204电大离散数学,形考任务2
- 格式:docx
- 大小:27.53 KB
- 文档页数:28
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}},A⨯B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈xyR⋂<且=且>∈∈{B,,xAyAyBx}则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<那么R-1={<6,3>,<8,4>}.>∈A2,x,,xy{B5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b> <d,c> ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为<1,1>,<2,2> .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1)错误。
《离散数学》形考任务二一、单项选择题图G如图三所示,以下说法正确的是( ).A.{c}是点割集B.a是割点C.{b, c}是点割集D.{b, d}是点割集正确答案是:{b, c}是点割集图G如图四所示,以下说法正确的是( ) .A.{(a, d)}是割边B.{(a, d) ,(b, d)}是边割集C.{(b, d)}是边割集D.{(a, d)}是边割集正确答案是:{(a, d) ,(b, d)}是边割集如图一所示,以下说法正确的是( ) .A.{(a, e)}是边割集B.{(a, e) ,(b, c)}是边割集C.{(a, e)}是割边D.{(d, e)}是边割集正确答案是:{(d, e)}是边割集如图二所示,以下说法正确的是( ).A.{a, e}是点割集B.{d}是点割集C.e是割点D.{b, e}是点割集正确答案是:e是割点设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2B.v+e-2C.e+v+2D.e-v-2正确答案是:e-v+2设图G=<V, E>,v∈V,则下列结论成立的是( ) .A.B.deg(v)=2| E |C.D.deg(v)=| E |正确答案是:已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A.4B.5C.3D.8正确答案是:5若G是一个欧拉图,则G一定是( ).A.汉密尔顿图B.连通图C.平面图D.对偶图正确答案是:连通图设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.m-nB.m-n+1C.n-m+1D.m+n+1正确答案是:m-n+1无向树T有8个结点,则T的边数为( ).A.6B.9C.7D.8正确答案是:7设无向图G的邻接矩阵为则G的边数为( ).A.5B.4C.3D.6正确答案是:5无向图G存在欧拉回路,当且仅当().A.G连通且所有结点的度数全为偶数B.G连通且至多有两个奇数度结点C.G中所有结点的度数全为偶数D.G中至多有两个奇数度结点正确答案是:G连通且所有结点的度数全为偶数以下结论正确的是( ).A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.无向完全图都是欧拉图D.树的每条边都是割边正确答案是:树的每条边都是割边已知无向图G的邻接矩阵为则G有().A.6点,8边B.5点,7边C.6点,7边D.5点,8边正确答案是:5点,7边设无向图G的邻接矩阵为则G的边数为( ).A.14B.1C.7D.6正确答案是:7若G是一个汉密尔顿图,则G一定是( ).A.连通图B.欧拉图C.对偶图D.平面图正确答案是:连通图设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六A.(c)只是弱连通的B.(a)只是弱连通的C.(b)只是弱连通的D.(d)只是弱连通的正确答案是:(d)只是弱连通的无向完全图K4是().A.汉密尔顿图B.树C.欧拉图D.非平面图正确答案是:汉密尔顿图设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).A.(d)是强连通的B.(c)是强连通的C.(b)是强连通的D.(a)是强连通的正确答案是:(a)是强连通的无向简单图G是棵树,当且仅当( ).A.G的边数比结点数少1B.G连通且结点数比边数少1C.G中没有回路.D.G连通且边数比结点数少1正确答案是:G连通且边数比结点数少1二、判断题设G是一个连通平面图,且有6个结点11条边,则G有7个面.( )正确答案是“对”。
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,R⋂∈y∈x<且=且>∈x{B,,AAyyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈><y=2,,,{ByxAx那么R-1={<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2, b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g︒ f)= {3,4} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.解:(1)错误,R不是自反关系,因为没有有序对<3,3>.(2)错误,R不是对称关系,因为没有有序对<2,1>2.设A={1,2,3},R={<1,1>, <2,2>, <1,2> ,<2,1>},则R是等价关系.解:错误, 即R不是等价关系.因为等价关系要求有自反性x R x, 但<3, 3>不在R中.3.若偏序集<A,R>的哈斯图如图一所示,则集合A的最大元为a,最小元不存在.οοοοab cd图一οοοg e fh ο解:错误.集合A的最大元不存在,a是极大元.4.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},,判断下列关系f是否构成函数f:A→,并说明理由.B(1) f={<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2) f={<1, 6>, <3, 4>, <2, 2>};(3) f={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f不能构成函数.因为A中的元素3在f中没有出现.(2) f不能构成函数.因为A中的元素4在f中没有出现.(3) f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4,2{=CB==E,求:A},5,4,3,2,1{=},5,2,1{4,1{},(1) (A⋂B)⋃~C;(2) (A⋃B)-(B⋂A) (3) P(A)-P(C);(4) A⊕B.解:(1)因为A∩B={1,4}∩{1,2,5}={1},~C={1,2,3,4,5}-{2,4}={1,3,5}所以(A∩B ) ⋃~C={1}⋃{1,3,5}={1,3,5}(2)(A⋃B)-(B⋂A)= {1,2,4,5}-{1}={2,4,5}(3)因为P(A)={φ,{1}, {4}, {1,4}}P(C)={φ,{2},{4},{2,4}}所以P(A)-P(C)={ φ,{ 1},{ 4},{ 1,4}}-{φ,{ 2},{ 4},{2,4 }}(4) 因为A⋃B={ 1,2,4,5}, A⋂B={ 1}所以A⊕B=A⋃B-A⋂B={1,2,4,5}-{1}={2,4,5}2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)A-B ={{1},{2}}(2)A∩B ={1,2}(3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \R-1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>}S=φ, S-1 =φr(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}R •S=φS •R=φ4.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.(1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图;(3) 求出集合B 的最大元、最小元.解:R={<1,1>,<1,2>,<1,3>,<1,4,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)关系R 的哈斯图如图(3)集合B 没有最大元,最小元是:2四、证明题1.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).证明:设,若x ∈A ⋃ (B ⋂C ),则x ∈A 或x ∈B ⋂C , 即 x ∈A 或x ∈B 且 x ∈A 或x ∈C .即x ∈A ⋃B 且 x ∈A ⋃C ,即 x ∈T =(A ⋃B ) ⋂ (A ⋃C ),所以A ⋃ (B ⋂C )⊆ (A ⋃B ) ⋂ (A ⋃C ).反之,若x ∈(A ⋃B ) ⋂ (A ⋃C ),则x ∈A ⋃B 且 x ∈A ⋃C ,即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈B ⋂C ,7即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B或x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以S⊆T.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T⊆S.因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.证明:设x∈A,y∈B,则<x,y>∈A⨯B,因为A⨯B = A⨯C,故<x,y>∈ A⨯C,则有y∈C,所以B⊆ C.设x∈A,z∈C,则<x,z>∈ A⨯C,因为A⨯B = A⨯C,故<x,z>∈A⨯B,则有z∈B,所以C⊆B.故得B=C.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:R1和R2是自反的,∀x∈A,<x, x> ∈R1,<x, x> ∈R2,则<x, x> ∈R1∩R2,所以R1∩R2是自反的.。
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案此任务2 g选择题题目1 无向完全图K4是()、选择一项:A、树 B、欧拉图 C、汉密尔顿图 D、非平面图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为()、选择一项: A、4 B、8 C、3 D、5 题目3 设无向图G的邻接矩阵为 011111 0 0111 0 0 0 011 0 011 01 0 则G 的边数为( 选择一项: A、7 B、14 C、6 D、1 题目4 如图一所示,以下说法正确的是()、选择一项: A、 ((a, e), (b, c)}是边割集 B、{(a, e)}是边割集 C、{(d, e)}是边割集 D、((a, e)}是割边题目5 以下结论正确的是()、选择一项: A、有n个结点n-l条边的无向图都是树B、无向完全图都是平面图 C、树的每条边都是割边 D、无向完全图都是欧拉图题目6 若G是一个欧拉图,则G一定是()、选择一项: A、汉密尔顿图 B、连通图 C、平面图 D、对偶图题目7 设图G=, vGV,则下列结论成立的是()、选择一项:A、云 d做、)=2|% B、2>“ = |司 w C、 deg(v)=2|S| D、deg(v)=|E| 题目8 图G如图三所示,以下说法正确的是()、选择一项: A、(b, d}是点割集 B、{c}是点割集 C、{b, c}是点割集 D、 a是割点题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是()、选择一项: (a)是费连通的 B、 (d)是强连通的 C、 (c)是强连通的D、 (b)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是()、选择一项: A、 (b)只是弱连通的 B、 (c)只是弱连通的 C、 (a)只是弱连通的 D、 (d)只是弱连通的判断逝题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树、()选择一项:对错题目12 汉密尔顿图一定是欧拉图、()选择一项:对错题目13 设连通平面图G的结点数为5,边数为6,则面数为4、()选择一项:对错题目14 设G是一个有7个结点16条边的连通图,则G为平面图、()选择一项:对错题目15 如图八所示的图G存在一条欧拉回路、()选择一项:对错题目16 设图G如图七所示,则图G的点割集是{f}、()选择一项:对错题目172>瞒)=2圜设G是一个图,结点集合为V,边集合为E,则代衫()选择一项:对错题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树、()选择一项:对错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图、()选择一项:对错题目20 若图 G=,其中 V=( a, b, c, d }, E={ (a, b), (a, d), (b, c), (b, d)},则该图中的割边为(b, c)、()选择一项:对。
(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。
2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。
离散数学形考任务2图论部分概念及性质
单项选择题
●如图所示,以下说法正确的是( ).答案是:e是割点
●如图一所示,以下说法正确的是( ) .答案是:{(d, e)}是边割集
●若G是一个汉密尔顿图,则G一定是( ).答案是:连通图
●若G是一个欧拉图,则G一定是( ).答案是:连通图
●设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).答案是:e-v+2
●设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵
生成树.答案是:m-n+1
●设图G=<V, E>,vV,则下列结论成立的是( )
●设无向图G的邻接矩阵为则G的边数为( ).答案是:7
●设无向图G的邻接矩阵为则G的边数为( ).答案是:7
●设有向图(a)、(b)、(c)与(d)如图所示,则下列
结论成立的是( ).答案是:(a)是强连通的
●设有向图(a)、(b)、(c)与(d)如图所示,则下列
结论成立的是( ).答案是:(d)只是弱连通的
●图G如图三所示,以下说法正确的是( ).答案是:{b, c}是点割集
●图G如图四所示,以下说法正确的是( ) .答案是:{(a, d) ,(b, d)}是边割
集。
开放大学离散数学形考2闭包为 {<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {4,3} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:不是等价关系因为3是A 的一个元素,由于<3,3>不在R 中,R 不具有自反性,等价关系R 必须有(对A 中任意元素a, R 含<a,a>),所以R 不是A 上的等价关系!3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误,按照定义,图中不存在最大元和最小元ο ο ο οa b c d 图οο οg ef h ο4.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},,判断下列关系f是否构成函数f:A→,并说明理由.B(1) f={<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2) f={<1, 6>, <3, 4>, <2, 2>};(3) f={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1)不构成函数,因为它的定义域Dom(f)≠A(2)也不构成函数,因为它的定义域Dom(f)≠A(3)构成函数,首先它的定义域Dom(f)={1,2,3,4}=A,其次对于A中的每一个元素a,在B中都有一个唯一的元素b,使<a,b>∈f三、计算题1.设}4,2{===CAE,求:B5,4,3,2,1{=},},5,2,1{},4,1{(1) (A⋂B)⋃~C;(2) (A⋃B)-(B⋂A) (3) P(A)-P(C);(4) A⊕B.解:(1)(A⋂B)⋃~C={1}⋃{1,3,5}={1,3,5}(2)(A⋃B)-(B⋂A) = {1,2,4,5}-{1}={2,4,5}(3)P(A) = {φ,{1},{4},{1,4}}P(C) = {φ,{2},{4},{2,4}}P(A)-P(C)={{1},{1,4}}(4)A⊕B = (A⋃B)-(B⋂A)={2,4,5}2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)(A-B)={{1},{2}}(2)(A∩B)={1,2}(3)A×B ={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1,{1,2}>,<2,1 >,<2,2>,<2,{1,2}>}3.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}S=φR•S=φS•R=φR-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>}S-1 =φr(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}4.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式;(2 )画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.解:(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>, <2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)(3)集合B没有最大元,最小元是2.四、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).解:设,若x∈A⋃ (B⋂C),则x∈A 或x∈B⋂C即x∈A 或x∈B且x∈A 或x∈C即x∈A⋃B 且x∈A⋃C即x∈T=(A⋃B) ⋂ (A⋃C)所以A⋃ (B⋂C)⊆(A⋃B) ⋂ (A⋃C)反之若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B 且x∈A⋃C即x∈A 或x∈B且x∈A 或x∈C即x∈A 或x∈B⋂C即x∈A⋃ (B⋂C)所以(A⋃B) ⋂ (A⋃C)⊆A⋃ (B⋂C)因此A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C)2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).解:设S=A⋂ (B⋃C),T = (A⋂B) ⋃ (A⋂C) 若x∈S,则x∈A 且x∈B⋃C即x∈A 且x∈B或x∈A 且x∈C,也即x∈A⋂B 或x∈A⋂C 即x∈T所以S⊆T反之,若x∈T,则x∈A⋂B或x∈A⋂C即x∈A 且x∈B 或x∈A 且x∈C也即x∈A且x∈B⋃C 即x∈S 所以T⊆S因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.解:设x∈A,y∈B,则<x,y>∈AxB,因为AxB = AxC,故<x,y>∈AxC,则y∈C,所以B⊆C,设x∈A,z∈C,则<x,z>∈ZxB,因为AxB = AxC,故<x,z>∈AxB,则z∈B 所以C⊆B故得A=B4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.解:R1和R2 是自反的,∀x∈A,<x,x>∈R2, 则<x,x>∈R1∩R2 ,所以是R1∩R2自反的。
无向树T有8个结点,则T的边数为( ).选择一项:A. 7B. 9C. 8D. 6反馈你的回答不正确正确答案是:7题目2不正确获得5.00分中的0.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是( ) .选择一项:A.B. deg(v)=2| E |C. deg(v)=| E |D.反馈你的回答不正确正确答案是:题目3不正确获得5.00分中的0.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (b)是强连通的B. (c)是强连通的C. (d)是强连通的D. (a)是强连通的反馈你的回答不正确正确答案是:(a)是强连通的题目4不正确获得5.00分中的0.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.选择一项:A.B.C.D.反馈你的回答不正确正确答案是:题目5不正确获得5.00分中的0.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 非平面图C. 欧拉图D. 汉密尔顿图反馈你的回答不正确正确答案是:汉密尔顿图题目6不正确获得5.00分中的0.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 3C. 4D. 5反馈你的回答不正确正确答案是:5题目7未回答满分5.00标记题目题干图G如图四所示,以下说法正确的是( ) .选择一项:A. {(a, d)}是边割集B. {(b, d)}是边割集C. {(a, d)}是割边D. {(a, d) ,(b, d)}是边割集反馈你的回答不正确正确答案是:{(a, d) ,(b, d)}是边割集题目8不正确获得5.00分中的0.00分标记题目题干以下结论正确的是( ).选择一项:A. 无向完全图都是平面图B. 无向完全图都是欧拉图C. 树的每条边都是割边D. 有n个结点n-1条边的无向图都是树反馈你的回答不正确正确答案是:树的每条边都是割边题目9不正确获得5.00分中的0.00分标记题目题干如图二所示,以下说法正确的是( ).图二选择一项:A. {d}是点割集B. e是割点C. {b, e}是点割集D. {a,e}是点割集反馈你的回答不正确正确答案是:e是割点题目10不正确获得5.00分中的0.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 欧拉图B. 连通图C. 平面图D. 对偶图你的回答不正确正确答案是:连通图标记题目信息文本判断题题目11正确获得5.00分中的5.00分标记题目题干设G是一个连通平面图,且有6个结点11条边,则G有7个面.( ) 选择一项:对错反馈正确的答案是“对”。
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈xyR⋂<且=且>∈∈{B,,xAyAyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3>.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈A2,x,,xy{B那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >},或{<1, b >, <2, a >}二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.(1)R不是自反关系,因为没有有序对<3,3>.(2)R不是对称关系,因为没有有序对<2,1>2.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:成立.因为R1和R2是A上的自反关系,即I A⊆R1,I A⊆R2。
最新国家开放大学电大《数学思想与方法(本)》形考任务2试题及答案最新国家开放大学电大《数学思想与方法(本)》形考任务2试题及答案形考任务2题目1欧几里得的《几何原本》是一本极具生命力的经典著作,它的著名的平行公设是()。
选择一项:D.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交题目2《九章算术》是我国古代的一本数学名著。
“算”是指(),“术”是指()。
选择一项:A.算筹解题方法题目3《几何原本》就是用()的链子由此及彼的展开全部几何学,它的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
选择一项:A.逻辑题目4《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容:()。
选择一项:C.定义、公理、公设、命题题目5《几何原本》的理论体系并不是完美无缺的,比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在()中起什么作用。
选择一项:B.逻辑推理题目6《九章算术》是中国汉族学者在古代第一部数学专著,是“算经十书”中最重要的一种,成书于()左右。
选择一项:A.公元一世纪题目7《九章算术》是中国汉族学者在古代第一部数学专著,它的内容十分丰富,全书采用()的形式,与生产、生活实践密切相关。
选择一项:D.问题形式题目8《九章算术》确定了中国古代数学的框架,不仅以()归纳体系、()内容、()方法为特点影响我国数学成就的建立,而且在培养和造就我国数学家方面起到了促进作用。
选择一项:D.开放的、算法化的、模型化的题目9《九章算术》确定了中国古代数学的框架,以计算为中心的特点。
《九章算术》亦有其不容忽视的缺点:没有任何()数学概念的定义,也没有给出任何()。
选择一项:A.数学概念,推导和证明题目10《九章算术》的叙述方式以()为主,先给出若干例题,再给出解法;《几何原本》的叙述方以()为主,先给出公理,再通过逻辑推出其他命题。
形考任务二单项选择题题目1图G 如图三所示,以下说法正确的是()选择一项:正确答案是:{b, c }是点割集题目2若G 是一个汉密尔顿图,则G 一定是().选择一项:正确答案是:连通图题目3已知一棵无向树T 中有8个顶点,4度、3度、2度的分支点各一个,为()•选择一项:正确答案是:5题目4无向图G 存在欧拉回路,当且仅当( ).选择一项: 正确答案是:G 连通且所有结点的度数全为偶数题目5T 的树叶数设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是()选择一项:正确答案是:(d)只是弱连通的题目6设无向图G的邻接矩阵为ro 11 1I 0D 1I)Q Q Q 0「I 10 0 1110 10则G的边数为()•选择一项:正确答案是:7题目7如图一所示,以下说法正确的是()选择一项: 正确答案是:{(d, e)}是边割集题目8若G是一个欧拉图,则G一定是()选择一项:正确答案是:连通图题目9设图G= <V, E> , vV,贝U下列结论成立的是()选择一项:1B膽釜是;三曲烫*半|题目10如图二所示,以下说法正确的是()D选择一项:正确答案是:e是割点判断题题目11如图八所示的图G存在一条欧拉回路.()选择一项:正确的答案是“错”0题目12设图G如图七所示,则图G的点割集是{f}.()选择一项:正确的答案是“错”。
题目13设G=<V E>是具有n个结点的简单图,若在G中每一对结点度数之和小于n-1,则在G中存在一条汉密尔顿路.()选择一项:正确的答案是“错”。
题目14两个图同构的必要条件是结点数相等;边数相等;度数相同的结点数相等.()选择一项:正确的答案是“对”。
题目15设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:正确的答案是“错”。
题目16无向图G的结点数比边数多1,则G是树.()正确的答案是“错”0题目17如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:正确的答案是“对”。
一、单项选择题(共 10 道试题,共 100 分。
)1. 设集合A = {1, a },则P(A) = ( D ).A. {{1}, {a}}B. { ,{1}, {a}}C. {{1}, {a}, {1, a }}D. { ,{1}, {a}, {1, a }}2. 集合A={1, 2, 3, 4}上的关系R={|x=y且x, y A},则R的性质为(C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( C ).A. {a,{a}} AB. {1,2} AC. {a} AD. A4.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =( A ).A. f?gC. f?fD. g?g5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的( C )闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7. 设集合A={1,2,3,4,5},偏序关系£是A上的整除关系,则偏序集上的元素5是集合A的( C ).A. 最大元B. 最小元C. 极大元D. 极小元8. 若集合A的元素个数为10,则其幂集的元素个数为( A ).B. 10C. 100D. 19. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( B )个.A. 0B. 2C. 1D. 310. 设集合A={a},则A的幂集为( C ).A. {{a}}B. {a,{a}}C. { ,{a}}D. { ,a}0002一、单项选择题(共 10 道试题,共 100 分。
)1. 设集合A = {1, a },则P(A) = ( D ).A. {{1}, {a}}B. { ,{1}, {a}}C. {{1}, {a}, {1, a }}D. { ,{1}, {a}, {1, a }}2. 设A、B是两个任意集合,侧A-B = ?? ( B ).B. AíBC. AêBD. B=?3. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B4. 若集合A={2,a,{ a },4},则下列表述正确的是( D ).A. {a,{ a }}?AB. ??AC. {2}?AD. { a }íA5. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y A},则R的性质为( B ).A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的6. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( B )个.B. 2C. 1D. 37. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为( D ).A. 2B. 3C. 6D. 88. 设集合A={1,2,3,4,5},偏序关系£是A上的整除关系,则偏序集上的元素5是集合A的().A. 最大元CB. 最小元C. 极大元D. 极小元9. 若集合A的元素个数为10,则其幂集的元素个数为( A ).A. 1024B. 10C. 100D. 110. 设A={a,b},B={1,2},C={4,5},从A到B的函数f={, },从B 到C的函数g={<1,5>, <2,4>},则下列表述正确的是( B ).A. f°g ={, }B. g° f ={, }C. f°g ={<5,a >, <4,b >}D. g° f ={<5,a >, <4,b >}0003一、单项选择题(共 10 道试题,共 100 分。
)1. 设集合A={a},则A的幂集为( C ).A. {{a}}B. {a,{a}}C. { ,{a}}D. { ,a}2. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( B )个.A. 0B. 2C. 1D. 33. 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( D).A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、24. 若集合A={ a,{a},{1,2}},则下列表述正确的是( C ).A. {a,{a}} AB. {1,2} AC. {a} AD. A5. 集合A={1, 2, 3, 4}上的关系R={|x=y且x, y A},则R的性质为( C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反6.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={| y = x +1},则R= ( A ).A.{<2, 3>, <4, 5>, <6, 7>}B.{<2, 1>, <4, 3>, <6, 5>}C.{<2, 1>, <3, 2>, <4, 3>}D. {<2, 2>, <3, 3>, <4, 6>}7. 设A、B是两个任意集合,侧A-B = ?? ( B ).B. AíBC. AêBD. B=?8. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的( C )闭包.A. 自反B. 传递C. 对称D. 自反和传递9. 若集合A的元素个数为10,则其幂集的元素个数为( A ).A. 1024B. 10C. 100D. 110.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =(A ).A. f?gB. g?fD. g?g0004一、单项选择题(共 10 道试题,共 100 分。
)1. 设函数f:N?N,f(n)=n+1,下列表述正确的是( D ).A. f存在反函数B. f是双射的C. f是满射的D. f 是单射函数2. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为( D ).A. 2B. 3C. 6D. 83. 设集合A={a},则A的幂集为( C ).A. {{a}}B. {a,{a}}C. { ,{a}}D. { ,a}4. 设A、B是两个任意集合,侧A-B = ?? ( B ).A. A=BB. AíBC. AêB5.设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3, 4, 5},则元素3为B的( B ).A. 下界B. 最小上界C. 最大下界D. 最小元6. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( B )个.A. 0B. 2C. 1D. 37. 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( A ).A. {1, 2, 3, 4}B. {1, 2, 3, 5}C. {2, 3, 4, 5}D. {4, 5, 6, 7}8. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的( C )闭包.B. 传递C. 对称D. 自反和传递9. 设集合A = {1, a },则P(A) = ( D ).A. {{1}, {a}}B. { ,{1}, {a}}C. {{1}, {a}, {1, a }}D. { ,{1}, {a}, {1, a }}10. 设A={a,b},B={1,2},C={4,5},从A到B的函数f={, },从B 到C的函数g={<1,5>, <2,4>},则下列表述正确的是( B ).A. f°g ={, }B. g° f ={, }C. f°g ={<5,a >, <4,b >}D. g° f ={<5,a >, <4,b >}0005一、单项选择题(共 10 道试题,共 100 分。
)1. 设函数f:N?N,f(n)=n+1,下列表述正确的是( D ).A. f存在反函数B. f是双射的C. f是满射的D. f 是单射函数2. 设集合A={a},则A的幂集为( C ).B. {a,{a}}C. { ,{a}}D. { ,a}3. 设A={a,b},B={1,2},C={4,5},从A到B的函数f={, },从B 到C的函数g={<1,5>, <2,4>},则下列表述正确的是( B ).A. f°g ={, }B. g° f ={, }C. f°g ={<5,a >, <4,b >}D. g° f ={<5,a >, <4,b >}4. 集合A={1, 2, 3, 4}上的关系R={|x=y且x, y A},则R的性质为( C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反5. 设集合A = {1, a },则P(A) = ( D ).A. {{1}, {a}}B. { ,{1}, {a}}C. {{1}, {a}, {1, a }}D. { ,{1}, {a}, {1, a }}6. 设集合A={1,2,3,4,5},偏序关系£是A上的整除关系,则偏序集上的元素5是集合A的( C ).A. 最大元B. 最小元C. 极大元D. 极小元7. 若集合A={2,a,{ a },4},则下列表述正确的是( D ).A. {a,{ a }}?AB. ??AC. {2}?AD. { a }íA8. 若集合A={ a,{a},{1,2}},则下列表述正确的是( C ).A. {a,{a}} AB. {1,2} AC. {a} AD. A9. 设A、B是两个任意集合,侧A-B = ?? ( B ).A. A=BB. AíBC. AêBD. B=?10.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={| y = x +1},则R= ( A ).A.{<2, 3>, <4, 5>, <6, 7>}B.{<2, 1>, <4, 3>, <6, 5>}C.{<2, 1>, <3, 2>, <4, 3>}D. {<2, 2>, <3, 3>, <4, 6>}0006一、单项选择题(共 10 道试题,共 100 分。