当前位置:文档之家› 2018年中考常见几何模型分析

2018年中考常见几何模型分析

2018年中考常见几何模型分析
2018年中考常见几何模型分析

中考直通车·数学广州分册

第八章专题拓展

第24讲常见几何模型

【考点解读】

常见几何模型是广州市中考的压轴题常考题型,主要以考察选择、填空最后一题和几何压轴题为主。几何模型类型较多,综合性强,属于中考中重点但同样是难点的一个考点。 【考点分析】

2011年 考查三角形全等和三角形中位线性质,标准的手拉手模型。

2014年 考查三角形全等的判断和性质,根据手拉手模型找出全等三角形,再应用其性质 2016年 本年度模型思想明显,分值占比大,主要考查三角形全等的判定及其性质、图像的旋转,利用模型思想作为解题突破口顺利完成辅助线。

【模型介绍】 手拉手模型:

1、 【条件】 如图两个等边三角形ABD ?与BCE ?,连结

AE 与CD ,

【结论】(1)DBC ABE ???

(2)DC AE =

(3)AE 与DC 之间的夹角为?

60

(4)AE 与DC 的交点设为H ,

BH 平分AHC ∠

C

D

A

B

F

E

C

D

2、 【条件】如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 。

【结论】 (1)CDE ADG ???是否成立?

(2)AG =CE

(3)AG 与CE 之间的夹角为 90 (4)HD 是否平分AHE ∠?

旋转模型:

一、邻角相等对角互补模型

【条件】如图,四边形ABCD 中,AB =AD ,90BAD BCD ?∠=∠=

【结论】45ACB ACD BC CD ?

∠=∠=+=

① ②

二、角含半角模型:全等 角含半角要旋转:构造两次全等

F

E

D C

B

A

G F

E

D C

B

A A

C D E A

C

D E

F

【条件】:如图,点分别是正方形的边上的点,,连接

【结论】(1)AFE AGE △△? (2) ;

一线三等角模型:

【条件】 一条直线同一侧三个相等的角(如图); 【结论】CDE ABC ∽△△

1、锐角形一线三等角

2、直角形一线三等角

3、钝角形一线三等角

【真题拾遗】

1.(2014?广州)如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③

=

;④(a ﹣b )2?S △EFO =b 2?S △DGO .其中结论正确的个数是( )

E F 、ABCD BC CD 、45EAF ∠=?EF

EF BE FD =

+

A.4个B.3个C.2个D.1个2.(2016?广州)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:

①四边形AEGF是菱形②△AED≌△GED ③∠DFG=112.5°④BC+FG=1.5

其中正确的结论是.

三、解答题

3.(2011广州中考)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.

(1)证明:B、C、E三点共线;

(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;

(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.

4.(2016广州中考)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°

(1)求证:BD是该外接圆的直径;

(2)连结CD,求证:AC=BC+CD;

(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.

参考答案

一、选择题

1、C

考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.

分析:由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,

CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE 相似即可判定③错误,由△GOD与△FOE相似即可求得④.

解答:证明:①∵四边形ABCD和四边形CEFG是正方形,

∴BC=DC,CG=CE,∠BCD=∠ECG=90°,

∴∠BCG=∠DCE,

在△BCG和△DCE中,

∴△BCG≌△DCE(SAS),

②∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,

∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;

③∵四边形GCEF是正方形,

∴GF∥CE,

∴=,

∴=是错误的.

④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,

∴=()2=()2=,∴(a﹣b)2?S△EFO=b2?S△DGO.故应选B

点评:此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质.

二、填空题

2、①②③

考点:三角形全等、三角形内角和、菱形

分析:首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.

解答:证明:∵四边形ABCD是正方形,

∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,

∵△DHG是由△DBC旋转得到,

∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,

在RT△ADE和RT△GDE中,

∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,

∴∠AED=∠AFE=67.5°,∴AE=AF,同理EG=GF,∴AE=EG=GF=FA,

∴四边形AEGF是菱形,故①正确,

∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.

∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误故答案为①②③.

点评:本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.

三、解答题

3、

考点:(1)三点共线(2)中位线、全等三角形(手拉手性质)(3)同(2)

分析:(1)根据直径所对的圆周角为直角得到∠BCA=90°,∠DCE是直角,即可得到∠BCA+∠DCE=90°+90°=180°;

(2)连接BD,AE,ON,延长BD交AE于F,先证明Rt△BCD≌Rt△ACE,得到BD=AE,∠EBD=∠CAE,则∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE,再利用三角形的中位线的性质得到ON=BD,OM=AE,ON∥BD,AE∥OM,于是有ON=OM,ON⊥OM,即△ONM为等腰直角三角形,即可得到结论;

(3)证明的方法和(2)一样.

解答:(1)证明:∵AB是直径,

∴∠BCA=90°,

而等腰直角三角形DCE中∠DCE是直角,

∴∠BCA+∠DCE=90°+90°=180°,∴B、C、E三点共线;

(2)连接BD ,AE ,ON ,延长BD 交AE 于F ,如图1,

∵CB=CA ,CD=CE ,∴Rt △BCD ≌Rt △ACE ,∴BD=AE ,∠EBD=∠CAE , ∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BF ⊥AE ,

又∵M 是线段BE 的中点,N 是线段AD 的中点,而O 为AB 的中点, ∴BD 21 =ON ,AE 2

1

=

OM ,ON ∥BD ,AE ∥OM ; ∴ON=OM ,ON ⊥OM ,即△ONM 为等腰直角三角形, ∴MN=

OM ;

(3)成立.

理由如下:如图2,连接BD1,AE1,ON1,∵∠ACB ﹣∠ACD1=∠D1CE1﹣∠ACD1, ∴∠BCD1=∠ACE1,又∵CB=CA ,CD1=CE1,∴△BCD1≌△ACE1, 与(2)同理可证BD1⊥AE1,△ON1M1为等腰直角三角形, 从而有M1N1=

OM1.

点评:

本题考查主要三角形全等的判定和中位线的性质,熟练掌握手拉手模型,作为本题切入点,可以非常顺利的解决本题。 4、

考点:

圆的相关概念、等腰三角形、截长补短(旋转模型性质)、勾股定理

ABD=45°,所以需要证明∠ADB=45°;

(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;

(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于

点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.

解答:解:(1)∵=,∴∠ACB=∠ADB=45°,

∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径

(2)在CD的延长线上截取DE=BC,

连接EA,∵∠ABD=∠ADB,∴AB=AD,

∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,

在△ABC与△ADE中,

,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,

∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,

∴AC=CE,∴AC=CD+DE=CD+BC;

(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于

点F,连接BF,

由对称性可知:∠AMB=ACB=45°,

∴∠FMA=45°,

∴△AMF是等腰直角三角形,

∴AM=AF,MF=AM,

∵∠MAF+∠MAB=∠BAD+∠MAB,

∴∠FAB=∠MAD,

在△ABF与△ADM中,

,∴△ABF≌△ADM(SAS),

∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,BM2+2AM2=DM2.

点评:本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,熟练掌握旋转模型的特征和性质,作为本题切入点,构造出等腰直角三角形,方向明确,减小了本题的难度。

【模拟演练】

一、选择题

1、(2014番禺华附一模)如图2,在矩形ABCD中,E为AD的中点,EF⊥EC交边AB

的是(D ).

于F,连FC,下列结论不正确

...

A .A

B ≥AE B .△AEF ∽△DCE

C .△AEF ∽△ECF

D .△AEF 与△BFC 不可能相似

2、(2017十六中一模)如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O .有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的是( C ). (1)EF= OE ; (2)S 四边形OEBF :S 正方形ABCD =1:4;

(3)BE+BF= OA ;

(4)在旋转过程中,当△BEF 与△COF 的面积之和最大时, AE=

; (5)OG ?BD=AE 2+CF 2.

A.(1)(3)(4)(5)

B.(2)(3)(4)(5)

C.(1)(2)(3)(5)

D.(1)(2)(3)(4)

二、填空题

3、(2016黄埔区一模)如图6,已知ABC ?和AED ?均为等边三角形,点D 在BC 边上,

DE 与AB 相交于点F ,如果12AC =,4CD =,那么BF 的长度为 .

三、解答题

4、(2016荔湾区一模)如图,正三角形ABC 内接于⊙O ,P 是弧BC 上的一点(P 不与点

B 、

C 重合),且PC PB <,PA 交BC 于E ,

点F 是PC 延长线上的点,

4=PA .

(1)求证ABP ?≌ACF ?; (2)求证AE PA AC ?=2; (3)求PB 和PC 的长.

5、(2016海珠区一模)已知正方形ABCD 和正方形CEFG ,连接AF 交BC 于O 点,点P 是AF 的中点,过点P 作PH ⊥DG 于H ,CD=2,CG=1。

(1)如图1,点D 、C 、G 在同一直线上,点E 在BC 边上,求PH 得长; (2)把正方形CEFG 绕着点C 逆时针旋转α(0°<a <180°) ①如图2,当点E 落在AF 上时,求CO 的长; ②如图3,当DG=7时,求PH 的长。

6、(2017二中一模)已知抛物线C 1:23

(0)2

y ax bx a =+-≠经过点A (1,0)和B (-3,0).

(1)求抛物线C 1的解析式,并写出其顶点C 的坐标;

(2)如图1,把抛物线C 1沿着直线AC 方向平移到某处时得到抛物线C 2,此时点A ,C 分别平移到点D ,E 处.设点F 在抛物线C 1上且在x 轴的上方,若△DEF 是以EF 为底的等腰直角三角形,求点F 的坐标;

(3)如图2,在(2)的条件下,设点M 是线段BC 上一动点,EN ⊥EM 交直线BF 于点N ,点P 为线段MN 的中点,当点M 从点B 向点C 运动时:①tan ∠ENM 的值如何变化?请说明理由;②点M 到达点C 时,直接写出点P 经过的路线长.

参考答案

1、D

考点:相似三角形、三角形内角和(一线三直角)

分析:利用等角的余角相等得到∠AFE=∠DEC,则根据有两组角对应相等的两个三角形相似得到Rt△AEF∽Rt△DCE,由相似的性质得CD:AE=DE:AF,而CD=AB,DE=AE,则AB:AE=AE:AF,即AE2=AB?AF,利用AF≤AB,得到AB≥AE;再利用Rt△AEF ∽Rt△DCE得到EF:EC=AF:DE,把DE=AE代入得到EF:EC=AF:AE,根据比例性质得EF:AF=EC:AE,加上∠A=∠FEC=90°,则根据两组对应边的比相等且夹角对应相等的两个三角形相似得到△AEF∽△ECF;由∠EFC≠90°可判断△AEF∽△BFC相似不成立,而当∠AFE=∠BFC时,可判断△AEF∽△BCF.

解答:∴∠AEF+∠DEC=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠DEC,

∴Rt△AEF∽Rt△DCE;∴CD:AE=DE:AF,∵E为矩形ABCD的边AD的中点,

∴CD=AB,DE=AE,∴AB:AE=AE:AF,即AE2=AB?AF,

而AF?AB,∴AB?AE;

∵Rt△AEF∽Rt△DCE,∴EF:EC=AF:DE,而DE=AE,

∴EF:EC=AF:AE,即EF:AF=EC:AE,∵∠A=∠FEC=90°,∴△AEF∽△ECF;

∵∠EFC ≠90°∴△AEF ∽△BFC 相似不成立, 但当∠AFE=∠BFC 时,△AEF ∽△BCF.故选D.

点评: 此题为非常明显的考查相似三角形知识点,根据一线三等角模型特征快速得出答案。

2、C

考点: 正方形的性质,全等三角形的判定与性质,旋转的性质,相似三角形的判定与性质 分析:

①由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得结论;

②由(1)易证得4

1

==BOC OEBF S S △四边形ABCD S 四边形, 则可证得结论;

③首先设AE=x ,则BE=CF=1-x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案;

④易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG ?OB=OE2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论.

②∵ABCD 正方形BOC △COF △BOE △BOE △BOE △OEBF 四边边S 4

1

=S =S +S =+S =S S ∴4:1=S :S ABCD 正方形OEBF 四边边;故正确;

③过点O 作OH ⊥BC ,∵BC=1,∴OH=12BC=12, 设AE=x ,则BE=CF=1?x ,BF=x , ∴,32

9+14)-(x 21=21×x)-(121+x)-x(121=OH CF 21+BF BE 21=S +S 2COF △BEF △?? ∵a=?12<0,

∴当x=14时,COF △BEF △S +S 最大;

即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=14;故错误; ④∵∠EOG=∠BOE,∠OEG=∠OBE=45°, ∴△OEG ∽△OBE , ∴OE:OB=OG:OE , ∴,OE =OB OG 2?∵OB=2

1

BD,OE=22EF , ∴2EF =BD OG ?,

∵在△BEF 中,2

22BF +BE =EF ,

∴2

22CF +AE =EF ,

∴2

2CF +AE =BD OG ?.故正确。

故选C.

点评:

从图形上看是一个比较复杂的题,但是实际题目难度并不是很大,利用对角互补旋转

模型结论再结合个够定理就能解决此题。

8

3、

3

考点:相似三角形的判定与性质, 等边三角形的性质

分析:先利用等边三角形的性质得到∠C=∠ADE=∠B=60°,AB=BC=AC=12,再利用三角形外角性质证明∠BDF=∠CAD,则可判断△DBF∽△ACD,然后利用相似比计算BF的长.

点评:此题利用对角互补旋转模型推导过程得到对应结论,再利用相似解决第(2)(3)问4、

考点:圆周角定理,等边三角形的性质,等边三角形的判定,圆内接四边形的任何一个外角都等于它的内对角

分析:对于(1),先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,根据“SAS”即可得证;

点评:此题为标准手拉手模型,所以除了相似三角形得出答案,还能利用手拉手模型性质解决。

5

2018年中考常见几何模型分析

中考直通车·数学广州分册 第八章专题拓展 第24讲常见几何模型

【考点解读】 常见几何模型是广州市中考的压轴题常考题型,主要以考察选择、填空最后一题和几何压轴题为主。几何模型类型较多,综合性强,属于中考中重点但同样是难点的一个考点。 【考点分析】 2011年 考查三角形全等和三角形中位线性质,标准的手拉手模型。 2014年 考查三角形全等的判断和性质,根据手拉手模型找出全等三角形,再应用其性质 2016年 本年度模型思想明显,分值占比大,主要考查三角形全等的判定及其性质、图像的旋转,利用模型思想作为解题突破口顺利完成辅助线。 【模型介绍】 手拉手模型: 1、 【条件】 如图两个等边三角形ABD ?与BCE ?,连结 AE 与CD , 【结论】(1)DBC ABE ??? (2)DC AE = (3)AE 与DC 之间的夹角为? 60 (4)AE 与DC 的交点设为H , BH 平分AHC ∠

C D A B F E C D 2、 【条件】如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 。 【结论】 (1)CDE ADG ???是否成立? (2)AG =CE (3)AG 与CE 之间的夹角为 90 (4)HD 是否平分AHE ∠? 旋转模型: 一、邻角相等对角互补模型 【条件】如图,四边形ABCD 中,AB =AD ,90BAD BCD ?∠=∠= 【结论】45ACB ACD BC CD ? ∠=∠=+= ① ② 二、角含半角模型:全等 角含半角要旋转:构造两次全等 F E D C B A G F E D C B A A C D E A C D E F

中考数学常见几何模型简介教学总结

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。(3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③.

?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

【猿辅导几何模型】中考必会几何模型:相似模型

中考必考几何模型(猿辅导) 最 新 讲 义

相似模型 模型1:A、8模型 已知∠1=∠2 结论:△ADE∽△ABC 模型分析 如图,在相似三角形的判定中,我们通过做平行线,从而得出A型或8型相似.在做题使,我们也常常关注题目由平行线所产生的相似三角形. 模型实例 【例1】如图,在ABC中,中线AF、BD、CE相交于点O,求证: 1 2 OF OE OD OA OC OB ===. 解答:证法一:如图①,连接DE.∵D、E是中点,∴ 1 2 DE BC =.,DE//BC ∴△EOD∽△COB(8模型)∴ 1 2 OE DE OC BC ==.同理: 1 2 OF OA =, 1 2 OD OB =. ∴ 1 2 OF OE OD OA OC OB ===.

证法二:如图②,过F作FG//AC交BD于点G,∵F是中点,∴ 1 2 GF BF AD BC ==. ∵AD=CD, ∴ 1 2 GF AD =.∵FG//AD,∴△GOF∽△DOA(8模型) ∴ 1 2 OF GF OA AD ==.同理 1 2 OE OC =, 1 2 OD OB =.∴ 1 2 OF OE OD OA OC OB ===. 【例2】如图,点E、F分别在菱形ABCD的边AB、AD上,且AE=DF,BF交DE于点G, 延长BF交CD的延长线于H,若AF DF =2,求 HF BG 的值. 解答:∵四边形ABCD是菱形,∴AB=BC=CD=AD. 设DF=a,则DF=AE=a,AF=EB=2a.∵HD//AB,∴△HFD∽△BF A ∴ 1 2 HD DF HF AB AF FB ===,∴HD=1.5a, 1 3 FH BH =,∴FH= 1 3 BH ∵HD//EB,∴△DGH∽△EGB,∴ 1.53 24 HG HD a GB EB a ===,∴ 4 7 BG HB = ∴BG=4 7 HB,∴ 1 7 3 412 7 BH HF BG BH == 跟踪练习: 1.如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,AE、CD相交于点O,若S△DOE:S△COA=1:25.则S△BD E与S△CDE的比是____________.

初中几何八大经典模型(一)

初中几何八大经典模型(一) 几何对于中考数学来说非常重要,从某种意义上来说中考数学中几何部分做的怎么样直接决定了中考数学是否能 够拿到高分,是否能够拉开差距!所以初中数学的江湖中一直流传着这么一句话:得数学者得天下,得几何者得数学!从分值来看,120分题目,几何每次考试都占50%左右,正可谓占着中考的半壁江山。从得分率来看,填空和选择比较简单,属于送分题,难度不大。大题难度很大,得分率很低,是孩子们中考拉开差距的关键所在。中考数学要想取得高分,并且让数学成为自己的优势学科,必须克服几何难题!巧学数学在这里为大家总结了初中几何的八大几何模型,掌握了这些模型,应对考试中的难题将轻而易举。也希望大家学习后,能够多加练习,掌握其中的奥妙,这对今后的学习大有益处!初中几何八大经典模型(一)旋转模型类型一旋转特殊角度1、旋60°,造等边例:已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.考点:[等边三角形的性质, 直角三角形的性质, 勾股定理的逆定理, 旋转的性质]分析:先把△ABP旋转60°得到△BCQ,连接PQ,根据旋转性质可知△BCQ≌△BAP,由于∠PBQ=60°,BP=BQ,易知△BPQ是等边三角形,从而有PQ=PB=4,而PC=5,CQ=3,根据勾股定理逆定理易证△

PQC是直角三角形,即∠PQC=90°,进而可求∠APB.2、旋90°,造垂直 例1、如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0)。(1)求∠APB的度数;(2)求正方形ABCD的面积。考点:[旋转的性质, 全等三角形的性质, 全等三角形的判定, 勾股定理, 正方形的性质]分析(1)已知PA=a,PB=2a,PC=3a,并不在同一个三角形中,因为AB=BC,可将△ABP 绕点B顺时针方向旋转90°得△CBQ,连接PQ,构成两个特殊三角形,可求∠APB的度数;(2)用(1)的结论,证明∠APQ=180°,得出△AQC是直角三角形,根据AQ,QC 的长及勾股定理求AC,从而可求正方形ABCD的面积.今天练习这两道经典题目,之后我会为大家接着发送其他类型的经典练习,欢迎大家评论和转发!!!

2020年中考数学压轴题:9种题型+5种策略

2020年中考数学压轴题:9种题型+5种策略目前,初三学生正在紧张备考,对于数学这一科来说,最难的就是压轴题,想要在压轴题上拿高分,就要下功夫了。下面给大家带来中考数学压轴题:9种题型+5种策略,希望对大家有所帮助。 中考数学压轴题:9种题型+5种策略 九种题型 1.线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。 第一部分基本上都是一些简单题或者中档题,目的在于考察基础。 第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。 线段与角的计算和证明,一般来说难度不会很大,只要找到关键题眼,后面的路子自己就通了。 2.图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。 在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 3.动态几何

从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。 动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。 另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。 所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。 4.一元二次方程与二次函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。 相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。 中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。 但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。 5.多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函

中考数学必会几何模型:半角模型

半角模型 已知如图:①∠2=1 2 ∠AOB;②OA=OB. O A B E F 1 23 连接FB,将△FOB绕点O旋转至△FOA的位置,连接F′E,FE,可得△OEF≌△OEF′ 43 2 1 F' F E B A O 模型分析 ∵△OBF≌△OAF′, ∴∠3=∠4,OF=OF′. ∴∠2=1 2 ∠AOB, ∴∠1+∠3=∠2 ∴∠1+∠4=∠2 又∵OE是公共边, ∴△OEF≌△OEF′. (1)半角模型的命名:存在两个角度是一半关系,并且这两个角共顶点; (2)通过先旋转全等再轴对称全等,一般结论是证明线段和差关系; (3)常见的半角模型是90°含45°,120°含60°. 模型实例 例1 已知,正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N.(1)求证:BM+DN=MN. (2)作AH⊥MN于点H,求证:AH=AB.

证明:(1)延长ND 到E ,使DE=BM , ∵四边形ABCD 是正方形,∴AD=AB . 在△ADE 和△ABM 中, ?? ? ??=∠=∠=BM DE B ADE AB AD ∴△ADE ≌△ABM . ∴AE=AM ,∠DAE=∠BAM ∵∠MAN=45°,∴∠BAM+∠NAD=45°. ∴ ∠MAN=∠EAN=45°. 在△AMN 和△AEN 中, ?? ? ??=∠=∠=AN AN EAN M AN EA M A ∴△AMN ≌△AEN . ∴MN=EN . ∴BM+DN=DE+DN=EN=MN . (2)由(1)知,△AMN ≌△AEN . ∴S △AMN =S △AEN . 即EN AD 2 1 MN AH 21?=?. 又∵MN=EN , ∴AH=AD . 即AH=AB .

广东中考数学压轴题的9种出题形式

初中数学知识当中,学生掌握情况比较欠缺的主要是列方程组解应用题,函数特别是二次函数,四边形以及相似,还有圆。这些知识点如果分块学习学生还易接受,关键在于知识的综合。 中考知识的综合主要有以下几种形式 (1)线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。 (2)图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 (3)动态几何 从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。 (4)一元二次方程与二次函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合 (5)多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。 (6)列方程(组)解应用题 在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思

初中数学常用几何模型及构造方法大全

初中数学常用几何模型及构造方法大全几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间… 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 角分线模型 往角两边作垂线 往角两边截取等线段 过角分线某点作垂线 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。

对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称 共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。

模型变换 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

2018挑战中考数学压轴题((全套)含答案与解析)

第一部分函数图象中点的存在性问题 §1.1因动点产生的相似三角形问题 例1 2014 年衡阳市中考第 28 题 例2 2014 年益阳市中考第 21 题 例3 2015 年湘西州中考第 26 题 例4 2015 年张家界市中考第 25 题 例5 2016 年常德市中考第 26 题 例6 2016 年岳阳市中考第 24 题 例 72016年上海市崇明县中考模拟第25 题 例 82016年上海市黄浦区中考模拟第26 题 §1.2因动点产生的等腰三角形问题 例9 2014 年长沙市中考第 26 题 例10 2014 年张家界市第 25 题 例11 2014 年邵阳市中考第 26 题 例12 2014 年娄底市中考第 27 题 例13 2015 年怀化市中考第 22 题 例14 2015 年长沙市中考第 26 题 例15 2016 年娄底市中考第 26 题 例 162016年上海市长宁区金山区中考模拟第25 题例 172016年河南省中考第 23 题

§1.3因动点产生的直角三角形问题 例19 2015 年益阳市中考第 21 题 例20 2015 年湘潭市中考第 26 题 例21 2016 年郴州市中考第 26 题 例22 2016 年上海市松江区中考模拟第 25 题 例23 2016 年义乌市绍兴市中考第 24 题 §1.4因动点产生的平行四边形问题 例24 2014 年岳阳市中考第 24 题 例25 2014 年益阳市中考第 20 题 例26 2014 年邵阳市中考第 25 题 例27 2015 年郴州市中考第 25 题 例28 2015 年黄冈市中考第 24 题 例29 2016 年衡阳市中考第 26 题 例 302016年上海市嘉定区宝山区中考模拟中考第24 题例 312016年上海市徐汇区中考模拟第 24 题 §1.5因动点产生的面积问题 例32 2014 年常德市中考第 25 题 例33 2014 年永州市中考第 25 题

初中几何模型及常见结论的总结归纳

初中几何模型及常见结论的总结归纳 三角形的概念 三角形边、角之间的关系:①任意两边之和大于第三边(任意两边之差小于第三边);②三角形内角和为0180(外角和为0 360);③三角形的外角等于不相邻的两内角和。 三角形的三线:(1)中线(三角形的顶点和对边中点的连线);三角形三边中线交于一点(重心) 如);DE 之到?S 如图,已知AB ,AC 的长,求AF 的取值范围时。我们可以通过倍长 中线。利用三角形边的关系在三角形ABD 中构建不等关系。(AC AB AF AC AB +- 2). (2)角平分线(三角形三内角的角平分线);三角形的三条内角平分线交于一点(内心)

如等 OE ; r = 2

(3)垂线(三角形顶点到对边的垂线);三角形三条边上的高交于一点(垂心) 如图,O为三角形ABC的垂心,我们可以得到比较多的锐角相等如 COD ABC ACO ABO∠ = ∠ ∠ = ∠;等。因此垂线(或高)这样的条件在题目中出现,我们往往可以得出比较多的锐角相等。(等角或同角的余角相等),此外,如果要求垂线段的长度或与垂线段有关的长度问题,我们通常用面积法求解。在上图中,若已知CE AC AB, ,的长度,求BE的长。 特别注意:在等腰三角形中,我们通常所指的三线合一就是指中线、角平分线、高线。三线合一:已知三角形三线中的任意两个条件是重合的,那么就可以得出第三条线也是重合的。在具体运用时,我们往往时把三线合一的等腰三角形补充完整再加以运用。 三角形全等 三角形全等我们要牢记住它的五个判定方法。(SSS,SAS,ASA,AAS,HL) 在具体运用时,我们需要找出判定三角形全等的各种条件,不外乎是关于边相等或相等的问题。 对于寻找角相等:常有四种方法:①两条平行线被第三条直线所截得出的“三线八角”的结论;②对顶角相等;③锐角互余;④三角形的外角等于不相邻的两内角和。 对于寻找边相等:常有三种方法:①特殊图形中隐含的条件(如等腰三角形、等边三角形、菱形、正方形。。。。。);②利用三线合一的正逆定理;③通过已有的全等三角形性质得出。对于证明角相等,证明边相等,我们都要优先考虑边或角所在的三角形全等。(一定要注意对应)如果不能直接通过全等证明,我们就要转化角或转化边(用上面的几种方法)然后再考虑全等。 全等三角形的基本图形: 平移类全等;对称类全等;旋转类全等;

2018年中考初中数学压轴题及详解

2018年中考初中数学压轴题(有答案) 一.解答题(共30小题) 1.(2014?攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB. (1)求B、C两点的坐标; (2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标; (3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q 为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由. 2.(2014?苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD 的移动速度为4cm/s,设移动时间为t(s) (1)如图①,连接OA、AC,则∠OAC的度数为_________°; (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长); (3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t 的取值范围(解答时可以利用备用图画出相关示意图). 3.(2014?泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别 相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O A B C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O B C O A C D E O B C D E O A C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

初中数学经典几何模型

初中数学几何模型 【模型1】倍长 1、 倍长中线; 2、倍长类中线; 3、中点遇平行延长相交 E D A B C F D A B C E ---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线 1、 直接连接中点; 2、连对角线取中点再相连 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1G F D C G F D C G F D C A B E E B A E B A 中点模型

【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF于H.求证:∠BGE=∠CHE. H G E F A B D C 【模型1】构造轴对称 【模型2】角平分线遇平行构造等腰三角形 ---------------------------------------------------------------------------------------------------------------------- 角平分线模型

最新中考数学必会几何模型

目录 将军饮马模型 (3) 模型1:直线与两定点 (3) 模型2/角与定点 (10) 模型3两定点一定长 (15) 第十二章辅助圆 (20) 模型1 共端点,等线段模型 (20) 模型2 直角三角形共斜边模型 (23) 半角模型 (32) 模型实例 (33) 8字模型与飞镖模型 (50) 模型1:角的8字模型 (50) 模型2:角的飞镖模型 (54) 模型3 边的“8”字模型 (57) 模型4 边的飞镖模型 (58) 中点四大模型 (63) 模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形 (63) 模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”. (66) 模型3 已知三角形一边的中点,可考虑中位线定理 (71) 模型4 已知直角三角形斜边中点,可以考虑构造斜边中线 (78) 二次函数 (85) 圆中的辅助线 (91) 模型1 连半径构造等腰三角形 (91) 模型2 构造直角三角形 (94) 模型3 与圆的切线有关的辅助线 (100) 相似模型 (111) 模型1:A、8模型 (111) 模型2 共边共角型 (116) 模型3 一线三等角型 (121) 模型4 倒数型 (127) 模型5 与圆有关的简单相似 (132) 模型6 相似和旋转 (136) 1.2空间几何体的三视图和直观图 (145)

1.3 空间几何体的表面积与体积 (145) 手拉手模型 (147) 模型手拉手 (147) 三垂直全等模型 (158) 模型三垂直全等模型 (158) 蚂蚁行程 (170) 模型立体图形展开的最短路径 (170) 截长补短辅助线模型 (180) 模型:截长补短 (180) 角平分线四大模型 (192) 模型1 角平分线的点向两边作垂线 (192) 模型2 截取构造对称全等 (194) 模型3 角平分线+垂线构造等腰三角形 (198) 模型4 角平分线+平行线 (200)

初中数学九大几何模型

初中数学九大几何模型 Prepared on 24 November 2020

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A B C D E 图 2 O A B C D E O C D E 图 1图 2O C O C D E O B C D E O C D

③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- (2)全等型-120° 【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43 S S S =+= 证明提示:①可参考“全等型-90°”证法一; ②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。 (3)全等型-任意角ɑ 【条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE ; 【结论】:①OC 平分∠AOB ;②OD+OE=2OC ·cos ɑ; ③α cos αsin OC S S S 2△OCE △OCD △DCE ??=+= ※当∠DCE 的一边交AO 的延长线于D 时(如右下图): 原结论变成:①; ②; ③。 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4 A

2020年中考数学压轴题训练-填空题(学案)

第02讲中考压轴题-填空题 考点梳理 一.近5年中考填空题16题考点归纳 二.题型概述 填空题是中考必考基本题型之一,它叙述简单,概念性强,知识覆盖面广,有利于基础知识和基本技能的考察,中考中填空题注重基础,贴近课本,多半是课本例题,习题的改编题,在解答填空题时要做到以下几点:准-审题要仔细,考虑问题要全面,结论要准确;巧-解法要灵活,推理要巧妙,思路要优化;快-运算要快速,小题不大做。 三.解题策略 1.直接法:就是从题设条件出发,运用定义,定理,公式,性质,法则等知识,通过变形,推理,计算等得出正确的结论,使用此方法时,要善于透过现象看本质,自觉地,有意识的采用灵活简捷的解法。 2.特例法:特例法在考试中应用起来比较方便,它的实施过程是从一般到特殊,优点是简单易行,当暗示答案是一个定值时,就可以取一个特殊数值,特殊位置,特殊图形,特殊关系,特殊数列或特殊函数值等年份知识点 2015 考查反比例函数系数k的几何意义,但第15题是图形找规律 2016 考查平行四边形的性质以及反比例函数图象上点的坐标特征,第15题是平行四 边形作图 2017 考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,第15题 是材料阅读定义新运算 2018 考查了角平分线定义,勾股定理,相似三角形的判定和性质,第15题是正方形 求阴影面积 2019 考查了反比例函数的性质,角平分线性质运用,相似三角形的运用,第15题是 正方形翻折求边长

将字母具体化,把一般形式变为特殊形式,当题目的条件是从一般性的角度给出时,特例法尤其奏效。3.数形结合法:就是把抽象的数字语言,数量关系与直观的几何图形,位置关系结合起来,通过以形助数或以数助形把复杂问题简单化,抽象问题具体化,从而达到优化解题途径的目的,这类问题的几何意义一般较为明显,因而有些问题可以借助于图形,然后参照图形的形状,位置,性质,结合图像的特征,进行直观的分析,加上简单的运算,一般就可以得出正确的答案。 4.转化法:就是将待解决的问题,通过分析,联想,类比等思维过程,选择恰当的方法进行变换,转化到已经解决或比较容易解决的问题上,最终达到解决问题的目的,解决问题的过程实际就是转化的过程。 5.猜想法:是根据已有的数字理论和方法,通过观察题目中所给出的一些数或图形的特点,分析其规律,从而总结出一般结论,这种方法一般适用于规律探索题。 6.构造法:就是通过对题目中条件和结论的分析,构造辅助元素,它可以是一个图形,一个方程,一个函数等,架起一座连接条件和结论的桥梁,从而使问题得以解决的方法,充分的挖掘题设与结论的内在联系,把问题与某个熟知的概念,公式,定理,图形联系起来,进行构造,往往能促使问题转化,进而谋求解决问题的途径。 感悟实践 1.(2015年深圳中考第15题)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.

中考必会几何模型:角平分线四大模型

角平分线四大模型 模型1 角平分线的点向两边作垂线 如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口 模型实例 (1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是 解答:如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE. ∵CB=6,BD=4,∴DE=CD=2,即点D到直线AB的距离是2. (2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC 证明:如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F, ∵∠1=∠2,∴PD=PE,∵∠3=∠4, ∴PE=PF,∴PD=PF 又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定)

练习 1、如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC , 求证:∠BAD+∠BCD=180° 证明:作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°, ∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C ∵∠FAD+∠BAD=180°,∴∠BAD+∠BCD=180° 2.如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=. 解答:如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M ∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP, PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质) ∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80° ∴∠CAF=180°-∠BAC=100°,∵PF=PM ∴AP是∠FAC的角平分线,∴∠CAP=∠PAF=50° 模型2 截取构造对称全等 如图,P是∠MON的平分线上的一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≌△OPA 模型分析

(完整版)初中数学常用几何模型及构造方法大全

g a t a t i m e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 初中数学常用几何模型及构造方法大全, 掌握它轻松搞定压轴题! 几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握哦~全等变换 平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题

g a t a t i m e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。自旋转模型构造方法: 遇60度旋60度,造等边三角形; 遇90度旋90度,造等腰直角;遇等腰旋顶点,造旋转全等; 遇中点旋180度,造中心对称. 共旋转模型

初中生必须掌握的五种经典几何模型

初中生必须掌握的五种经典几何模型(一)手拉手模型 模型教学产生于教育理论发展的新时代,在新课标的背景下慢慢成熟起来,模型可以让孩子更快的代入到几何之中,形成自己的兴趣。也是近来来学习初中几何中不可或缺的一部分。 下面我先给大家介绍第一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。 例1、在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明: (1)△ABE≌△DBC (2)AE=DC (3)AE与DC的夹角为60 (4)△AGB≌△DFB (5)△EGB≌△CFB (6)BH平分∠AHC (7)GF∥AC 解析:(1)∵△ABD和△BCE是等边三角形, ∴AB=DB,BC=BE,∠ABD=∠CBE=60°, ∴∠ABD+∠ABC=∠CBE+∠ABC, 即∠DBC=∠ABE, 在△ABE和△DBC中, 易证明△ABE≌△DBC(SAS) (2) ∵△ABE≌△DBC(SAS)∴AE=CD; (3) ∵△ABE≌△DBC,∴∠AEB=∠DCB.

又∵∠HFE=∠BFC(对顶角相等) △HFE和△BFC中, ∠EHF=180-∠AEB-∠HFE; ∠CBF=180-∠DCB -∠BFC, ∴∠EHF=∠CBF=60∴AE与DC的夹角为60。(4)AB=BD,BG=BF, ∠ABG=∠DBF=60 ∴△AGB≌△DFB (5)EB=EC,BG=BF, ∠EBG=∠CBF=60 ∴△EGB≌△CFB (6)过B作BM垂直AE于M,BN垂直CD于N。证明△ABM ≌△DBM,则BM=BN ∴BH平分∠AHC (7)∵△AGB≌△DFB∴BG=BF, 又∠GBF=60,∴GBF为等边三角形 ∴∠GFB=EBC=60, ∴GF∥AC

相关主题
文本预览
相关文档 最新文档