南》中木塑复合材料被定义为:主要由木基或纤维素基材料与塑料制成的复合材料。在由中国资源协会木塑复合材料专业委员会组织撰写的《中国木塑产业蓝皮书No.1》中,木塑复合材料被这样定义:木塑复合材料是以初级生物质材料为主要原料,配混一定比例的塑料基料,经特殊工艺处理后加工成型的复合材料。 前我国军用弹药外包装仍然以木箱为主,每年不仅耗费大量木材,而且木包装箱性能存在很大局限性,如强度较低、易霉腐、易虫蛀、不密封等。因此,研究性能更为优越的新型包装材料和包装结构形式极其重要。木塑复合材料具有塑料与木材的双重特性,其某些性能指标甚至优于塑料和木材,除断裂伸长率、冲击强度较低外,其他各项性能均已达到现用军用包装材料的性能指标范围。通过进一步研究改进木塑复合材料的物理机械性能,并通过合理的包装箱结构设计来提高箱体的整体强度,这种材料用于某些军品包装完全是有可能的。国内在这方面已作了一些尝试,提出一种全新的拼接方式,从结构设计和结构部件的选材两个方面来保证木塑包装箱的密封性和整体强度。 3.木塑复合材料的主要特点 木质纤维和植物纤维最初作为低成本、提高塑料刚性的改性填充材料, 而现今高性能木塑复合材料是通过不同的复合工艺生产制造,解决传统木材制品的易腐朽、虫蛀、开裂、生物降解, 以及尺寸稳定性差的问题, 且该种材料没有游离甲醛等毒性物质释放, 其产品主

玻璃纤维复合材料的应用领域综述

玻璃纤维复合材料的应用领域综述 摘要:随着玻璃纤维复合材料被的广泛研究,另外玻璃纤维价格便宜,其高性价比受到应用领域的青睐,我国的玻璃纤维复合材料行业得到了迅猛地发展。目前,我国玻璃纤维复合材料生产总量居世界前列,玻璃纤维复合材料已被广泛地应用于建筑工程、石油化工、交通运输、能源工业、机械制造、船艇、体育器械、航空航天等领域,为国民经济和国防建设做出了重要贡献。 关键词玻璃纤维复合材料应用领域 Reviewed the application areas of glass fiber composite materials Abstract: As the glass fiber composites was widely studied,cheap price and its cost-effective, the glass fiber get the favour of application field,in China, Glass fiber composites industry has been a rapid development.At present,Glass fiber composites ranked among the top of the world total production in China, glass fiber composite materials have been widely used in construction engineering, petrochemical industry, transportation, energy industry, machinery manufacturing, boat, sports equipment, aerospace and other fields, it make an important contribution to national economy and national defense construction. Keywords Glass fiber Composite materials Application field 1、引言 玻璃纤维是由玻璃熔化而得,玻璃纤维复合材料是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料的一种复合材料。通常玻璃纤维复合材料的片材制备和制品成型过程是分开的,但从经济角度出发,将两者结合起来,即可减少设备投人,又可节约能耗[1]。玻璃纤维能够在实现较高机械强度的同时保持成本优势,达到一个均衡,玻璃纤维复合材料具有良好的回收性能[2]。与传统材料相比,具有比强度高、比模量高及可设计性、易修补,耐疲劳、耐腐蚀等优点但玻璃纤维增强的树脂基复合材料对湿热的环境比较敏感[2],而且湿热环境会使它性能下降,采用合适的化学交联剂或偶联剂对聚合物进行改性,使其变为憎水性物

木塑复合材料(WPC)项目建议书000培训课件

木塑复合材料(WPC) 项 目 建 议 书 **木业有限公司 二0一一年九月

目录 一、项目概况 二、项目提出的背景和发展概况 三、项目研究的依据 四、项目建设的必要性和意义 五、项目建设的有利条件 六、产品市场预测和项目建设规模 七、工程技术方案 八、环境保护与劳动安全 九、项目进度安排 十、投资估算和资金筹措 十一、经济效益和社会效益分析十二、财务与敏感性分析 十三、结论及建议

第一章项目概况 一、项目名称:木塑复合材料(WPC)项目 二、承办单位:**木业有限公司 三、项目负责人:** 四、项目性质:新建 五、建设地址:** 六、建设规模: 项目占地8000平方米。新建厂房4200平方米,办公楼1600平方米,宿舍900平方米,仓库1800平方米,购进先进设备。建设年产1.5万吨木塑复合材料生产线。 七、项目总投资与资金筹措: 项目总投资人民币3600万元,固定资产投资2800万元,流动资金800万元。资金为企业自筹。 项目分二期实施,计划第一期(2011年12月-2012年5月)投资800万元,在**经济区内规划整理土地15亩,进行基础设施的建设。第二期(2012年6月-2013年5月)投资1800万元完善基础设施建设和购进设备进行试生产。 八、项目经济效益分析: 该项目顺利投产后预计年销售额5000万元,生产成本投入2840万元。销售税金及附加560万元。年实现利润2040万元。项目投资回收期为2.45年,投资利润率为40.8%。九、合作方式:独资或合资 第二章项目提出的背景和发展概况 一、项目建设背景和意义 随着人们环保意识的加强,要求保护森林资源,减少利用新木材的呼声日趋高涨,回收利用成本低的废旧木材和塑料成为工业界和科学界普遍关注的问题,促进和推动了对木塑复合材料WPC(Wood Plastic Composite)的研究和开发工作,并取得了实质性进展,其应用也呈加速发展态势。 众所周知,废木材和农业纤维以前都只能焚烧处理,产生的二氧化碳对地球有温室效应,因此木材加工厂在努力寻

复合材料研究及其应用

郑州华信学院毕业论文 课题名称:复合材料研究及其应用 系部:机电工程学院 班级:09机电班 姓名: 指导老师: 时间:2012年3月28日

复合材料研究及其应用 摘要 复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料、可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。 一、全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继

问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车

热塑性木塑复合材料

热塑性木塑复合材料 木塑复合材料( WoodPlast ic Composite, WPC)是指采用木纤维或植物纤维填充、增强的改性热塑性材料。与木材相比, WPC 能够连续挤出, 能够获得任意横截面; 尺寸稳定性和精确性良好, 几乎不产生废料; WPC 可以采用与木材一样的方法进行加工, 因此其户外维修的费用非常低; 为了更美观, 可以给WPC 上漆, 这一点比绝大部分塑料都要容易; 另外WPC 的户外耐久比软木要好, 使用时间预期为25~ 30 年。 热塑性塑料基体主要为PE、PP、PS 等聚烯烃和聚氯乙烯, 包括新料、回收料以及二者的混合料; 木纤维有废木粉、刨花、锯木; 其他植物纤维有粉碎处理过的稻秆、花生壳、椰子壳、甘蔗、亚麻、泽麻、黄麻、大麻等。废木可以从倒塌或坏死的树木获得, 也可以从传统木材加工过程中回收。木纤维和植物纤维对成型设备磨损小, 尺寸稳定性良好,电绝缘性优, 无毒, 可反复加工, 能生物降解。可见, 进行WPC 制备、加工的研究有巨大的环保意义和经济效益, 其应用有广阔的前景。 虽然木塑复合材料力学性能比木材要好,但目前TWPC大都作为非结构材料。对施工和建筑应用来说,能否在各种环境下保持所需力学性能非常重要。有人对在海水环境中腐蚀2年的TRIMAX木塑材料(HDPE类)做性能测试,没有发现翘曲等变形或开裂,尺寸变化也在生产厂商标明的允许范围内,材料的模量和强度只有很小的变化。疲劳测试中,由于木成分会升温,而塑料对温度敏感,所以木塑材料的疲劳性能难以测试。木塑材料的螺钉联结强度随温度的降低而增加。 木材是极性亲水性物质, 大多热塑性聚合物为非极性憎水性物质, 因此必须采取各种措施来提高木- 塑界面相容性。前目采用的方法主要有: 对木材进行乙酰化或硬脂酸化处理、聚甲基丙烯酸甲酯处理、马来酸酐处理等。另外由于绝大多数木材是以粉末或短纤维态与热塑性塑料复合的, 它们不易混合而易生成毛团状, 同时极性纤维与非极性塑料难以相容胶合, 造成复合体力学性能低劣。因此, 木塑复合材料在生产中的最大问题除了相容性之外还有分散性问题。相容剂可以改善木纤维在聚烯烃树脂中的分散性, 而偶联剂可以改善木纤维与树脂之间的粘结, 因而可以提高木纤维塑料复合材料的拉伸强度、弯曲强度和冲击强度; 降低木纤维塑料复合材料的吸水率; 提高热塑性木纤维复合材料在湿态条件下的力学性能的保 留率以及热变形温度。用于WPC 的偶联剂有硅烷偶联剂、钛酸酯偶联剂等。 通常认为乙酰化处理原理是纤维组分的羟基与乙酸酐的酰基反应。由于木纤维中排列紧密, 有强交联键的结晶区的羟基完全不可接触到, 因此参与反应的羟基只是纤维组分( 木质素、半纤维和无定形纤维) 的小部分。乙酰化作用能降低木材在水中的膨胀, 大大减少天然纤维的吸水, 提高界面剪切强度, 增加纤维表面自由能。纤维含量80~ 90w t%时, 乙酰化可提高尺寸稳定性。硬脂酸作为胶粘剂可对纤维表面改性。利用羧基COOH 与纤维的羟基发生酯化反应, 从而减少与水键合的羟基数量。此外, 硬脂酸的长烃链是憎水基团, 能为纤维提供特别保护。 用硅烷偶联剂对木纤维处理后, 再接枝甲基丙烯酸甲酯单体, 同时使MMA 适当聚合, 也是一种木纤维改性的方法。通常认为, 将MMA 单体在常温真空浸渍木纤维要比在非真空条件下的浸渍效果好。但若采用甲醇作为MMA 的膨胀溶解剂, 能极大提高接枝率、拉伸强度、弯曲强度和压缩强度, 并可以获得与真空条件相似效果。 马来酸酐处理后制得的WPC 硬度大大提高, 并且可以限制样品膨胀, 阻止水及蒸汽的吸收, 这方面对硬木的效果最为明显。

木塑复合材料及其材料配方

木塑复合材料及其材料配方 木塑复合材料是采用热熔塑胶,包括聚乙烯、聚丙烯、聚氯乙烯以及它们的共聚物作为胶粘剂,用木质粉料如木材、农植物秸杆、农植物壳类物粉料为填充料,经挤压法成型或压制法、注塑法成型所形成的复合材料。其中的热熔塑胶原料可采用工业或生活的废弃料,木粉也可以采用木材加工的下脚料、小径材等低品质木材。从生产原料的角度而言,木质塑料制品减缓和免除了塑料废弃物的公害污染,也免除了农植物焚烧给环境带来的污染。复合过程中材料配方的选择涉及到如下几个方面: 1.聚合物 用于木塑复合材料加工中的塑料可以是热固性塑料和热塑性塑料,热固性塑料如环氧树脂,热塑性塑料如聚乙烯(PE)、聚丙烯(PP)及聚氧乙烯(PVC)。由于木纤维热稳定较差,只有加工温度在200℃以下的热塑性塑料才被广泛使用,尤其是聚乙烯。塑料聚合物的选择主要依据有:聚合物的固有特性、产品需要、原料可得性、成本及对其熟知的程度。如:聚丙烯主要用于汽车制品和日用生活品等,聚氯乙烯主要用于建筑门窗、铺盖板等。此外,塑料的熔体流动速率(MFI)对复合材料性能也有一定影响,在相同加工工艺条件下,树脂的MFI较高,木粉的总体浸润性较好,木粉的的分布也越均匀,而木粉的浸润性和分布影响复合材料的机械性能,尤其是冲击强度。 2.添加剂 由于木粉具有较强的吸水性,且极性很强,而热塑性塑料多数为非极性的,具有疏水性,所以两者之间的相容性较差,界面的粘结力很小,常需使用适当的添加剂来改性聚合物和木粉的表面,以提高木粉与树脂之间的界面亲和能力。而且,高填充量木粉在熔融的热塑性塑料中分散效果差,常以某种聚集状态的形式存在,使得熔体流动性差,挤出成型加工困难,需加入表面处理剂来改善流动性以利于挤出成型。同时,塑料基体也需要加入各种助剂来改善其加工性能及其成品的使用性能,提高木粉和聚合物之间的结合力和复合材料的机械性能。常用的添加剂包括如下几类: a)偶联剂能使塑料与木粉表面之间产生强的界面结合;同时能降低木粉的吸水性,提高木粉与塑料的相容性及分散性,所以复合材料的力学性能明显提高。常用的偶联剂主要有:异氰酸盐、过氧化异丙苯、铝酸酯、酞酸酯类、硅烷偶联剂、马来酸酐改性聚丙剂(MAN-g-PP)、乙烯-丙烯酸酯(EAA)。一般偶联剂的添加量为木粉添加量的1wt%~8wt%,如硅烷偶联剂可以提高塑料与木粉的粘结力,改善木粉的分散性,减少吸水性,而用碱性处理木粉只能改善木粉的分散性,不能改善木粉的吸水性及其与塑料的粘结性。需注意的是马来酸盐偶联剂与硬脂酸盐润滑剂会发生相斥的反应,一起使用时导致产品质量和产量降低。 b)增塑剂对于一些玻璃化温度和熔融流动粘度较高的树脂如硬度PVC,与木粉进行复合时加工困难,常常需要添加增塑剂来改善其加工性能。增塑剂分子结构中含有极性和非极性两种基因,在高温剪切作用下,它能进入聚合物分子链中,通过极性基因互相吸引形成均匀稳定体系,而它较长的非极性分子的插入减弱了聚合物分子的相互吸引,从而使加工容易进行。在木塑复合材料中常要加入的增

玻璃纤维复合材料的十大应用领域

玻璃纤维复合材料的十大应用领域 玻璃纤维(英文原名为:glassfiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 一、船艇 玻璃纤维复合材料具有耐腐蚀性、重量轻、增强效果优越等特点,被广泛用于制造游艇船体、甲板等。 二、电子电气

玻璃纤维增强复合材料在电子电气方面的运用主要是利用了它的电绝缘性、防腐蚀性等特点。复合材料在电子电气领域的应用主要有以下几个部分: 1、电器罩壳:包括电器开关盒、电器配线盒、仪表盘罩等。 2、电器原件与电部件:如绝缘子、绝缘工具、电机端盖等。 3、输线电包括复合电缆支架、电缆沟支架等。 三、风能

风能是无污染、可持续的能源之一,采用风能发电是开发新能源的一种途径。玻璃纤维具有优越的增强效果、重量轻等特点,是用于制造玻璃钢叶片和机组罩的一种良好材料。 四、航空航天、军事国防 由于航空航天、军事等领域对材料的特殊要求,玻纤复合材料所具有的重量轻,强度高,耐冲击及阻燃性好等特色能为这些领域提供了广泛的解决方案。 复合材料在这些领域的应用如下: --小飞机机身 --直升机外壳和旋翼桨叶 --飞机次要结构部件(地板、门、座椅、辅助油箱) --飞机发动机零件

木塑复合材料在建筑模板中的应用

木塑复合材料在建筑模板中的应用 摘要:木塑复合材料具备良好的环保性能和物理力学性能,它的推广使用可以 缓解优质木材资源的耗用量,对保护木材资源具有重要作用。本文介绍了木塑复 合材料进行概述,重点介绍了木塑复合材料在建筑模板中的应用。 关键词:木塑复合材料;建筑模板; 1木塑复合材料概述 木塑复合材料(WPC)是指含有木屑或木质颗粒等木质组分形成的聚合物复 合材料。例如人们常见的木材、胶合板、纤维或粒子聚合物结合形成的材料均为WPC。它有非常广泛的应用,木质元素可以和热固性或热塑性聚合物结合,所以WPC也被称为木质聚合物复合材料。木质材料可以在一些户外装饰的结构性和非 结构性框架中得到良好的应用。然而,建筑和汽车领域却是WPC应用最广泛的 地方。WPC既可以应用在户外装饰也可以应用在室内,其中普遍应用的是在建筑 材料中,如花园和别墅院墙等产品,家居用品,建筑模板等。人们之所以广泛使 用WPC的主要原因在于,该材料可以极大降低生产成本,循坏使用的同时对人 类的生存环境造成较低的影响。在国外,建筑物使用WPC作为外墙或内墙装饰 变得尤为普遍,最重要的原因在于使用WPC替代传统纯净木材,既可以提高房 屋的耐久性,也能够使房屋易于维修和保养,在艺术审美价值上,WPC也比传统 木材表现出更多可设计性和美感,提升了房屋使用价值。与固体塑料相比,材料 中掺杂木素的成分可以大大减少生产成本,在WPC中使用的木头大部分来自于 传统木材加工过程中产生的木屑,或回收一些废旧木头产品,与塑料产品相比, 这种WPC的替代物价格更便宜,因此也受到了广大消费者的欢迎。目前,WPC 在建筑物原材料市场中已经占据了较大的市场份额。尽管为了维持经济的持续增长,人们对那些由化石能源生产的塑料产品仍然具有较大的依赖性。然而,考虑 到工业生产的成本,消费者的承受能力以及环保方面的需求,实际生产生活中对WPC的需求一直在不断增加。 2在绿色建筑中的应用 2.1WPC在建筑模板中的应用 建筑模板是建筑结构工程建设施工中使用量广、面大的周转材料,其费用占 总造价的20%~30%。目前,市场上广泛应用的建筑模板主要包括金属类模板(主 要为钢模板和铝合金模板)、胶合板模板(主要为木质胶合板和竹胶合板)和塑 料类模板(主要为WPC)。金属模板虽然存在尺寸稳定性好、平均成本低等优点,但存在拼缝多、自重大、前期投入大及不适用于地下室等问题,限制了金属模板 的使用。胶合板模板虽然具有幅面大、加工较灵活、强重比高等优点,但循环使 用次数有限,回收利用率低,造成资源的严重浪费,因而胶合板模板应用也受到 很大限制。据统计,胶合板模板循环利用3次的占23.5%、循环利用2次的占 41.7%、循环利用1次的占9.8%,通常循环使用3~6次之后完全报废。随着我国 可持续发展政策的实行,WPC建筑模板应运而生。综合考虑成本、性能、环境影 响及工艺等因素,WPC建筑模板具有独特的优势,应用前景广阔:WPC建筑模板采用废旧塑料和废弃木质纤维为原料,成本低廉;WPC建筑模板能够缓解木材、 钢材等资源紧缺的现状,符合可持续发展战略;WPC建筑模板强度高、尺寸稳定 性好,多次使用均能保持表面平整;WPC建筑模板加工性能好,固定方便;最为

相关主题
文本预览
相关文档 最新文档