上海市17区县2016届高三第二次模拟数学理试题分类汇编-数列
- 格式:doc
- 大小:1.06 MB
- 文档页数:19
浦东新区二模测试试卷 高三数学2016.4.23、注意:1. 答卷前,考生务必在答题纸上指定位置将学校、姓名、考号填写清楚. 2. 本试卷共有32道试题,满分150分,考试时间130分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.不等式21x >的解为 .2.已知复数z 满足2)1(=+i z (i 为虚数单位),则z = .3.关于,x y 的方程22240x y x y m ++-+=表示圆,则实数m 的取值范围是 . 4.函数sin 3cos y x x =-的最大值为 . 5.若0lim =∞→nn x ,则实数x 的取值范围是 .6.已知一个关于y x ,的二元线性方程组的增广矩阵是⎪⎪⎭⎫⎝⎛-210211,则y x += . 7.双曲线1322=-y x 的两条渐近线的夹角为 . 8.已知1()y f x -=是函数3()f x x a =+的反函数,且1(2)1f -=,则实数a = .9.二项式4)2(x x +的展开式中,含3x 项系数为 .10.定义在R 上的偶函数()y f x =,在),0[+∞上单调递增,则不等式)3()12(f x f <-的解是 .11.如图,已知⊥PA 平面ABC ,AB AC ⊥,BC AP =,︒=∠30CBA ,D 、E 分别是BC 、AP 的中点. 则异面直线AC 与DE 所成角的大小为 .12.若直线l 的方程为0=++c by ax (b a ,不同时为零),则下列命题正确的是 .(1)以方程0=++c by ax 的解为坐标的点都在直线l 上; (2)方程0=++c by ax 可以表示平面坐标系中的任意一条直线; (3)直线l 的一个法向量为),(b a ; (4)直线l 的倾斜角为arctan()ab-.二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.设椭圆的一个焦点为)0,3(,且b a 2=,则椭圆的标准方程为 ( )()A 1422=+y x ()B 1222=+y x ()C 1422=+x y ()D 1222=+x y 14.用1,2,3,4、5组成没有重复数字的三位数,其中是奇数的概率为 ( )()A15 ()B 25 ()C 35 ()D 4515.下列四个命题中,为真命题的是 ( )PABCDE()A 若a b >,则22ac bc > ()B 若a b >,c d >则a c b d ->-()C 若a b >,则22a b >()D 若a b >,则11a b<16.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人.为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为 ( )()A 84 ()B 78 ()C 81 ()D 96 17.等差数列}{n a 的前n 项和为n S ,若17017=S ,1197a a a ++则的值为 ( )()A 10 ()B 20 ()C 25()D 30 18.“直线l 垂直于ABC △的边AB ,AC ”是“直线l 垂直于ABC △的边BC ”的 ( )()A 充分非必要条件 ()B 必要非充分条件 ()C 充要条件()D 既非充分也非必要条件19.函数1, 0()=2ln , >0x x f x xx x ⎧-<⎪⎨⎪-+⎩的零点个数为 ( ) ()A 0 ()B 1 ()C 2 ()D 320.某股民购买一公司股票10万元,在连续十个交易日内,前五个交易日,平均每天上涨5%,后五个交易日内,平均每天下跌4.9%. 则股民的股票赢亏情况(不计其它成本,精确到元)( )()A 赚723元 ()B 赚145元 ()C 亏145元 ()D 亏723元21.已知数列{}n a 的通项公式2,n a n n N *=∈,则5231234201220134345620142015a a a a a a a a a a a a a a a a ++++= ( ) ()A 16096-()B 16104- ()C 16112-()D 16120- 22.如果函数)(x f y =在区间I 上是增函数,而函数xx f y )(=在区间I 上是减函数,那么称函数)(x f y =是区间I 上“缓增函数”,区间I 叫做“缓增区间”. 若函数2321)(2+-=x x x f 是区间I 上“缓增函数”,则“缓增区间”I 为 ( )()A ),1[∞+ ()B ]3,0[ ()C ]1,0[ ()D ]3,1[23.设θ为两个非零向量,a b 的夹角,已知对任意实数t ,||b ta -的最小值为2,则 ( )()A 若θ确定,则||a 唯一确定 ()B 若θ确定,则||b 唯一确定()C 若||a 确定,则θ唯一确定 ()D 若||b 确定,则θ唯一确定24.已知12,x x 是关于x 的方程2(21)0x mx m +-+=的两个实数根,则经过两点211(,)A x x ,222(,)B x x 的直线与椭圆221164x y +=公共点的个数是 ( ) ()A 2 ()B 1()C 0()D 不确定三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)已知函数xxy -+=11lg的定义域为集合A ,集合)1,(+=a a B . 若B A ⊆,求实数a 的取值范围. 26.(本题满分8分)如图所示,圆锥SO 的底面圆半径1||=OA ,其侧面展开图是一个圆心角为32π的扇形,求此圆锥的体积. 27.(本题满分8分)已知直线12y x =与抛物线22(0)y px p =>交于O 、A 两点(F 为抛物线的焦点,O 为坐标原点),若17AF =,求OA 的垂直平分线的方程.28.(本题满分12分,第1小题6分、第2小题6分)在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且c b =,A ∠的平分线为AD ,若.AB AD mAB AC ⋅=⋅(1)当2m =时,求cos A 的值;(2)当(1,3a b ∈时,求实数m 的取值范围.29.(本题满分13分,第1小题6分、第2小题7分)在数列{}n a ,{}n b 中,13a =,15b =,142n n b a ++=,142n n a b ++=(*n N ∈). (1)求数列{}n n b a -、{}n n a b +的通项公式;(2)设n S 为数列{}n b 的前n 项的和,若对任意*n N ∈,都有(4)[1,3]n p S n -∈,求实数p 的取值范围. 30.(本题满分8分)某风景区有空中景点A 及平坦的地面上景点B .已知AB 与地面所成角的大小为60,点A 在地面上的射影为H ,如图.请在地面上选定点M ,使得AB BMAM+达到最大值.31.(本题满分10分,第1小题4分、第2小题6分)设函数x x x f sin )(=(20π≤<x ). (1)设0,0>>y x 且2π<+y x ,试比较)(y x f +与)(x f 的大小;(2)现给出如下3个结论,请你分别指出其正确性,并说明理由.①对任意]2,0(π∈x 都有1)(cos <<x f x 成立;②对任意0,3x π⎛⎫∈ ⎪⎝⎭都有<)(x f !11!9!7!5!31108642x x x x x -+-+-成立; ③若关于x 的不等式k x f <)(在]2,0(π有解,则k 的取值范围是),2(+∞π.32.(本题满分12分,第1小题5分、第2小题7分)已知三角形ABC △的三个顶点分别为)0,1(-A ,)0,1(B ,(0,1)C .(1)动点P 在三角形ABC △的内部或边界上,且点P 到三边,,AC AB BC 的距离依次成等差数列,求点P 的轨迹方程;(2)若0a b <≤,直线l :y ax b =+将ABC △分割为面积相等的两部分,求实数b 的取值范围.浦东新区2015学年度第一学期期末质量测试高三数学参考答案及评分标准一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,O否则一律得零分.1.0x >; 2.i -1; 3.(,5)-∞; 4.2; 5.)1,1(-; 6.6; 7.3π; 8.1; 9.24; 10.(1,2)-; 11.42arccos(7arctan ); 12.(1)、(2)、(3). 二、选择题(本大题共有12题,满分36分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分. 13.()A ; 14.()C ; 15.()C ; 16.()B ; 17.()D ; 18.()A ; 19.()C ; 20.()D ; 21.()A ; 22.()D ; 23.()B ; 24.()A .三、解答题(本大题共有8题,满分78分)解答下列各题必须写出必要的步骤. 25.(本题满分7分)解:集合)1,1(-=A ,……………………………………………………………………3分因为B A ⊆,所以 ⎩⎨⎧≤+-≥111a a ,01≤≤-⇒a .…………………………………6分即[]0,1-∈a . ………………………………………………………………………7分 26.(本题满分8分)解:因为1||=OA ,所以弧AB 长为π2,……………………………………………2分又因为32π=∠BSA ,则有ππ232=⋅SA ,所以3=SA .……………………4分在SOA Rt ∆中,1||=OA.h SO ==22=, …………………6分所以圆锥的体积ππ322312==h r V . ………………………………………8分27.(本题满分8分)解:OA 的方程为:12y x =. 由2212y px y x⎧=⎪⎨=⎪⎩ 得280x px -=, 所以(8,4)A p p ,……………………………………………………………………3分 由17AF =,可求得2p =.………………………………………………………5分 所以(16,8)A ,AO 中点(8,4)M .…………………………………………………6分 所以OA 的垂直平分线的方程为:2200x y +-=.………………………………8分28.(本题满分12分,第1小题6分、第2小题6分) 解:(1)由.b c = 又2.AB AD AB AC ⋅=⋅ 得A bc AAb b cos 22cos)2cos (⋅=⋅………2分 2cos 2cos 2AA ∴=…………………………………………………………………4分 1cos 2cos .2A A += 1cos .3A ∴= ……………………………………………6分(2)由.AB AD mAB AC ⋅=⋅ 得1cos 21A m =-;…………………………………8分又222cos 2b c a A bc +-==222221122b a a b b -⎛⎫=-∈ ⎪⎝⎭11(,)32,…………………10分 所以111(,)2132m ∈-,3(,2)2m ∴∈.……………………………………………12分29.(本题满分13分,第1小题6分、第2小题7分)解:(1)因为122n n b a +=+,122n n a b +=+,111()2n n n n b a b a ++-=--,即数列{}n n b a -是首项为2,公比为12-的等比数列,所以112()2n n n b a --=⋅-.…………………………………………………………3分111()42n n n n a b a b +++=++,1118(8)2n n n n a b a b +++-=+-,1180a b +-=,所以,当*n N ∈时,80n n a b +-=,即8n n a b +=.…………………………6分(2)由1812()2n n n n n a b b a -+=⎧⎪⎨-=⋅-⎪⎩ 得114()2n n b -=+-,214[1()]32n n S n =+--,21(4)[1()]32n n p p S n -=--,211[1()]332n p ≤--≤, 因为11()02n -->,所以1231131()1()22nnp ≤≤----.………………………8分 当n 为奇数时,11111()1()22n n=--+随n 的增大而增大, 且nnp )21(1332)21(11+≤≤+,2321≤≤p ,323≤≤p ;………………………10分 当n 为偶数时,11111()1()22n n=---随n 的增大而减小, 且n n p )21(1332)21(11-≤≤-,33234≤≤p ,292≤≤p . 综上,32≤≤p .…………………………………………………………………13分30.(本题满分8分)解:因为AB 与地面所成的角的大小为60,AH 垂直于地面,BM 是地面上的直线,所以60,60≥∠=∠ABM ABH .∵,sin sin sin BAMA BM M AB ==…………………………………………………………2分∴()BM B M B A M AM BM AB sin sin sin sin sin sin ++=+=+sin sin cos cos sin 1cos sin cos sin sin M B M B M BM M B B +++==+22cos 2sin cos cot sin cos sin 2B B M M M M B =+=+……………………………4分 cot 30sin cos 3sin cos 2sin(30).M M M M M ≤+=+=+……………6分当60=∠=∠B M 时,AB BMAM+达到最大值,此时点M 在BH 延长线上,HM BH =处.……………………………………8分31.(满分10分,第1小题4分、第2小题6分) 解:(1)方法一(作商比较):显然0)(>x f ,0)(>+y x f ,于是x y x x yx x y x x x x y x y x x f y x f sin sin sin cos cos sin sin )sin()()(++=⋅++=+. ………1分因为x x y x x x x y sin cos sin 00sin 1cos 0<<⇒⎭⎬⎫><<.……………………………2分又x y y x x x x x x x y y sin sin cos 0sin cos 0tan 0sin 0<<⇒⎭⎬⎫<<⇒<<<<.……3分 所以x y x x y x x y x x sin sin sin cos cos sin 0+<+<. 即)()(1)()(x f y x f x f y x f <+⇒<+.…………………………………………4分 方法二(作差比较):因为0)1(cos sin 0sin 1cos 0<-⇒⎭⎬⎫><<y x x x x y .…………………………………1分又0sin sin cos sin cos 0tan 0sin 0<-⇒⎭⎬⎫<<⇒<<<<x y y x x x x x x x y y .……2分 xy x xy x y x x x f y x f )(sin )()sin()()(++-+=-+0)()sin sin cos ()1(cos sin <+-+-=xy x x y y x x y x x .即)()(x f y x f <+.………………………………………………………………4分(2)结论①正确,因20π<<x .xx x x x x cos 1sin 1tan sin 0<<⇒<<<⇒. 1)(cos <<⇒x f x .………………………………6分结论②错误,举反例: 设=)(x g !11!9!7!5!31108642x x x x x -+-+-.(利用计算器)010*********.3)5.0()5.0(14>⨯=--g f 等………………………………8分(010493766163.3)6.0()6.0(13>⨯=--g f ,010*********.1)1()1(10>⨯=--g f ,0)9.0()9.0(,0)8.0()8.0(,0)7.0()7.0(>->->-g f f f g f 均可).结论③正确,由)()(x f y x f <+知xxx f sin )(=在区间]2,0(π上是减函数.所以ππ2)()2()(≥⇒≥x f f x f ,又1)(<x f ,所以xxx f sin )(=的值域为)1,2[π.要使不等式k x f <)(在]2,0(π有解,只要π2>k 即可.………………………10分32.(满分12分,第1小题5分、第2小题7分) 解:(1)法1:设点P 的坐标为(),x y ,则由题意可知:11222x y x y y -++-=,由于10x y -+≥,10x y +-≤,0y ≥,…2分222y =,…………………………………………………4分 化简可得:21y =2222x ≤≤5分 法2:设点P 到三边,,AC AB BC 的距离分别为123,,d d d ,其中2d y =,||2|2|2AB AC BC ===.所以 1313221221d d yy y +=⎧⎪⇒=⎨+=⎪………4分 于是点P 的轨迹方程为12-=y (2222-≤≤-x )……………………5分 (2)由题意知道01a b <≤<,情况(1)b a =.直线l :(1)y a x =+,过定点()1,0A -,此时图像如右下: 由平面几何知识可知,直线l 过三角形的重心10,3⎛⎫⎪⎝⎭,从而13b a ==.………………………………………………7分情况(2)b a >.此时图像如右下:令0y =得1bx a=-<-,故直线l 与两边,BC AC 分别相交,设其交点分别为,D E ,则直线l 与三角形两边的两个交点坐标()11,D x y 、()22,E x y 应该满足方程组:()()110y ax by x x y =+⎧⎪⎨--+-=⎪⎩. 因此,1x 、2x 是一元二次方程:()()()()()()11110a x b a x b -+-++-=的两个根.即()22212(1)(1)0a x a b x b -+-+-=, 由韦达定理得:()212211b x x a -=-而小三角形与原三角形面积比为12x x -,即1212x x =-.所以()221112b a -=--,()22112a b =--,亦即2112a b -=-再代入条件b a >,解得103a <<,从而得到113b ⎛⎫∈ ⎪ ⎪⎝⎭.……………………………………………………………11分综合上述(1)(2)得:113b ⎛⎤∈ ⎥ ⎝⎦.……………………………………………12分解法2:由题意知道01a b <≤< 情况(1)b a =.直线l 的方程为:(1)y a x =+,过定点()1,0A -, 由平面几何知识可知,直线l 应该过三角形的重心10,3⎛⎫ ⎪⎝⎭,从而13b a ==.……………………………………………………………………7分 情况(2)b a >.设直线l :y ax b =+分别与边[]:1,0,1BC y x x =-+∈,边[]:1,1,0AC y x x =+∈-的交点分别为点,D E , 通过解方程组可得:1(,)11b a b D a a -+++,1(,)11b a bE a a ----,又点(0,1)C , ∴0111112111111CDE ba b S a a b a ba a ∆-+=++----=12,同样可以推出()22112a b --=.亦即1b =-b a >,解得103a <<,从而得到1123b ⎛⎫∈- ⎪⎝⎭.………………………………………………………11分综合上述(1)(2)得:1123b ⎛⎤∈-⎥⎝⎦.………………………………………12分解法3:情况(1)b a =.直线l 的方程为:(1)y a x =+,过定点()1,0A -, 由平面几何知识可知,直线l 过三角形的重心10,3⎛⎫ ⎪⎝⎭,从而13b a ==.………………………………………………………………………7分 情况(2)b a >.令0y =,得1bx a=-<-,故直线l 与两边,BC AC 分别相交,设其交点分别为,D E ,当a 不断减小时,为保持小三角形面积总为原来的一半,则b 也不断减小.当//DE AB 时,CDE ∆与CBA ∆相似,由面积之比等于相似比的平方.可知2211=-b ,所以12b >-,综上可知1123b ⎛⎤∈- ⎥ ⎝⎦.…………………………………………………………12分2015年1月上海市奉贤区高三数学(理科)一模试卷及参考答案一、填空题(每空正确3分,满分36分)1.已知全集U R =,集合{|21}P x x =-≥,则=P .2.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽E D ACB样的方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量n = .3.设41:<≤x α,m x ≤:β,若α是β的充分条件,则实数m 的取值范围是 .4.若双曲线122=-ky x 的一个焦点是(3,0),则实数k = . 5.已知圆222:C x y r +=与直线34100x y -+=相切,则圆C 的半径r = .6.若i +1是实系数一元二次方程02=++q px x 的一个根,则=+q p .7.盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和为5”的概率是 . 8.函数⎥⎦⎤⎢⎣⎡-∈=2,2,sin ππx x y 的反函数为 . 9.在ABC∆中,已知14==,且ABC ∆的面积S =,则AC AB ⋅的值为 . 10.已知⎪⎪⎭⎫⎝⎛-βαcos 200sin 为单位矩阵,且,2παβπ⎡⎤∈⎢⎥⎣⎦、,则tan()αβ+= . 11.如图,在矩形ABCD 中,E 为边AD 的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (E 在线段AD 上).由两圆弧EB 、EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为 .12.定义函数348122()1()222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[]8,1内的所有零点的和为 .二、单项选择题(每题正确3分,满分36分)13.正方体中两条面对角线的位置关系是 ( )A .平行B .异面C .相交D .平行、相交、异面都有可能14.下列命题中正确的是 ( ) A .任意两复数均不能比较大小 B .复数z 是实数的充要条件是z z =C .复数z 是纯虚数的充要条件是0Imz =D .1i +的共轭复数是1i -15.与函数y x =有相同图像的一个函数是 ( )A .y =B .log (01)a x y a a a =>≠且C .2x y x= D .log (01)xa y a a a =>≠且16.下列函数是在(0,1)上为减函数的是 ( )A .cos y x =B .2xy = C .sin y x = D .x y tan =17.在空间中,设m 、n 是不同的直线,α、β是不同的平面,且m α⊂≠,n β⊂≠,则下列命题正确的是 ( )A .若n m //,则βα//B .若m 、n 异面,则α、β平行C .若m 、n 相交,则α、β相交D .若n m ⊥,则βα⊥18.设),(b a P 是函数3)(x x f =图像上任意一点,则下列各点中一定..在该图像上的是 ( ) A .),(1b a P - B .),(2b a P -- C .),(3b a P - D .),(4b a P -19.设椭圆)0(12222>>=+b a by a x 的左、右焦点分别为1F 、2F ,上顶点为B ,若2122BF F F ==,则该椭圆的方程为 ( ) A .13422=+y x B .1322=+y x C .1222=+y x D .1422=+y x 20.在二项式()612+x 的展开式中,系数最大项的系数是 ( )A .20B .160C .240D .192 21.已知数列{}n a 的首项11a =,*13()n n a S n N +=∈,则下列结论正确的是 ( )A .数列是{}n a 等比数列B .数列23n a a a ⋅⋅⋅,,,是等比数列 C .数列是{}n a 等差数列 D .数列23n a a a ⋅⋅⋅,,,是等差数列 22.在ABC ∆中,C B C B A sin sin sin sin sin 222-+≤,则角A 的取值范围是 ( )A .06π⎛⎤ ⎥⎝⎦,B .,6ππ⎡⎫⎪⎢⎣⎭C .03π⎛⎤ ⎥⎝⎦,D .,3ππ⎡⎫⎪⎢⎣⎭23.对于使()f x M ≤成立的所有常数M 中,我们把M 的最小值叫做()f x 的上确界,若a 、b R +∈且1a b +=,则122a b--的上确界为 ( )A .92- B .92 C .41 D .4-24.定义两个实数间的一种新运算“*”:*lg(1010)x yx y =+,x 、y R ∈。
2016年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(理科)一、填空题1.(5分)设集合A={x||x|<2,x∈R},B={x|x2﹣4x+3≥0,x∈R},则A∩B=.2.(5分)已知i为虚数单位,复数z满足=i,则|z|=.3.(5分)设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是.4.(5分)计算:=.5.(5分)在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y 轴旋转一周,所得几何体的体积为.6.(5分)已知sin2θ+sinθ=0,θ∈(,π),则tan2θ=.7.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是.8.(5分)在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px(p>0)的焦点,则抛物线C的方程为.9.(5分)直线(t为参数)与曲线(θ为参数)的公共点的坐标为.10.(5分)记的展开式中第m项的系数为b m,若b3=2b4,则n=.11.(5分)从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点所构成的三角形的面积,则其数学期望Eξ=.12.(5分)若数列{a n}是正项数列,且++…+=n2+3n(n∈N*),则++…+=.13.(5分)甲、乙两人同时参加一次数学测试,共10道选择题,每题均有四个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有试题,经比较,他们只有2道题的选项不同,如果甲乙的最终得分的和为54分,那么乙的所有可能的得分值组成的集合为.14.(5分)已知a>0,函数f(x)=x﹣(x∈[1,2])的图象的两个端点分别为A、B,设M是函数f(x)图象上任意一点,过M作垂直于x轴的直线l,且l与线段AB交于点N,若|MN|≤1恒成立,则a的最大值是.二、选择题15.(5分)sin x=0是cos x=1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.(5分)下列命题正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l217.(5分)已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1B.2C.D.18.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4取值范围是()A.(60,96)B.(45,72)C.(30,48)D.(15,24)三、解答题19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点(1)求证:BC⊥平面ACC1A1;(2)求二面角B1﹣CD﹣C1的大小(结果用反三角函数值表示)20.(12分)已知函数f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1(ω>0),x∈R,且函数的最小正周期为π:(1)求函数f(x)的解析式;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,•=,且a+c=4,试求b的值.21.(12分)定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)设f(x)=,判断f(x)在[﹣,]上是否有有界函数,若是,说明理由,并写出f(x)上所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.22.(12分)如图,设F是椭圆+=1的下焦点,直线y=kx﹣4(k>0)与椭圆相交于A、B两点,与y轴交于点P(1)若=,求k的值;(2)求证:∠AFP=∠BF0;(3)求面积△ABF的最大值.23.(12分)已知正项数列{a n},{b n}满足:对任意正整数n,都有a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,且a1=10,a2=15.(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列{a n},{b n}的通项公式;(Ⅲ)设,如果对任意正整数n,不等式恒成立,求实数a的取值范围.2016年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(理科)参考答案与试题解析一、填空题1.(5分)设集合A={x||x|<2,x∈R},B={x|x2﹣4x+3≥0,x∈R},则A∩B=(﹣2,1].【解答】解:A={x||x|<2,x∈R}={x|﹣2<x<2},B={x|x2﹣4x+3≥0,x∈R}={x|x≥3或x≤1},则A∩B={x|﹣2<x≤1},故答案为:(﹣2,1].2.(5分)已知i为虚数单位,复数z满足=i,则|z|=1.【解答】解:设z=a+bi,则==i,∴1﹣a﹣bi=﹣b+(a+1)i,∴,解得,故z=﹣i,|z|=1,故答案为:1.3.(5分)设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是(3,1).【解答】解:∵函数f(x)=a x﹣1+2经过定点(1,3),∴函数f(x)的反函数的图象经过定点P(3,1),故答案为:(3,1).4.(5分)计算:=.【解答】解:===.故答案为:.5.(5分)在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为.【解答】解:由题意可知:V=,∴V=π(y3﹣),=.方法二:由题意可知绕y轴旋转,形成的是以1为半径,2为高的圆锥,则V=•π×12×2=,故答案为.6.(5分)已知sin2θ+sinθ=0,θ∈(,π),则tan2θ=.【解答】解:∵sin2θ+sinθ=0,⇒2sinθcosθ+sinθ=0,⇒sinθ(2cosθ+1)=0,∵θ∈(,π),sinθ≠0,∴2cosθ+1=0,解得:cosθ=﹣,∴tanθ=﹣=﹣,∴tan2θ==.故答案为:.7.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是[﹣2,2].【解答】解:当x≥0时,由f(x)=2x﹣4=0得x=2,且当x≥0时,函数f(x)为增函数,∵f(x)是偶函数,∴不等式f(x)≤0等价为f(|x|)≤f(2),即|x|≤2,即﹣2≤x≤2,即不等式的解集为[﹣2,2],故答案为:[﹣2,2].8.(5分)在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px(p>0)的焦点,则抛物线C的方程为y2=4x.【解答】解:∵点A(1,1),依题意我们容易求得直线的方程为x+y﹣1=0,把焦点坐标(,0)代入可求得焦参数p=2,从而得到抛物线C的方程为:y2=4x.故答案为:y2=4x.9.(5分)直线(t为参数)与曲线(θ为参数)的公共点的坐标为(0,1),(,﹣2).【解答】解:先求参数t得直线的普通方程为2x+y=1,即y=1﹣2x消去参数θ得曲线的普通方程为y2=1+2x,将y=1﹣2x代入y2=1+2x,得(1﹣2x)2=1+2x,即1﹣4x+4x2=1+2x,则4x2=6x,得x=0或x=,当x=0时,y=1,当x=时,y=1﹣2×=1﹣3=﹣2,即公共点到坐标为(0,1),(,﹣2)故答案为:(0,1),(,﹣2)10.(5分)记的展开式中第m项的系数为b m,若b3=2b4,则n=5.【解答】解:根据二项式定理,可得,根据题意,可得2n﹣2•∁n2=2×2n﹣3•∁n3,解得n=5,故答案为5.11.(5分)从所有棱长均为2的正四棱锥的5个顶点中任取3个点,设随机变量ξ表示这三个点所构成的三角形的面积,则其数学期望Eξ=.【解答】解:如图所有棱长均为2的正四棱锥S﹣ABCD中,ABCD是边长为2的正方形,SO⊥底面ABCD,SO=AO=,S△SAB=S△SBC=S△SCD=S△SAD==,S△ABD=S△BCD=S△ADC=S△ABD==2,S△SBD=S△SAC==2,∴ξ的可能取值为,P(ξ=)=,P(ξ=2)=,Eξ==.故答案为:.12.(5分)若数列{a n}是正项数列,且++…+=n2+3n(n∈N*),则++…+=2n2+6n.【解答】解:令n=1,得=4,∴a 1=16.当n≥2时,++…+=(n﹣1)2+3(n﹣1).与已知式相减,得=(n2+3n)﹣(n﹣1)2﹣3(n﹣1)=2n+2,∴a n=4(n+1)2,n=1时,a1适合a n.∴a n=4(n+1)2,∴=4n+4,∴++…+==2n2+6n.故答案为2n2+6n13.(5分)甲、乙两人同时参加一次数学测试,共10道选择题,每题均有四个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有试题,经比较,他们只有2道题的选项不同,如果甲乙的最终得分的和为54分,那么乙的所有可能的得分值组成的集合为{24,27,30}.【解答】解:若甲全对,则乙的得分为54﹣3×10=24,则此时乙做对了8道题,则甲乙恰有2道题的选项不同,若乙全对,则甲的得分为54﹣3×10=24,则此时甲做对了8道题,则甲乙恰有2道题的选项不同,若甲做错了一道,则乙的得分为54﹣3×9=27,则此时乙做对了9道题,即甲乙错的题目不是同一道题,故乙的得分为{24,27,30},故答案为{24,27,30}.14.(5分)已知a>0,函数f(x)=x﹣(x∈[1,2])的图象的两个端点分别为A、B,设M是函数f(x)图象上任意一点,过M作垂直于x轴的直线l,且l与线段AB交于点N,若|MN|≤1恒成立,则a的最大值是6+4.【解答】解:∵f(x)=x﹣(x∈[1,2]),a>0,∴A(1,1﹣a),B(2,2﹣)∴直线l的方程为y=(1+)(x﹣1)+1﹣a设M(t,t﹣)∴N(t,(1+)(t﹣1)+1﹣a)∵|MN|≤1恒成立∴|(1+)(t﹣1)+1﹣a﹣(t﹣)|≤1恒成立∴|a|≤1∵g(t)=t2﹣3t+2,在t∈[1,2]上小于等于0恒成立∴﹣a≤1①t=1或t=2时,0≤1恒成立.②t∈(1,2)时,a≤=∴由基本不等式得:a≤=4+6此时t=∴a的最大值为6+4二、选择题15.(5分)sin x=0是cos x=1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若sin x=0,则x=kπ,k∈Z,此时cos x=1或cos x=﹣1,即充分性不成立,若cos x=1,则x=2kπ,k∈Z,此时sin x=0,即必要性成立,故sin x=0是cos x=1的必要不充分条件,故选:B.16.(5分)下列命题正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l2【解答】解:对于A,若直线l1∥平面α,直线l2∥平面α,则l1与l2可能平行,可能相交,也可能异面,故A错误.对于B,若直线l与平面α相交于O点,在交点两侧各取A,B两点使得OA=OB,则A,B到平面α的距离相等,但直线l与α不平行,故B错误.对于C,当直线l⊂α或l∥α时,直线l与平面α所成的角为0,当l⊥α时,直线l与平面α所成的角为,故C错误.对于D,由定理“垂直于同一个平面的两条直线平行“可知D正确.故选:D.17.(5分)已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1B.2C.D.【解答】解:由题意可得•=0,可得|+|==,(﹣)•(﹣)=2+•﹣•(+)=||2﹣||•|+|cos<(+,>=0,即为||=cos<+,>,当cos<+,>=1即+,同向时,||的最大值是.故选:C.18.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则x1x2x3x4取值范围是()A.(60,96)B.(45,72)C.(30,48)D.(15,24)【解答】解:函数f(x)的图象如下图所示:若满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,则0<x1<1,1<x1<3,则log3x1=﹣log3x2,即log3x1+log3x2=log3x1x2=0,则x1x2=1,同时x3∈(3,6),x4∈(12,15),∵x3,x4关于x=9对称,∴=9,则x3+x4=18,则x4=18﹣x3,则x1x2x3x4=x3x4=x3(18﹣x3)=﹣x32+18x3=﹣(x3﹣9)2+81,∵x3∈(3,6),∴x3x4∈(45,72),即x1x2x3x4∈(45,72),故选:B.三、解答题19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点(1)求证:BC⊥平面ACC1A1;(2)求二面角B1﹣CD﹣C1的大小(结果用反三角函数值表示)【解答】证明:(1)∵底面△ABC是等腰直角三角形,且AC=BC∴AC⊥BC,∵CC1⊥平面A1B1C1,∴CC1⊥BC,∵AC∩CC1=C,∴BC⊥平面ACC1A1.解:(2)以C为原点,直线CA,CB,CC1为x,y,z轴,建立空间直角坐标系,则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1),由(1)得=(0,2,0)是平面ACC1A1的一个法向量,=(0,2,2),=(2,0,1),设平面B1CD的一个法向量=(x,y,z),则,取x=1,得=(1,2,﹣2),设二面角B1﹣CD﹣C1的平面角为θ,则cosθ===,由图形知二面角B1﹣CD﹣C1的大小是锐角,∴二面角B1﹣CD﹣C1的大小为arccos.20.(12分)已知函数f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1(ω>0),x∈R,且函数的最小正周期为π:(1)求函数f(x)的解析式;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,•=,且a+c=4,试求b的值.【解答】解:(1)f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1==.∵T=,∴ω=2.则f(x)=2sin(2x)﹣1;(2)由f(B)==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cos B=,∴ac=3.又a+c=4,∴a2+c2=(a+c)2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cos B=7.则b=.21.(12分)定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)设f(x)=,判断f(x)在[﹣,]上是否有有界函数,若是,说明理由,并写出f(x)上所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.【解答】解:(1)f(x)==1﹣,则f(x)在[﹣,]上是增函数;故f(﹣)≤f(x)≤f();故﹣1≤f(x)≤;故|f(x)|≤1;故f(x)是有界函数;故f(x)上所有上界的值的集合为[1,+∞);(2)∵函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,∴|g(x)|≤3在[0,2]上恒成立;即﹣3≤g(x)≤3,∴﹣3≤1+2x+a•4x≤3,∴﹣﹣≤a≤﹣;令t=,则t∈[,1];故﹣4t2﹣t≤a≤2t2﹣t在[,1]上恒成立;故(﹣4t2﹣t)max≤a≤(2t2﹣t)min,t∈[,1];即﹣≤a≤﹣;故实数a的取值范围为[﹣,﹣].22.(12分)如图,设F是椭圆+=1的下焦点,直线y=kx﹣4(k>0)与椭圆相交于A、B两点,与y轴交于点P(1)若=,求k的值;(2)求证:∠AFP=∠BF0;(3)求面积△ABF的最大值.【解答】解:(1)联立,得(3k2+4)x2﹣24kx+36=0,∵直线y=kx﹣4(k>0)与椭圆相交于A、B两点,∴△=144(k2﹣4)>0,即k>2或k <﹣2,设A(x1,y1),B(x2,y2),则,,∵,∴x2=2x1,代入上式,解得k=.证明:(2)由图形得要证明∠AFP=∠BFO,等价于证明直线AF与直线BF的倾斜角互补,即等价于k AF+k BF=0,k AF+k BF=+==2k﹣3()=2k﹣=2k﹣2k=0,∴∠AFP=∠BFO.解:(3)∵k>2或k<﹣2,∴S△ABF=S△PBF﹣S△P AF===.令t=,则t>0,3k2+4=3t2+16,∴S△ABF===≤=,当且仅当3t=,即t2=,k=取等号,∴△ABF面积的最大值为.23.(12分)已知正项数列{a n},{b n}满足:对任意正整数n,都有a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,且a1=10,a2=15.(Ⅰ)求证:数列是等差数列;(Ⅱ)求数列{a n},{b n}的通项公式;(Ⅲ)设,如果对任意正整数n,不等式恒成立,求实数a的取值范围.【解答】解:(Ⅰ)由已知,得2b n=a n+a n+1①,a n+12=b n•b n+1②.由②得③.将③代入①得,对任意n≥2,n∈N*,有.即.∴是等差数列.(4分)(Ⅱ)设数列的公差为d,由a1=10,a2=15.经计算,得.∴.∴.∴,.(9分)(Ⅲ)由(1)得.∴.不等式化为.即(a﹣1)n2+(3a﹣6)n﹣8<0.设f(n)=(a﹣1)n2+(3a﹣6)n﹣8,则f(n)<0对任意正整数n恒成立.当a﹣1>0,即a>1时,不满足条件;当a﹣1=0,即a=1时,满足条件;当a﹣1<0,即a<1时,f(n)的对称轴为,f(n)关于n递减,因此,只需f(1)=4a﹣15<0.解得,∴a<1.综上,a≤1.(14分)。
上海2013届高三理科数学最新试题精选(13份含16区二模)分类汇编5:数列姓名____________班级___________学号____________分数______________一、选择题1 .(上海市奉贤区2013年高考二模数学(理)试题 )数列{}n a 前n 项和为n S ,已知115a =,且对任意正整数,m n ,都有m n m n a a a +=⋅,若n S a <恒成立,则实数a 的最小值为 ( )A .14B .34C .43D .42 .(上海市八校2013届高三下学期联合调研考试数学(理)试题)设等比数列{}n a 的前n项和为n S ,则“10a >”是“32S S >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 二、填空题 3 .(四区(静安杨浦青浦宝山)联考2012学年度第二学期高三(理))给出30行30列的数表A :⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛1074216183150117216342720131832721159150201510511713951ΛΛΛΛΛΛΛΛΛΛΛ,其特点是每行每列都构成等差数列,记数表主对角线上的数10743421101,,,,,Λ按顺序构成数列{}n b ,存在正整数)1(t s t s <<、使t s b b b ,,1成等差数列,试写出一组),(t s 的值_____________.4 .(上海市十二校2013届高三第二学期联考数学(理)试题 )已知数列{}n a 满足134n n a a ++= (n∈N*)且1a =9,其前n 项和为S n ,则满足不等式|S n ―n―6|<1251的最小整数n 是 ( )A.5B.6C.7D.85 .(上海市十二校2013届高三第二学期联考数学(理)试题 )对于自然数*∈N i ,设)1(3,--=k i a k i (1,2,3,)k =⋅⋅⋅,如6)14(334,3-=--=a ,对于自然数m n ,,当2,2≥≥m n 时,设n i i i i a a a a n i b ,3,2,1,),(+⋅⋅⋅+++=,(,)(1,)S m n b n =+(2,)b n +),(),3(n m b n b +⋅⋅⋅+,则=)6,10(S ____________.6 .(上海市十二校2013届高三第二学期联考数学(理)试题 )设n S 为等差数列{}n a 的前n 项和,若5,10105-==S S ,则公差为____.7 .(上海市黄浦区2013年高考二模理科数学试题)等差数列{}n a 的前10项和为30,则14710a a a a +++=___________.8 .(上海市虹口区2013年高考二模数学(理)试题 )设)2(log 1+=+n a n n )(*∈N n ,称k a a a a Λ321为整数的k 为“希望数”,则在)2013,1(内所有“希望数”的个数为___________.9 .(上海市虹口区2013年高考二模数学(理)试题 )数列{}n a 的通项2sinπn n a n ⋅=,前n 项和为n S ,则=13S ____________.10.(上海市奉贤区2013年高考二模数学(理)试题 )设正项数列{}n a 的前n 项和是n S ,若{}n a 和{n S }都是等差数列,且公差相等, 则=+d a 1________11.(上海市长宁、嘉定区2013年高考二模数学(理)试题 )(理)设n S 为数列{}n a 的前n项和,若不等式21222ma nS a n n≥+对任意等差数列{}n a 及任意正整数n 都成立,则实数m的最大值为._______12.(上海市八校2013届高三下学期联合调研考试数学(理)试题)设等差数列{}n a 满足:公差*d N ∈,*n a N ∈,且{}n a 中任意两项之和也是该数列中的一项. 若513a =,则d的所有可能取值之和为_______.13.(上海市八校2013届高三下学期联合调研考试数学(理)试题)已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d =_____.14.(2013年上海市高三七校联考(理))设等差数列}{n a 的公差为正,若212313a a a a ==-,,则456a a a ++=____.15.(2013届浦东二模卷理科题)数列}{n a 满足1241+-=+n n n a a a (*∈N n ).①存在1a 可以生成的数列}{n a 是常数数列; ②“数列}{n a 中存在某一项6549=k a ”是“数列}{n a 为有穷数列”的充要条件; ③若{}n a 为单调递增数列,则1a 的取值范围是)2,1()1,(Y --∞;④只要k k k k a 232311--≠+,其中*∈N k ,则n n a ∞→lim 一定存在; 其中正确命题的序号为____________.16.(2013届闵行高三二模模拟试卷(数学)理科)公差为d ,各项均为正整数的等差数列{}n a 中,若11,73n a a ==,则n d +的最小值等于_________________. 三、解答题17.(上海徐汇、松江、金山区2013年高考二模理科数学试题)已知数列{}*()n a n N ∈的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为0,公差为12的等差数列. (1)求数列{}n a 的通项公式; (2)设()*42()15n an b n N =⋅-∈,对任意的正整数k ,将集合{}21221,,k k k b b b -+中的三个元素排成一个递增的等差数列,其公差为k d ,求证:数列{}k d 为等比数列; (3)对(2)题中的k d ,求集合{}1,k k x d x d x Z +<<∈的元素个数.18.(四区(静安杨浦青浦宝山)联考2012学年度第二学期高三(理))本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a 的前n 项和为n S ,且满足a a =1 (3≠a ),nn n S a 31+=+,设n n n S b 3-=,*∈N n .(1)求证:数列{}n b 是等比数列;(2)若1+n a ≥n a ,*∈N n ,求实数a 的最小值;(3)当4=a 时,给出一个新数列{}n e ,其中⎩⎨⎧≥==2,1,3n b n e nn ,设这个新数列的前n项和为n C ,若n C 可以写成p t (*∈N p t ,且1,1>>p t )的形式,则称n C 为“指数型和”.问{}n C 中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.19.(上海市闸北区2013届高三第二学期期中考试数学(理)试卷)本题满分16分,第1小题满分8分,第2小题满分8分设数列{}n a 与}{n b 满足:对任意*∈N n ,都有()21nn n ba b S -=-,12-⋅-=n n n n a b .其中n S 为数列{}n a 的前n 项和.(1)当2b =时,求数列{}n a 与}{n b 的通项公式; (2)当2≠b 时,求数列{}n a 的前n 项和n S .20.(上海市十二校2013届高三第二学期联考数学(理)试题 )(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.如果存在常数a 使得数列{}n a 满足:若x 是数列{}n a 中的一项,则a x -也是数列{}n a 中的一项,称数列{}n a 是关于常数a 的“兑换数列”.(1) 若数列:1,2,4,(4)m m >是关于a 的“兑换数列”,求m 和a 的值;(2) 已知项数为0n (03n ≥)有限..等差数列{}n b ,其所有项的和是B ,求证:数列{}n b 是关于常数2Bn 的“兑换数列”. (3) 对于一个不少于3项,且各项皆为正整数的递增等比数列{}n c ,是否是“兑换数列”?若是,请求出常数a 的值;否则请说明理由. 21.(上海市普陀区2013届高三第二学期(二模)质量调研数学(理)试题)本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分8分.对于任意的*N n ∈,若数列}{n a 同时满足下列两个条件,则称数列}{n a 具有“性质m ”:①122++<+n n n a a a ; ②存在实数M ,使得M a n ≤成立. (1)数列}{n a 、}{n b 中,n a n =、6sin 2πn b n =(5,4,3,2,1=n ),判断}{n a 、}{n b 是否具有“性质m ”;(2)若各项为正数的等比数列}{n c 的前n 项和为n S ,且413=c ,473=S ,证明:数列}{n S 具有“性质m ”,并指出M 的取值范围;(3)若数列}{n d 的通项公式nn n n t d 21)23(+-⋅=(*N n ∈).对于任意的3≥n (*N n ∈),数列}{n d 具有“性质m ”,且对满足条件的M 的最小值90=M ,求整数t 的值 22.(上海市黄浦区2013年高考二模理科数学试题)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当n a 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a +-=. (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值;(2)设123m a =+(3m >且m ∈N),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+;(3)若1a 为正整数,求证:当211log n a >+(n ∈N)时,都有0n a =.23.(上海市虹口区2013年高考二模数学(理)试题 )已知复数i b a z n n n ⋅+=,其中R a n ∈,R b n ∈,*∈N n ,i 是虚数单位,且i z z z n n n 221++=+,i z +=11.(1)求数列{}n a ,{}n b 的通项公式; (2)求和:①13221++++n n a a a a a a Λ;②1154433221)1(++-++-+-n n n b b b b b b b b b b Λ.24.(上海市奉贤区2013年高考二模数学(理)试题 )已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1,a 3;(2)求证:数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.25.(上海市长宁、嘉定区2013年高考二模数学(理)试题 )(本题满分18分,第1小题满分4分,第2小题满分8分,第3小题6分)(理)已知三个互不相等的正数a ,b ,c 成等比数列,公比为q .在a ,b 之间和b ,c 之间共插入n 个数,使这3+n 个数构成等差数列. (1)若1=a ,在b ,c 之间插入一个数,求q 的值;(2)设c b a <<,4=n ,问在a ,b 之间和b ,c 之间各插入几个数,请说明理由; (3)若插入的n 个数中,有s 个位于a ,b 之间,个位于b ,c 之间,试比较s 与的大小.26.(上海市八校2013届高三下学期联合调研考试数学(理)试题)(本题满分18分;第(1)小题4分,第(2)小题6分,第(3)小题8分)对于数列123:,,(,1,2,3)i A a a a a i ∈=N ,定义“T 变换”:T 将数列A 变换成数列123:,,B b b b ,其中1||(1,2)i i i b a a i +=-=,且331||b a a =-.这种“T 变换”记作()B T A =.继续对数列B 进行“T 变换”,得到数列123:,,C c c c ,依此类推,当得到的数列各项均为0时变换结束.(1)试问:2,6,4A 经过不断的“T 变换”能否结束?若能,请依次写出经过“T 变换”得到的各数列;若不能,说明理由;(2)设123:,,A a a a ,()B T A =.若:,2,()B b a a b ≥,且B 的各项之和为2012.求a ,b ;(3)在(2)的条件下,若数列B 再经过k 次“T 变换”得到的数列各项之和最小,求k 的最小值,并说明理由. 27.(2013年上海市高三七校联考(理))本题共有3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.一青蛙从点000( )A x y ,开始依次水平向右和竖直向上跳动,其落点坐标依次是( )()i i i A x y i N *∈,,(如图所示,000( )A x y ,坐标以已知条件为准),n S 表示青蛙从点0A 到点n A 所经过的路程.(1)若点000( )A x y ,为抛物线22y px =(0)p >准线上一点,点1A 、2A 均在该抛物线上,并且直线1A 2A 经过该抛物线的焦点,证明23S p =.(2)若点( )n n n A x y ,要么落在y x =所表示的曲线上,要么落在2y x =所表示的曲线上,并且011( )22A ,,试写出lim n n S →+∞(请简要说明理由); (3)若点( )n n n A x y ,要么落在y x =所表示的曲线上,要么落在2y x =所表示的曲线上,并且01( 1)2A ,,求n S 的表达式.28.(2013届浦东二模卷理科题)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.OA 3 yx…A 0 A 1 A 2 A 4已知直角ABC ∆的三边长,,a b c ,满足a b c ≤<(1)在,a b 之间插入2011个数,使这2013个数构成以a 为首项的等差数列{}n a ,且它们的和为2013,求c 的最小值;(2)已知,,a b c 均为正整数,且,,a b c 成等差数列,将满足条件的三角形的面积从小到大排成一列n S S S S ,,,,321Λ,且n nn S S S S T )1(321-++-+-=Λ,求满足不等式1226+⋅>n n T 的所有n 的值;(3)已知,,a b c 成等比数列,若数列{}n X 满足5()nnn c a X n N a c *⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭,证明:数列{}n X 中的任意连续三项为边长均可以构成直角三角形,且n X 是正整数.29.(2013届闵行高三二模模拟试卷(数学)理科)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,过坐标原点O 作倾斜角为60o的直线交抛物线2:y x Γ=于1P 点,过1P 点作倾斜角为120o 的直线交x 轴于1Q 点,交Γ于2P 点;过2P 点作倾斜角为60o的直线交x 轴于2Q 点,交Γ于3P 点;过3P 点作倾斜角为120o 的直线,交x 轴于3Q 点,交Γ于4P 点;如此下去.又设线段112231n n OQ Q Q Q Q Q Q -,,,,,L L的长分别为123,,,,,n a a a a L L ,11122OPQ Q P Q ∆∆,,2331n n n Q PQ Q P Q -∆∆,,,L L 的面积分别为123,,,,,,n G G G G L L 数列{}n a 的前n 项的和为n S .(1)求12,a a ; (2)求n a ,limnn nG S →∞;(3)设(01)n an b a a a =>≠且,数列{}n b 的前n 项和为n T ,对于正整数,,,p q r s ,若p q r s <<<,且p s q r +=+,试比较p s T T ⋅与q r T T ⋅的大小.上海2013届高三理科数学最新试题精选(13份含16区二模)分类汇编5:数列参考答案一、选择题 1. A 2. C 二、填空题 3. )25,17(.4. C5. 120-6. 1-7. 12 8. 9; 9. 7; 10.4311.5112. 364 13. 214. 21 15. ①④ 16. 18; 三、解答题17.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分, 第(3)小题满分6分.解:(1)由条件得10(1)2n S n n =+-,即(1)2n nS n =-, 所以,*1()n a n n N =-∈(2) 由(1)可知1*4(2)()15n n b n N -=⋅-∈ 所以,22222144(2)21515k k k b ---=-=⋅,2121244(2)21515k k k b --=-=-⋅,222144(2)21515k k k b +=-=⋅,由212212k k k b b b -+=+及22121k k k b b b -+<<得22121,,k k k b b b -+依次成递增的等差数列,所以22221214442215155kk k k k k d b b -+-=-=⋅-⋅=, 满足14k kd d +=为常数,所以数列{}k d 为等比数列(3)①当k 为奇数时,112211223101555(1)4(51)55515555(1)5k k k k k k kk k k k k k k k k k C C d C C C --------+-+--====-+-+--L L ,同样,可得111122011114(51)15555(1)555k k k k k k kk k k k d C C C ++--++++-===-+-+-+L , 所以,集合{}1,k k x d x d x Z +<<∈的元素个数为111()()155k k d d +--++133(41)55k k k d d ++=-+=;②当k 为偶数时,同理可得集合{}1,k k x d x d x Z +<<∈的元素个数为3(41)5k ⋅-18.本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解:(1)⇒+=+nn n S a 31n n n S S 321+=+,n n n S b 3-=,*∈N n ,当3≠a 时,1111323333n n n n n n n nn n n b S S b S S ++++-+-==--=2,所以{}n b 为等比数列. 3311-=-=a S b ,12)3(-⨯-=n n a b .(2) 由(1)可得12)3(3-⨯-=-n n n a S*-∈≥-=N n n S S a n n n ,2,1212)3(3221≥=⎩⎨⎧⨯-+⨯=--n n a a a n n n ; n n a a ≥+1,2112>⎩⎨⎧>>+n a a a a n n ,9-≥a所以9-≥a ,且3≠a .所以a 的最小值为(3)由(1)当4=a 时,12-=n n b当2≥n 时,n n C 2423++++=Λ12+=n,31=C , 所以对正整数n 都有12+=nn C .由12+=n pt,n p t 21=-,(*∈N p t ,且1,1>>p t ),t 只能是不小于3的奇数.①当p 为偶数时,n p p pt t t 2)1)(1(122=-+=-,因为12+p t和12-p t 都是大于1的正整数,所以存在正整数h g ,,使得gp t 212=+,h p t 212=-,222=-h g ,2)12(2=--h g h ,所以22=h 且112=--h g 2,1==⇒g h ,相应的3=n ,即有233=C ,3C 为“指数型和”;②当p 为奇数时,)1)(1(112-++++-=-p ptt t t t Λ,由于121-++++p t t t Λ是p个奇数之和,仍为奇数,又1-t 为正偶数,所以n p tt t t 2)1)(1(12=++++--Λ 不成立,此时没有“指数型和”.19.解:由题意知12a =,且()21n n n ba b S -=- ()11121n n n ba b S +++-=-两式相减得()()1121nn n n b a a b a ++--=-即12nn n a ba +=+ ① (1)当2b =时,由①知122nn n a a +=+于是()()1122212nnnn n a n a n +-+⋅=+-+⋅()122n n a n -=-⋅又111210n a --⋅=≠,所以{}12n n a n --⋅是首项为1,公比为2的等比数列.故知,12-=n n b , 再由12-⋅-=n n n n a b ,得()112n n a n -=+.另解:111222n n n n a a ++=+ 2n n a ⎧⎫∴⎨⎬⎩⎭是首项为1112a =,公差为12的等差数列,111222n n a n n -+∴=+=()112n n a n -∴=+⋅ ()1111222n n n n b n n ---=+⋅-⋅=(2)当2b ≠时,由①得1111122222n n n n n a ba b b +++-⋅=+-⋅--122n n b a b ⎛⎫=-⋅ ⎪-⎝⎭若0=b ,nn S 2= 若1=b ,nn a 2=,221-=+n n S若10、≠b ,数列⎭⎬⎫⎩⎨⎧⋅--n n b a 221是以b b --2)1(2为首项,以b 为公比的等比数列,故 12)1(2221-⋅--=⋅--n n n b b b b a , ()[]122221--+-=n n n b b b a()()1213212)1(2222221-+⋅⋅⋅+++--++⋅⋅⋅+++-=n n n b b b b b b S2(2)2n n n b S b-=-1b =时,122n n S +=-符合上式所以,当0≠b 时,2(2)2n n n b S b-=-当0=b 时,nn S 2=另解:当1n =时,112S a == 当2n ≥时,()21nn n ba b S -=-Q()()121n n n n b S S b S -∴--=-12n n n S bS -∴=+若0=b ,nn S 2=若0≠b ,两边同除以2n得111222n n n n S S b --=⋅+ 令111222n n n n S S b m m --+=⋅++,即1122()222n n n n S S b mm b--++=⋅+ 由22m m b +=得22m b =- 2{}22n nS b ∴+-是以2b b -为首项,2b 为公比的等比数列 12()2222n n n S b b b b -∴+=⋅--, 所以,当0≠b 时,2(2)2n n n b S b-=-20.21.解:(1)在数列}{n a 中,取1=n ,则23122a a a ==+,不满足条件①,所以数列}{n a 不具有“m 性质”;在数列}{n b 中,11=b ,32=b ,23=b ,34=b ,15=b ,则2312323b b b =<=+,3422432b b b =<=+,4532323b b b =<=+,所以满足条件①;26sin2≤=πn b n (5,4,3,2,1=n )满足条件②,所以数列}{n b 具有“性质m ”(2)因为数列}{n c 是各项为正数的等比数列,则公比0>q , 将413=c 代入=3S 473323=++c q c q c 得,0162=--q q ,解得21=q 或31-=q (舍去), 所以11=c ,121-=n n c ,1212--=n n S对于任意的*N n ∈,122212212122+++=-<--=+n n n n n n S S S ,且2<n S 所以数列数列}{n S 具有“m 性质”2≥M(3)由于n d n tn t 213--=,则1121)1(3++-+-=n n n t t d ,2221)2(3++-+-=n n n t t d 由于任意],3[∞+∈n 且*N n ∈,数列}{n d 具有“性质m ”,所以122++<+n n n d d d即+-n tn 21221)2(+-+n n t 121)1(2+-+⨯>n n t ,化简得,1)2(>-n t 即21->n t 对于任意),3[∞+∈n 且*N n ∈恒成立,所以1>t ①1121)1(21++-+--=-n n n n n t tn d d =121)1(+--n n t 由于3≥n 及①,所以n n d d >+1 即3≥n 时,数列}{n d 是单调递增数列,且t tn t d n n n n 3)213(lim lim =--=→∞→∞只需93≤t ,解得3≤t ②由① ②得31≤<t ,所以满足条件的整数t 的值为2和3. 经检验2=t 不合题意,舍去,满足条件的整数只有3=t22. 【解析】⑴设12a k =,2a k =,则:322k a k +=,30a =分两种情况: k 是奇数,则2311022a k a --===,1k =,1232,1,0a a a === 若k 是偶数,则23022a ka ===,0k =,1230,0,0a a a === ⑵当3m >时,123123423,21,2,2,m m m m a a a a ---=+=+==45122,,2,1,0m m m m n a a a a a ++-======L L∴1124223n m m mS S +≤=++++=+L⑶∵211log n a >+,∴211log n a ->,∴112n a ->由定义可知:1,212,2nnn n n na a a a a a +⎧⎪⎪=≤⎨-⎪⎪⎩是偶数是奇数 ∴112n n a a +≤∴1211112112n n n n n n a a a a a a a a a ----=⋅⋅⋅≤⋅L ∴111212n n n a --<⋅= ∵n a N ∈,∴0n a =,综上可知:当211log n a >+()n N ∈时,都有0n a =23. (14分)解:(1)Θi i b a z +=⋅+=1111,∴11=a ,11=b .由iz z z n n n 221++=+得i b a i i b a i b a i b a n n n n n n n n ⋅++=+⋅-+⋅+=⋅+++)2(32)()(211,∴⎩⎨⎧+==++2311n n nn b b a a∴数列{}n a 是以1为首项公比为3的等比数列,数列{}n b 是以1为首项公差为2的等差数列,∴13-=n n a ,12-=n b n(2)①由(1)知13-=n n a ,Θ2113=-+kk k k a a a a ,∴数列{}1+n n a a 是以3为首项,公比为23的等比数列.Θ838391)31(312213221-=--=+++++n n n n a a a a a a Λ②当k n 2=,*∈N k 时,)()()()1(122212544332211154433221+-++-++-+-=-++-+-k k k k n n n b b b b b b b b b b b b b b b b b b b b b b ΛΛn n k k b b k b b b b b b k k k 22482)(4)(44442222242242--=--=+⋅-=+++-=----=ΛΛ当12+=k n ,*∈N k 时,1154433221)1(++-++-+-n n n b b b b b b b b b b Λ122)34)(14(48)()()(22221212221254433221-+=+++--=+-++-+-=+++-n n k k k k b b b b b b b b b b b b b b k k k k k k Λ又1=n 也满足上式∴⎪⎩⎪⎨⎧---+=-++-+-++为偶数时当为奇数时当n n n n n n b b b b b b b b b b n n n 22122)1(221154433221Λ24.解:(1)令n =1,则a 1=S 1=111()2a a -=0 ; a 3=2; (2)由1()2n n n a a S -=,即2n n na S =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+. ④ ③+④,得212n n n na na na +++=,即212n n n a a a +++= 又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列. 所以,a n =n -1法二②-①,得 1(1)n n n a na +-=. ③于是,121,1211an a n a n a n a n n n n ==-=-∴-=-+Λ 11=-∴n a n所以,a n =n -1. (3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列, 则lg b 1,lg b p ,lg b q 成等差数列, 于是,21333p qp q =+ 所以,213()33q p p q =-(☆).易知(p ,q )=(2,3)为方程(☆)的一组解 当p ≥3,且p ∈N*时,112(1)224333p p p p p p+++--=<0, 故数列{23pp}(p ≥3)为递减数列 于是2133p p -≤323133⨯-<0,所以此时方程(☆)无正整数解 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列25. (本题满分18分,第1小题满分4分,第2小题满分8分,第3小题6分)解:(1)因为a ,b ,c 是互不相等的正数,所以0>q 且1≠q . 由已知,a ,b ,c 是首项为,公比为q 的等比数列,则q b =,2q c =,当插入的一个数位于b ,c 之间, 设由4个数构成的等差数列的公差为d ,则⎩⎨⎧+=+=dq d q 3112,消去d 得02322=+-q q , 因为1≠q ,所以2=q(2)设所构成的等差数列的公差为d ,由题意,0>d ,共插入4个数.若在a ,b 之间插入个数,在b ,c 之间插入3个数,则⎩⎨⎧+=+=db c da b 42,于是42b c a b -=-,b c a b -=-22,0232=+-q q ,解得2=q 若在a ,b 之间插入3个数,在b ,c 之间插入个数,则⎩⎨⎧+=+=db c da b 24,于是24b c a b -=-,a b b c -=-22解得21=q (不合题意,舍去) 若a ,b 之间和b ,c 之间各插入2个数,则⎩⎨⎧+=+=d b c d a b 33,b c a b -=-,解得1=q (不合题意,舍去)综上,a ,b 之间插入个数,在b ,c 之间插入3个数(3)设所构成的等差数列的公差为d ,由题意,d s a b )1(++=,1+-=s a b d ,又d t b c )1(++=,1+-=t cb d , 所以11+-=+-t bc s a b ,即1)1(11+-=+-t q q s q ,因为1≠q ,所以q s t =++11所以,当1>q ,即c b a <<时,t s <;当10<<q ,即c b a >>时,t s >. 26.27.解:(1)设00( )2p A y -,,由于青蛙依次向右向上跳动, 所以10( )2p A y ,,20( )2pA y -,,由抛物线定义知:23S p =(2) 依题意,*2122122121 ()n n n n n n x x x y y x n N +-+-====∈,011223342221212lim ||||||||||||n n n n n n S A A A A A A A A A A A A ---→∞=+++++++L L1021324354212221()()()()()()()n n n n x x y y x x y y x x x x y y --=-+-+-+-+-++-+-+L L 1032542122()2()2()2()n n x x x x x x x x -=-+-+-++-+L L随着n 的增大,点n A 无限接近点(1 1), 横向路程之和无限接近11122-=,纵向路程之和无限接近11122-= 所以 lim n n S →+∞=11122+= (注:只要能说明横纵坐标的变化趋势,用文字表达也行)(3)设点222212121( ) ( )k k k k k k A x y A x y +++,,,,由题意,n A 的坐标满足如下递推关系: 00112x y ==,,且2122122(0 1 2 3 ) (0 1 2 3 )k k k k y y k x x k +++====L L ,,,,,,,,, 其中212122 2k k k k y x y x ++==,,∴212222k k k x x x ++==, (方法一)∴2{}k x 是以012x =为首项,2为公比的等比数列,∴2122k k x =⨯,22kk y = 即当n 为偶数时,2122nn x =⨯,22nn y =又21222k k k x x ++==,21212kk k y x ++==,∴当n 为奇数时,11222 2n n n n x y --==,于是,当n 为偶数时,011223342221212||||||||||||k k k k A A A A A A A A A A A A ---++++++L10213243542122221()()()()()()()k k k k x x y y x x y y x x x x y y ---=-+-+-+-+-++-+-L10203142532123222()()()()()()()k k k k x x y y x x y y x x x x y y ---=-+-+-+-+-++-+-L 220033()()222k k k x y x y =+-+=⨯-当n 为奇数时,011223342221221||||||||||||k k k k A A A A A A A A A A A A --+++++++L1021324354221212()()()()()()()k k k k x x y y x x y y x x y y x x -+=-+-+-+-+-++-+-L10203142532122121()()()()()()()k k k k x x y y x x y y x x y y x x ++-=-+-+-+-+-++-+-L 2121003()()222k k k x y x y ++=+-+=⨯-∴12232 23(21) 2n nn n S n +⎧-⎪=⎨⎪-⎩为奇数为偶数 (方法二)∴2{}k x 是以012x =为首项,2为公比的等差数列,∴2122k k x =⨯,22kk y =又21222k k k x x ++==,21212kk k y x ++==∴2121122222kk kk k x x +-=-⨯=⨯,12221222k k k k k y y +++-=-= 于是,当n 为偶数时,011223342221212||||||||||||k k k k A A A A A A A A A A A A ---++++++L10213243542122221()()()()()()()k k k k x x y y x x y y x x x x y y ---=-+-+-+-+-++-+-L1111(122)(122)22k k --=++++⨯++++L L 33222k =⨯- 当n 为奇数时,011223342221221||||||||||||k k k k A A A A A A A A A A A A --+++++++L1021324354221212()()()()()()()k k k k x x y y x x y y x x y y x x -+=-+-+-+-+-++-+-L111(122)(122)22k k -=++++⨯++++L L 3222k =⨯- ∴12232 23(21) 2n nn n S n +⎧-⎪=⎨⎪-⎩为奇数为偶数 . (注:本小题若没有写出递推关系,直接归纳得到正确结论而没有证明,扣4分)28.解:(1){}n a 是等差数列,∴20132)(2013=+⋅b a ,即2=+b a所以2222≥=+=Λb a c ,c 的最小值为2;(2)设,,a b c 的公差为()d d Z ∈,则222()(2)a a d a d ++=+3a d ∴= 设三角形的三边长为3,4,5d d d ,面积21346()2d S d d d d Z =⨯⨯=∈,26n S n =,])2(4321[62222223212n S S S S T n n +-+-+-=++-+-=ΛΛn n n 612)24321(62+=++++++=Λ由1226+⋅>n n T 得n n n 2212>+, 当5≥n 时,n n n n n n n n n21)(222)1(1222+>-++≥+-++=Λ,经检验当4,3,2=n 时,n n n 2212>+,当1=n 时,nn n 2212<+综上所述,满足不等式1226+⋅>n n T 的所有n 的值为2、3、4(3)证明:因为,,a b c 成等比数列,ac b =2.由于,,a b c 为直角三角形的三边长,知22c ac a =+,251+=a c ,()nnn c a n N a c *⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭,得nnn X ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=2512515, 于是11125125125125155+++⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=+n n nnn n X X2225251251+++=⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+=n n n X12+n n n X X X ++∴=,则有)222+∴=.故数列中的任意连续三项为边长均可以构成直角三角形因为111=1X ⎫⎪=-⎬⎪⎭,222=1X ⎫⎪-⎬⎪⎭*∈=+=⇒N X X X 2213,由21++=+n n n X X X ,同理可得*+*+*∈⇒∈∈N X N X N X n n n 21,,故对于任意的n N *∈都有n X 是正整数29. [解] (1)如图,由11OQ P ∆是边长为1a 的等边三角形,得点1P的坐标为11(,)22a ,又1P 11(,)22a 在抛物线2y x =上,所以211342a a =,得123a =同理2P 222(,)322a +-在抛物线2y x =上,得243a = (2)如图,法1:点1n Q -的坐标为1231(,0)n a a a a -+++⋅⋅⋅+,即点100(,0)(=0)n S Q S -点与原点重合,,所以直线1n n Q P -的方程为1)n y x S --或1)n y x S -=-,因此,点n P的坐标满足21)n y x y x S -⎧=⎪⎨=-⎪⎩ 消去x210n y --= ,所以y =又sin 60n n y a =⋅=o,故31n a =从而21324n n n a a S --= ① 由①有211324n n n a a S ++-= ②②-①得22113()2()4n n n n n a a a a a ++---=即11()(332)0n n n n a a a a +++--=,又0n a >,于是123n n a a +-= 所以{}n a 是以23为首项、23为公差的等差数,12(1)3n a a n d n =+-= 1()1(1)23n n a a n S n n +==+2249n n G a n ==,lim n n n nG S →∞→∞==理2分 法2:点1n Q -的坐标为1231(,0)n a a a a -+++⋅⋅⋅+,即点100(,0)(=0)n S Q S -点与原点重合,,所以直线1n n Q P -的方程为1)n y x S --或1)n y x S -=-因此,点(,)n P x y的坐标满足21)n y x y x S -⎧=⎪⎨=-⎪⎩消去y 得213()n x S x --=,又12n n a x S -=+,所以213()22n n n a a S -=+,从而21324n n n a a S --= ①以下各步同法1法3:点1n Q -的坐标为1231(,0)n a a a a -+++⋅⋅⋅+,即点100(,0)(=0)n S Q S -点与原点重合,,所以1(2n n n a P S -+,又1(2n n n a P S -+在抛物线2y x =上,得21342n n n a a S -=+ 即21324n n n a a S --=以下各步同法1(3)(理)因为2(1)231323n n n nb aa b a++==,所以数列{}n b 是正项等比数列,且公比2301q a =≠,首项2310b a q ==,则100(1)1p p b q T q -=-,100(1)1q q b q T q -=-,100(1)1r r b q T q -=-,100(1)1ss b q T q -=-p s T T ⋅q r T T -⋅=21000020(1)(1)(1)(1)(1)p s q rb q q q q q ⎡⎤⋅-----⎣⎦-(注意00p s q r q q ++=) 21000020()()(1)q r p sb q q q q q ⎡⎤=⋅+-+⎣⎦- 而00000000()()()()q r p s q p s rq q q q q q q q +-+=---0000000(1)(1)(1)()p q p r s r q p p rq q q q q q q ---=---=--(注意q p s r -=-) 000000(1)(1)(1)(1)q p p r p p q p r p q q q q q q ----=--=---因为01a a >≠且,所以230001q a q =>≠且 又,q p r p --均为正整数,所以0(1)q pq --与0(1)r pq --同号,故000(1)(1)0p q p r pq q q -----<,所以,p s T T ⋅q r T T <⋅(第(3)问只写出正确结论的,给1分)。
高中数学学习材料唐玲出品上海市17区县2016届高三第二次模拟数学理试题分类汇编:函数一、填空、选择题1、(崇明县2016届高三二模)已知函数22,0(),0x a x f x x ax x ⎧+⎪=⎨-<⎪⎩≥,若()f x 的最小值是a ,则a = .2、(奉贤区2016届高三二模)函数21x y =-的定义域是_______.(用区间表示)3、(虹口区2016届高三二模)已知函数()f x 的对应关系如下表:x2-1- 012()f x 32-15m若函数()f x 不存在反函数,则实数m 的取值集合为___________. 4、(黄浦区2016届高三二模)函数3()1f x x =+的反函数1()f x -=5、(静安区2016届高三二模)若函数()()2F x f x x =+为奇函数,且g (x )= f (x )+2,已知 f (1) =1,则g (-1)的值为( )A .-1B .1C .-2D .2 6、(闵行区2016届高三二模)函数3log (1)y x =-的定义域是 .7、(浦东新区2016届高三二模)方程22log (97)2log (31)x x+=++的解为8、(普陀区2016届高三二模)若函数xx f 11)(+=()0>x 的反函数为)(1x f -,则不等式2)(1>-x f 的解集为 .9、(徐汇、金山、松江区2016届高三二模)定义在R 上的奇函数(),f x 当0x ≥时,[)[)12log (1),0,1,()13,1,,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为________________(结果用a 表示).10、(杨浦区2016届高三二模)函数2()1x f x x +=-的定义域为 . 11、(闸北区2016届高三二模)设函数()(01xxf x a a a a -=+>≠且),且(1)3f =,则(0)(1)(2)f f f ++的值是 12、(长宁、青浦、宝山、嘉定四区2016届高三二模)设0>a 且1≠a ,若函数2)(1+=-x a x f 的反函数的图像经过定点P ,则点P 的坐标是___________.13、(崇明县2016届高三二模)已知函数()f x 是定义在[)1,+∞上的函数,且123,12()11,222x x f x f x x ⎧--<⎪=⎨⎛⎫⎪⎪⎝⎭⎩≤≥,则函数2()3y x f x =-在区间(1,2016)上的零点个数为 . 14、(奉贤区2016届高三二模)已知函数()22xxf x a -=-⋅的反函数是()1fx -,()1f x -在定义域上是奇函数,则正实数a =________.15、(黄浦区2016届高三二模)已知函数32()lg(1)f x x x x =+++,若()f x的定义域中的a 、b 满足()()3f a f b -+--=()()3f a f b ++,则()()f a f b += 16、(闵行区2016届高三二模)若两函数y x a =+与212y x =-的图像有两个交点A 、B ,O 是坐标原点,OAB △是锐角三角形,则实数a 的取值范围是 17、(浦东新区2016届高三二模)已知函数311()=3x f x a x a +⎛⎫≠ ⎪+⎝⎭的图像与它的反函数的图像重合,则实数a 的值为 .18、(普陀区2016届高三二模)若函数)(x f 是定义在R 上的奇函数,且满足)()2(x f x f -=+,则=)2016(f .19、(徐汇、金山、松江区2016届高三二模)函数y =22,0,,0x x x x ≥⎧⎨-<⎩的反函数是-------------------( )(A ),02,0x x y x x ⎧≥⎪=⎨⎪-<⎩(B ),02,0x x y x x ⎧≥⎪=⎨⎪--<⎩(C )2,0,0x x y x x ≥⎧⎪=⎨-<⎪⎩ (D )2,0,0x x y x x ≥⎧⎪=⎨--<⎪⎩20、(杨浦区2016届高三二模)下列函数中,既是奇函数,又在区间(0,)+∞上递增的是( )A.||2x y = B.ln y x = C.13y x = D.1y x x=+21、(闸北区2016届高三二模)设函数2()1f x x =-,对任意⎪⎭⎫⎢⎣⎡+∞∈,23x ,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是 . 22、(长宁、青浦、宝山、嘉定四区2016届高三二模)设定义在R 上的奇函数)(x f y =,当0>x 时,42)(-=xx f ,则不等式0)(≤x f 的解集是__________________.23、(普陀区2016届高三二模)设函数⎩⎨⎧>-≤+=-0),1(0,2)(x x f x a x f x ,记x x f x g -=)()(,若函数)(x g 有且仅有两个零点,则实数a 的取值范围是 .二、解答题1、(崇明县2016届高三二模) 已知函数()33x x f x λ-=+⋅()R λ∈ (1)根据λ的不同取值,讨论函数的奇偶性,并说明理由;(2)若不等式()6f x ≤在[]0,2x ∈上恒成立,求实数λ的取值范围.2、(奉贤区2016届高三二模)(1)已知120x x <<,求证:112211x x x x +>+; (2)已知()()31lg 1log 2f x x x =+-,求证:()f x 在定义域内是单调递减函数; (3)在(2)的条件下,求集合(){}221419980,M n f n n n Z =--≥∈的子集个数.3、(虹口区2016届高三二模) 已知函数131()log 1ax f x x -⎛⎫= ⎪-⎝⎭满足(2)1f -=,其中a 为实常数.(1)求a 的值,并判定函数()f x 的奇偶性;(2)若不等式1()2xf x t ⎛⎫>+ ⎪⎝⎭在[]2,3x ∈恒成立,求实数t 的取值范围.4、(黄浦区2016届高三二模)已知函数2()1xx f x a x -=++,其中1a >; (1)证明:函数()f x 在(1,)-∞上为增函数; (2)证明:不存在负实数0x 使得0()0f x =;5、(静安区2016届高三二模) 已知函数()y f x =,若在区间I 内有且只有一个实数c (c I ∈),使得()0f c =成立,则称函数()y f x =在区间I 内具有唯一零点.(1)判断函数()221,01,log ,1x x f x x x ⎧-≤<=⎨≥⎩在区间(0,)+∞内是否具有唯一零点,并说明理由;(2)已知向量31(,)22m =,(sin 2,cos 2)n x x =,(0,)x π∈,证明()1f x m n =⋅+在区间(0,)π内具有唯一零点;(3)若函数2()22f x x mx m =++在区间(2,2)-内具有唯一零点,求实数m 的取值范围.6、(闵行区2016届高三二模)为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型()n ∈*N :以8122002000,(18)()36033000,(932)32400720,(3345)n n n f n n n n -⋅+≤≤⎧⎪⎪=⋅+≤≤⎨⎪-⋅≤≤⎪⎩表示第n 个时刻进入园区的人数;以0,(118)()5009000,(1932)8800,(3345)n g n n n n ≤≤⎧⎪=⋅-≤≤⎨⎪≤≤⎩表示第n 个时刻离开园区的人数.设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即1=n ;9点30分作为第2个计算单位,即2=n ;依次类推,把一天内从上午9点到晚上8点15分分成45个计算单位(最后结果四舍五入,精确到整数).(1)试计算当天14点至15点这一小时内,进入园区的游客人数(21)(22)(23)(24)f f f f +++、离开园区的游客人数(21)(22)(23)(24)g g g g +++各为多少?(2)从13点45分(即19n =)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.参考答案 一、填空题1、-12、[)0,+∞3、{}3,2,1,5-4、3(1)x - 5、A 6、()1,+∞7、{}0,1 8、⎪⎭⎫⎝⎛231, 9、12a - 10、11、12 12、)1,3(13、11 14、1 15、15 16、623,33⎛⎫⎪ ⎪⎝⎭17、3a =- 18、0 19、B 20、C 21、32m ≤-或32m ≥; 22、]2,0[]2,( --∞ 23、2->a二、解答题1、(1)函数()33x x f x λ-=+⋅的定义域为R当=1λ时,()33x x f x -=+,()()f x f x -=,函数为偶函数;..............2分 当=-1λ时,()33x x f x -=-,()()f x f x -=-,函数为奇函数;............4分 当||1λ≠时,1(1)3,(1)333f f λλ=+-=+ 此时(1)(1)(1)(1),f f f f -≠--≠且 所以函数为非奇非偶函数.........................................6分(2) 由于()6f x ≤得336xxλ-+≤,即363x xλ+≤,令3[1,9]xt =∈,................................................8分原不等式等价于6t tλ+≤在[]1,9t ∈上恒成立,亦即26t t λ≤-+在[]1,9t ∈上恒成立,.............................10分令[]2()6,1,9g t t t t =-+∈,当9t =时,()g t 有最小值()927g =-,所以27λ≤-................14分2、(1)解:任取210x x <<,则()()()211211222211111x x x x x x x x x x +-++-=++()21221x x x x -=+3分 210x x <<,所以()212201x xx x ->+ 4分∴212111x x x x >++5分(2)∵212111x x x x >++,∴2121lg 11lg x xx x >++. 6分 12()()f x f x -=)1lg()1lg(21+-+x x -)log (log 212313x x -=11lg 21++x x -213log 21x x 7分=11lg 21++x x -1119109222log log log x x x x x x >-109log 9log 101101,log log log 10log 9log 10log 9t t t t t t t t t -<<-=-=⋅log 90,log 100,log 9log 100,log 9log 100t t t t t t <<⋅>->log 9log 1001,0log 10log 9t t t t t -<<∴>⋅1110922log log 0x xx x ∴->8分∴>-)()(11x f x f 0∴)(x f 为),0(+∞上的减函数 9分 (3)注意到0)9(=f ∴当9>x 时,0)9()(=<f x f ,当90<<x 时,0)9()(=>f x f ,∴0)(=x f 有且仅有一个根9=x . 1 由)9()1998214(0)1998214(22f n n f n n f ≥--⇒≥--∴⎪⎩⎪⎨⎧>--≤--019982149199821422n n n n 13分⇔922310713447,100713447n n n -≤≤⎧⎪⎨>+<-⎪⎩或14分 ∴223=n 或9-=n , 15分 ∴}223,9{-=MM 的子集的个数是4. 16分3、解:(1)由1312121(2)log 1,,2133a a f ++-==-=--得解得 1.a =- ……3分于是131()log 1x f x x +⎛⎫=⎪-⎝⎭,其定义域为(,1)(1,).D =-∞-⋃+∞ ……4分 对于任意的(,1)(1,),x ∈-∞-⋃+∞有111133331111()+()log log log log 10,1111x x x x f x f x x x x x +-++-+⎛⎫⎛⎫⎛⎫-=+=⋅== ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭故()f x 为奇函数. ……7分(2)由1()2x f x t ⎛⎫>+ ⎪⎝⎭,得[]1()2,32xt f x ⎛⎫<- ⎪⎝⎭在恒成立. 由12111x x x +=+--在(,1)-∞-及(1,)+∞上均递减,且13()log g u u =在(0,)+∞上也递减,故函数()f x 在区间(,1)(1,)-∞-+∞及均单调递增. ……10分由()f x 及12xy ⎛⎫=- ⎪⎝⎭在区间[]2,3均单调递增,知[]1()()2,32xx f x ϕ⎛⎫=- ⎪⎝⎭在单调递增, ……12分故2min15()(2)(2).24x f ϕϕ⎛⎫==-=- ⎪⎝⎭因此,实数t 的取值范围为5(,).4-∞-……14分 4、[证明](1)任取121x x -<<,1212121222()()11x x x x f x f x a a x x ---=+--++ 121212121212223()()()11(1)(1)x x x x x x x x a a a a x x x x ⎛⎫---=-+-=-+ ⎪++++⎝⎭.(3分) 因为121x x -<<,1a >,所以12x x a a <,110x +>,210x +>,120x x -<,于是120x x a a -<,12123()0(1)(1)x x x x -<++,得12()()0f x f x -<,即12()()f x f x <.因此,函数()f x 在(1,)-+∞上为增函数.(6分)(2)(反证法)若存在负实数0x (01x ≠-),使得0()0f x =,即方程201x x a x -+=+有负实数根.(8分)对于21x x a x -=-+,当00x <且01x ≠-时,因为1a >,所以0110,,1x a a a ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,(10分)而000231(,1)(2,)11x x x --=-+∈-∞-+∞++.(13分) 因此,不存在负实数0x 使得21x x a x -=-+,得证.5、(1)函数()221,01log ,1x x f x x x ⎧-≤<=⎨≥⎩在区间(0,)+∞内具有唯一零点. …2分理由:当1x =时,有()10f =,且当01x <<时,有()210f x x =-<;当1x >时,()2log f x x =是增函数,有()22log log 10f x x =>=. …………4分(2)因为311sin 2cos 21sin(2)1226m n x x x π⋅+=++=++,所以()s i n (2)16f x x π=++, …………7分 ()0f x =的解集为,3A x x k k Z ππ⎧⎫==-∈⎨⎬⎩⎭;因为23A I π⎧⎫=⎨⎬⎩⎭,所以在区间(0,)π内有且只有一个实数23π,使得2()03f π=成立,因此()1f x m n =⋅+在开区间(0,)π内具有唯一零点; …………10分(3) 函数2()22f x x mx m =++在开区间(2,2)-内具有唯一零点,该二次函数的对称轴为x m =-.以下分-m 与区间(2,2)-的位置关系进行讨论.1)当2m -≤-即2m ≥时, 2()22f x x mx m =++在开区间(2,2)-是增函数,只需(2)0,(2)0f f -<⎧⎨>⎩解得2m >; …………12分2) 当22m -<-<即22m -<<时,若使函数在开区间(2,2)-内具有唯一零点,220m m -<,所以0m <。
2016年上海市奉贤区高考数学二模试卷(理科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接写结果,1-14题每个空格填对得4分)1.若i(bi+1)是纯虚数,i是虚数单位,则实数b=______.2.函数y=的定义域是______.3.在△ABC中,||=2,||=3,•<0,且△ABC的面积为,则∠BAC=______.4.双曲线4x2﹣y2=1的一条渐近线与直线tx+y+1=0垂直,则t=______.5.已知抛物线y2=4x上一点M(x0,2),则点M到抛物线焦点的距离为______.6.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为S n,则S n=2,则q=______.7.在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为Rcm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm,则R=______cm.8.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有______.(用数字作答)9.在平面直角坐标系xOy中,将点A(2,1)绕原点O逆时针旋转到点B,若直线OB 的倾斜角为α,则cosα的值为______.10.已知函数f(x)=2x﹣a•2﹣x的反函数是f﹣1(x),f﹣1(x)在定义域上是奇函数,则正实数a=______.11.把极坐标方程ρ=sinθ+cosθ化成直角坐标标准方程是______.12.在(x++1)6展开式中的常数项是______(用数值作答)13.在棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是棱上一点,则满足|PA|+|PC1|=2的点P的个数为______.14.若数列{a n}前n项和S n满足S n+S n=2n2+1(n≥2,n∈N+),且满足a1=x,{a n}单调﹣1递增,则x的取值范围是______.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是()A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]16.已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为()A.B.C.D.17.设,那么以|z1|为直径的圆的面积为()A.πB.4πC.8πD.16π18.方程9x+|3x+b|=5(b∈R)有两个负实数解,则b的取值范囤为()A.(3,5) B.(﹣5.25,﹣5)C.[﹣5.25,﹣5)D.前三个都不正确三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(13分)(2016•奉贤区一模)平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;(1)画出面PBE与面ABC的交线,说明理由;(2)求面PBE与面ABC所成的锐二面角的大小.20.(13分)(2016•奉贤区一模)已知椭圆C:=1(a>b>0)的长轴长是短轴长的两倍,焦距为2.(1)求椭圆C的标准方程;(2)不过原点O的直线l与椭圆C交于两点M,N,且直线OM,MN,ON的斜率依次成等比数列,问:直线l是否定向的,请说明理由.21.(14分)(2016•奉贤区一模)如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区,为了妥善处理生活垃圾,政府决定在AB的背面建一个垃圾发电厂P,垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大),现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,设|PA|=5x>0.(1)求cos∠PAB(用x的表达式表示)(2)问垃圾发电厂该如何选址才能同时满足上述要求?22.(16分)(2016•奉贤区一模)(1)已知0<x1<x2,求证:;(2)已知f(x)=lg(x+1)﹣log3x,求证:f(x)在定义域内是单调递减函数;(3)在(2)的条件下,求集合M={n|f(n2﹣214n﹣1998)≥0,n∈Z}的子集个数.23.(18分)(2016•奉贤区一模)数列{a n},{b n}满足,a1>0,b1>0;(1)求证:{a n•b n}是常数列;(2)若{a n}是递减数列,求a1与b1的关系;(3)设a1=4,b1=1,当n≥2时,求a n的取值范围.2016年上海市奉贤区高考数学二模试卷(理科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接写结果,1-14题每个空格填对得4分)1.若i(bi+1)是纯虚数,i是虚数单位,则实数b=0.【考点】复数的基本概念.【分析】由i(bi+1)=﹣b+i,又i(bi+1)是纯虚数,即可得到实部等于0,则b可求.【解答】解:i(bi+1)=﹣b+i,又i(bi+1)是纯虚数,则﹣b=0,即b=0.故答案为:0.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.函数y=的定义域是[0,+∞).【考点】函数的定义域及其求法.【分析】根据二次根式的性质,被开方数大于等于0,可知:2n﹣1≥0,解得n的范围即可.【解答】解:根据题意得:2n﹣1≥0,解得:n≥0.∴函数y=的定义域是[0,+∞).故答案为:[0,+∞).【点评】本题考查的是函数自变量取值范围的求法.注意偶次开方一定非负.3.在△ABC中,||=2,||=3,•<0,且△ABC的面积为,则∠BAC=150°.【考点】平面向量数量积的运算.【分析】由题意可得∠BAC 为钝角,再由×2×3×sin∠BAC=,解得sin∠BAC=,从而得到∠BAC的值.【解答】解:∵在△ABC中,||=2,||=3,且△ABC的面积为,∴=,即,解得sin∠BAC=,又•<0,∴,∴∠BAC=150°.故答案为:150°.【点评】本题主要考查两个向量的数量积的定义及三角形的面积公式,考查已知三角函数值求角的大小,是基础题.4.双曲线4x2﹣y2=1的一条渐近线与直线tx+y+1=0垂直,则t=±.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,直线tx+y+1=0的斜率为﹣t,运用两直线垂直的条件:斜率之积为﹣1,计算即可得到所求值.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得渐近线为y=±2x,直线tx+y+1=0的斜率为﹣t,而渐近线的斜率为±2,由两直线垂直的条件:斜率之积为﹣1,可得﹣t=±,即有t=±.故答案为:±.【点评】本题考查双曲线的渐近线方程的运用,考查两直线垂直的条件:斜率之积为﹣1,考查运算能力,属于基础题.5.已知抛物线y2=4x上一点M(x0,2),则点M到抛物线焦点的距离为4.【考点】抛物线的简单性质.【分析】把点M (x 0,2)代入抛物线方程,解得x 0.利用抛物线的定义可得:点M 到抛物线焦点的距离=x 0+1.【解答】解:把点M (x 0,2)代入抛物线方程可得:=4x 0,解得x 0=3.∴点M 到抛物线焦点的距离=x 0+1=4. 故答案为:4.【点评】本题考查了抛物线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.6.无穷等比数列首项为1,公比为q (q >0)的等边数列前n 项和为S n ,则S n =2,则q=.【考点】等比数列的通项公式.【分析】由无穷递缩等比数列的各项和可得=2,解方程可得.【解答】解:∵无穷等比数列首项为1,公比为q (q >0)的等边数列前n 项和为S n ,且S n =2,∴=2,解得q=,故答案为:.【点评】本题考查等比数列的通项公式和无穷递缩等比数列的各项和,属基础题.7.在一个水平放置的底面半径为cm 的圆柱形量杯中装有适量的水,现放入一个半径为Rcm 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm ,则R= cm .【考点】球的体积和表面积;棱柱、棱锥、棱台的体积.【分析】求出球的体积等于水面高度恰好上升Rcm 的体积,即可求出R 的值.【解答】解:在一个水平放置的底面半径为cm 的圆柱形量杯中装有适量的水,现放入一个半径为Rcm 的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升Rcm ,所以,,所以R=(cm );故答案为:.【点评】本题是基础题,考查球的体积,圆柱的体积的求法,考查计算能力.8.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有34.(用数字作答)【考点】组合及组合数公式;排列、组合的实际应用.【分析】根据题意,选用排除法;分3步,①计算从7人中,任取4人参加某个座谈会的选法,②计算选出的全部为男生或女生的情况数目,③由事件间的关系,计算可得答案.【解答】解:分3步来计算,①从7人中,任取4人参加某个座谈会,分析可得,这是组合问题,共C74=35种情况;②选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,③根据排除法,可得符合题意的选法共35﹣1=34种;故答案为34.【点评】本题考查组合数公式的运用,解本题采用排除法较为简单.9.在平面直角坐标系xOy中,将点A(2,1)绕原点O逆时针旋转到点B,若直线OB的倾斜角为α,则cosα的值为.【考点】直线的倾斜角.【分析】设直线OA的倾斜角为θ,则tanθ=,tanα==,cosα=.【解答】解:设直线OA的倾斜角为θ,则tanθ=,则tanα====3,∴cosα===.故答案为:.【点评】本题考查了直线的倾斜角与斜率的关系、三角函数求值,考查了推理能力与计算能力,属于中档题.10.已知函数f(x)=2x﹣a•2﹣x的反函数是f﹣1(x),f﹣1(x)在定义域上是奇函数,则正实数a=1.【考点】反函数.【分析】f﹣1(x)在定义域上是奇函数,可得:原函数f(x)在定义域上也是奇函数,利用f(0)=0即可得出.【解答】解:∵f﹣1(x)在定义域上是奇函数,∴原函数f(x)在定义域上也是奇函数,∴f(0)=1﹣a=0,解得a=1,∴f(x)=,经过验证函数f(x)是奇函数.故答案为:1.【点评】本题考查了反函数的性质,考查了推理能力与计算能力,属于中档题.11.把极坐标方程ρ=sinθ+cosθ化成直角坐标标准方程是(x﹣)2+(y﹣)2=.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】先在极坐标方程ρ=sinθ+cosθ的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.【解答】解:∵ρ=sinθ+cosθ,∴ρ2=ρsinθ+ρcosθ,∴x2+y2=y+x,即x2+y2﹣x﹣y=0.即(x﹣)2+(y﹣)2=.故答案为:(x﹣)2+(y﹣)2=.【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.12.在(x++1)6展开式中的常数项是581(用数值作答)【考点】二项式系数的性质.=,(r=0,1,…,6),令的展开式的通项公式【分析】T r+1==2k x r﹣2k,令r﹣2k=0,对k,r分类讨论即可得出.T′k+1=,(r=0,1,…,6),【解答】解:T r+1==2k x r﹣2k,令的展开式的通项公式T′k+1令r﹣2k=0,k=0,r=0时,可得:T1=1.k=1,r=2时,可得:T3=,T′2=,∴=60.k=2,r=4时,可得:T5=,T′3==24,∴×24=360.k=3,r=6时,可得:T7=,T′4==160,∴×160=160.∴(x++1)6展开式中的常数项是1+60+360+160=581.故答案为:581.【点评】本题考查了二项式定理的应用,考查了分类讨论方法、推理能力与计算能力,属于中档题.13.在棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是棱上一点,则满足|PA|+|PC1|=2的点P的个数为6.【考点】棱柱的结构特征.【分析】由题意可得点P是以2c=为焦距,以a=1为长半轴,为短半轴的椭圆与正方体与棱的交点,可求.【解答】解:∵正方体的棱长为1∴AC1=,∵|PA|+|PC1|=2,∴点P是以2c=为焦距,以a=1为长半轴,以为短半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在棱B1C1,C1D1,CC1,AA1,AB,AD上各有一点满足条件.故答案为:6.【点评】本题以正方体为载体,主要考查了椭圆定义的灵活应用,属于综合性试题.14.若数列{a n}前n项和S n满足S n﹣1+S n=2n2+1(n≥2,n∈N+),且满足a1=x,{a n}单调递增,则x的取值范围是(2,3).【考点】数列递推式.【分析】根据条件求出与a n的有关的关系式,利用条件,{a n}单调递增,建立条件,即可得到结论.【解答】解:由条件S n﹣1+S n=2n2+1(n≥2)得S n+S n+1=2(n+1)2+1,两式相减得a n+1+a n=4n+2,故a n+2+a n+1=4n+6,两式再相减得a n+2﹣a n=4,得{a n+2}是公差d=4的等差数列,由n=2得a1+a2+a1=9,a2=9﹣2x,从而a2n=4n+5﹣2x;n=3得a1+a2+a3+a1+a2=19,a3=1+2x,从而a2n+1=4n﹣3+2x,由条件得,解得2<x<3,故x的取值范围为(2,3),故答案为:(2,3).【点评】本题主要考查参数的取值范围的求解,根据条件求出与a n的有关的关系式是解决本题的关键,有一定的难度.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是()A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]【考点】直线与平面所成的角.【分析】做出斜线与射影所确定的平面,则当α内的直线与射影平行时.夹角最小为35°,当直线与射影垂直时,夹角最大为90°.【解答】解:设平面α的斜线的斜足为B,过斜线上A点做平面α的垂线,垂足为C,则∠ABC=35°,∴当α内的直线与BC平行时,直线与斜线所成的角为35°,当α内的直线与BC垂直时,则此直线与平面ABC垂直,∴直线与斜线所成的角为90°,故选:D.【点评】本题考查了线面角的定义,异面直线所成的角的计算,属于中档题.16.已知log2x,log2y,2成等差数列,则M(x,y)的轨迹的图象为()A.B.C.D.【考点】函数的图象.【分析】根据等差中项,得到2log2y=2+log2x,继而得到y2=4x,x>0,y>0,问题得以解决.【解答】解:∵log2x,log2y,2成等差数列,∴2log2y=2+log2x,∴y2=4x,x>0,y>0,∴M(x,y)的轨迹的图象为焦点为(1,0)的抛物线的一部分,x>0,y>0,故选:A.【点评】本题考查了等差中项和对数的运算性质,以及抛物线的问题,属于基础题.17.设,那么以|z1|为直径的圆的面积为()A.πB.4πC.8πD.16π【考点】复数求模.【分析】由已知可得: +4=0,解得=i,即可得出.【解答】解:∵,∴+4=0,解得==i,∴|z1|=|z2||1i|=4,∴以|z1|为直径的圆的面积为22π=4π.故选:B.【点评】本题考查了实系数一元二次方程的解法、复数的几何意义、圆的面积计算公式,考查了推理能力与计算能力,属于中档题.18.方程9x+|3x+b|=5(b∈R)有两个负实数解,则b的取值范囤为()A.(3,5) B.(﹣5.25,﹣5)C.[﹣5.25,﹣5)D.前三个都不正确【考点】根的存在性及根的个数判断.【分析】化简9x+|3x+b|=5可得3x+b=5﹣9x或3x+b=﹣5+9x,从而讨论以确定方程的根的个数,从而解得.【解答】解:∵9x+|3x+b|=5,∴|3x+b|=5﹣9x,∴3x+b=5﹣9x或3x+b=﹣5+9x,①若3x+b=5﹣9x,则b=5﹣3x﹣9x,其在(﹣∞,0)上单调递减,故当b≤3时,无解,当3<b<5时,有一个解,当b≥5时,无解;②若3x+b=﹣5+9x,则b=﹣5﹣3x+9x=(3x﹣)2﹣,∵x∈(﹣∞,0)时,0<3x<1,∴当﹣<b<﹣5时,有两个不同解;当b=﹣时,有一个解;综上所述,b的取值范围为(﹣5.25,﹣5),故选B.【点评】本题考查了绝对值方程的解法与应用,属于中档题.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(13分)(2016•奉贤区一模)平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;(1)画出面PBE与面ABC的交线,说明理由;(2)求面PBE与面ABC所成的锐二面角的大小.【考点】二面角的平面角及求法.【分析】(1)延长PE交AC于F,可证F与C重合,故直线BC即为面PBE与面ABC的交线;(2)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出面PBE与面ABC所成的锐二面角的大小.【解答】解:(1)延长PE交AC于F,直线BC即为面PBE与面ABC的交线;理由如下:∵AP 、AB 、AC 两两互相垂直, ∴PA ⊥平面ABC , ∵DE ⊥平面ABC , ∴DE ∥PA ,∴=,∴F 与C 重合.∵C ∈PE ,C ∈AC ,PE ⊂平面PBE ,AC ⊂平面ABC , ∴C 是平面PBE 和平面ABC 的公共点, 又B 是平面PBE 和平面ABC 的公共点, ∴BC 是面PBE 与面ABC 的交线. (2)∵AP 、AB 、AC 两两互相垂直,∴AB ⊥平面PAC ,∴V B ﹣PADE =S 梯形ADEP •AB=(1+2)×1×AB=,解得AB=.以A 为原点,AB 为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,B (,0,0),P (0,0,2),E (0,1,1),=(,0,2),=(0,1,﹣1),设二面角PBE 的法向量=(x ,y ,z ),则,取y=1,得=(﹣,1,1),平面ABC 的法向量=(0,0,1),∴cos <>===,∴面PBE 与面ABC 所成的锐二面角的大小为arccos .【点评】本题考查了平面的性质,二面角的计算,属于中档题,解题时要认真审题,注意向量法的合理运用.20.(13分)(2016•奉贤区一模)已知椭圆C:=1(a>b>0)的长轴长是短轴长的两倍,焦距为2.(1)求椭圆C的标准方程;(2)不过原点O的直线l与椭圆C交于两点M,N,且直线OM,MN,ON的斜率依次成等比数列,问:直线l是否定向的,请说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)由椭圆的长轴长是短轴长的两倍,焦距为2,列出方程组能求出椭圆C的标准方程.(2)由题意设直线l的方程为y=kx+m,(km≠0),联立,得(1+4k2)x2+4kmx+4(m2﹣1)=0,由此利用根的判别式、韦达定理、等比数列、椭圆性质,结合已知条件能求出直线l不定向.【解答】解:(1)∵椭圆C:=1(a>b>0)的长轴长是短轴长的两倍,焦距为2,∴,解得a=2,b=1,∴椭圆C的标准方程为.(2)由题意设直线l的方程为y=kx+m,(km≠0),联立,得(1+4k2)x2+4kmx+4(m2﹣1)=0,△=16(4k2﹣m2+1)>0,设M(x1,y1),N(x2,y2),则,,∴y1y2=(kx1+m)(kx2+m)=,∵直线OM,MN,ON的斜率依次成等比数列,∴=k2,∴﹣+m2=0,∵m≠0,∴k2=,方向向量=(±2,1).∴直线l不定向.【点评】本题考查椭圆方程的求法,考查直线是否定向的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、等比数列、椭圆性质的合理运用.21.(14分)(2016•奉贤区一模)如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区,为了妥善处理生活垃圾,政府决定在AB的背面建一个垃圾发电厂P,垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大),现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,设|PA|=5x>0.(1)求cos∠PAB(用x的表达式表示)(2)问垃圾发电厂该如何选址才能同时满足上述要求?【考点】余弦定理的应用.【分析】(1)由条件可设PA=5x,PB=3x,运用余弦定理,即可得到cos∠PAB;(2)由同角的平方关系可得sin∠PAB,求得点P到直线AB的距离h=PAsin∠PAB,化简整理配方,由二次函数的最值的求法,即可得到所求最大值及PA,PB的值.【解答】解:(1)由条件①,得,∵PA=5x,∴PB=3x,则,可得;(2)由同角的平方关系可得,所以点P到直线AB的距离h=PAsin∠PAB,=,∵cos∠PAB≤1,∴,∴2≤x≤8,所以当x2=34,即时,h取得最大值15千米.即选址应满足千米,千米.【点评】本题考查解三角形的数学模型的解法,注意运用余弦定理和同角的平方关系和二次函数的最值的求法,考查化简整理的运算能力,属于中档题.22.(16分)(2016•奉贤区一模)(1)已知0<x1<x2,求证:;(2)已知f(x)=lg(x+1)﹣log3x,求证:f(x)在定义域内是单调递减函数;(3)在(2)的条件下,求集合M={n|f(n2﹣214n﹣1998)≥0,n∈Z}的子集个数.【考点】对数函数的图象与性质;子集与真子集.【分析】(1)使用分析法证明;(2)设0<x1<x2,利用(1)的结论和对数函数的性质化简f(x1)﹣f(x2)判断其符号,得出结论;(3)由(2)的结论及f(9)=0列出不等式组,解出n即可得出M中元素的个数.【解答】(1)证明:∵x2+1>0,x2>0,欲证:,只需证:x2(x1+1)>x1(x2+1),即证:x1x2+x2>x1x2+x1,只需证:x2>x1,显然x2>x1成立,∴.(2)解:f(x)的定义域为(0,+∞).设0<x1<x2,则f(x1)﹣f(x2)=lg(x1+1)﹣lg(x2+1)+log3x2﹣log3x1=lg+log3=lg﹣log.∵0<x1<x2,∴0<<<1,∴lg>log>log,∴f(x1)﹣f(x2)=lg﹣log>log﹣log=0.∴f(x1)>f(x2),∴f(x)在定义域(0,+∞)上是减函数.(3)解:由(2)知f(x)是定义在(0,+∞)上的减函数,且f(9)=0,∵f(n2﹣214n﹣1998)≥0,∴0<n 2﹣214n ﹣1998≤9. ∴13447<(n ﹣107)2≤13456.∵115<<116,=116,n ∈Z ,∴n ﹣107=116或n ﹣107=﹣116. ∴集合M 有两个元素. ∴集合M 有4个子集.【点评】本题考查了不等式的证明,对数函数的性质,函数单调性的应用,属于中档题.23.(18分)(2016•奉贤区一模)数列{a n },{b n }满足,a 1>0,b 1>0;(1)求证:{a n •b n }是常数列;(2)若{a n }是递减数列,求a 1与b 1的关系; (3)设a 1=4,b 1=1,当n ≥2时,求a n 的取值范围. 【考点】数列递推式.【分析】(1)由题意可知a n •b n =a n ﹣1•b n ﹣1=…=a 1•b 1,故问题得以证明; (2)根据{a n }是递减数列,得到(a 1﹣b 1)2>0,a n >b n ,得到a 1>b 1恒成立,(3)先判断a n +1>2,再根据a n +1﹣a n =,得到a n +1﹣a n <0,{a n }是递减数列,即可得到a n ﹣a 2<0,求出a n 的取值范围.【解答】解:(1)∵,∴2a n +1=a n +b n ,=,∴b n +1=,∴a n +1b n +1=a n •b n ,∴a n •b n =a n ﹣1•b n ﹣1=…=a 1•b 1,∴{a n •b n }是常数列;(2){a n }是递减数列,a n +1﹣a n <0,∵a 2﹣a 1=(a 1+b 1)﹣a 1=(b 1﹣a 1)<0∴a 1>b 1,∵a 3﹣a 2=(b 2﹣a 2)<0,∴a 2>b 2,∵(a 1+b 1)>,∴(a 1﹣b 1)2>0,猜想a n +1﹣a n =(b n ﹣a n )<0,∴a n >b n ,∴a 1>b 1恒成立,∵a k +2﹣a k +1=(b k +1﹣a k +1)==<0, ∴a 1>b 1时,{a n }是递减数列.(3)整理得a n +1=(a n +),a 1=4,∴a 2=,∴a 1>0⇒a 2>0⇒a 3>0⇒…⇒a n >0,当n ≥2时,a n +1﹣2=(a n +)﹣2=>0, ∴a n +1>2,∴a n +1﹣a n =(b n ﹣a n )==, ∵a n >2,∴a n +1﹣a n <0,∴{a n }是递减数列,∴a n ﹣a 2<0,∴a n∈(2,]【点评】本题考查了递推数列的,常数列,数列的函数特征,以及a n的取值范围,培养了学生的运算能力,转化能力,属于难题.。
上海市17区县2016届高三第二次模拟数学理试题分类汇编:立体几何一、填空、选择题1、(崇明县2016届高三二模)已知圆锥的母线长为5cm ,侧面积为15πcm 2,则此圆锥的体积为cm 2.2、(奉贤区2016届高三二模)在棱长为1的正方体ABCD A B C D ''''-中,若点P 是棱上一点,则满足2PA PC '+=的点P 的个数_______.3、(虹口区2016届高三二模)已知A 、B 是球O 的球面上两点,90AOB ∠=,C 为该球面上的动点,若三棱锥ABC O -体积的最大值为323, 则球O 的表面积为__________4、(黄浦区2016届高三二模)已知一个凸多边形的平面展开图由两个正六边形和六个正方形构成,如右上图所示,若该凸多面体所有棱长均为1,则其体积V = 5、(静安区2016届高三二模)如图,正四棱锥P ABCD -的底面边长为23cm ,侧面积为 283cm ,则它的体积为 .6、(闵行区2016届高三二模)若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的 倍.7、(浦东新区2016届高三二模)已知四面体ABCD 中,2==CD AB ,E ,F 分别为BC ,AD 的中点,且异面直线AB 与CD 所成的角为3π,则EF =________. 8、(普陀区2016届高三二模)若a 、b 表示两条直线,α表示平面,下列命题中的真命题为( ) (A )若α⊥a ,b a ⊥,则α//b (B )若α//a ,b a ⊥,则α⊥b (C )若α⊥a ,α⊆b ,则b a ⊥ (D )若α//a ,α//b ,则b a //9、(徐汇、金山、松江区2016届高三二模).如图,圆锥形容器的高为,h 圆锥内水面的高为1,h 且11,3h h =若将圆锥倒置,水面高为2,h 则2h 等于------------------------------------------------( )(A )23h (B )1927h (C )363h (D )3193h10、(杨浦区2016届高三二模)已知命题:“若a ,b 为异面直线,平面α过直线a 且与直线b 平行,则直线b 与平面α的距离等于异面直线a ,b 之间的距离”为真命题.根据上述命题,若a ,b 为异面直线,且它们之间的距离为d ,则空间中与a ,b 均异面且距离也均为d 的直线c 的条数为( )A0条 B.1条 C.多于1条,但为有限条 D.无数多条 11、(闸北区2016届高三二模)已知,,,S A B C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB == 2BC =,则球O 的表面积等于( ) A .π4 B .π3 C .π2 D .π12、(长宁、青浦、宝山、嘉定四区2016届高三二模)下列命题正确的是( ). (A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α; (C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π; (D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .13、(闵行区2016届高三二模)如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线14、(浦东新区2016届高三二模)给出下列命题,其中正确的命题为( ) (A )若直线a 和b 共面,直线b 和c 共面,则a 和c 共面;(B )直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直;Q A DCBP (第20题图)(C )直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (D )异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直. 二、解答题1、(崇明县2016届高三二模)如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 是棱CD 的中点. (1)求证:11EF B D ∥; (2)求二面角1C EF A --的大小(结果用反三角函数值表示).2、(奉贤区2016届高三二模)面ABC 外的一点P ,,,AP AB AC 两两互相垂直,过AC 的中点D 作ED ⊥面ABC ,且1ED =,2PA =,2AC =,连,BP BE ,多面体B PADE -的体积是33. (1)画出面PBE 与面ABC 的交线,说明理由;(2)求面PBE 与面ABC 所成的锐二面角的大小.3、(虹口区2016届高三二模)如图,在四棱锥ABCD P -中,已知⊥PA 平面ABCD , 且四边形ABCD 为直角梯形,90ABC BAD ∠=∠=︒,2AB AD AP ===,1BC =.(1) 求点A 到平面PCD 的距离;(2) 若点Q 为线段BP 的中点,求直线CQ 与平面ADQ 所成角的大小.AC BC 1A 1B 1(第19题图)D 1 DFEADB CPE4、(黄浦区2016届高三二模)如图,小凳的凳面为圆形,凳脚为三根细钢管,考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点P 与凳面圆形的圆心O 的连线垂直于凳面和地面,且P 分两钢管上下两段的比值为0.618,三只凳脚与地面所成的角均为60°,若A 、B 、C 是凳面圆周的三等分点,18AB =厘米,求凳面的高度h 及三根细钢管的总长度(精确到0.01);5、(静安区2016届高三二模)设点,E F 分别是棱长为2的正方体1111ABCD A B C D -的棱1,AB AA 的中点.如图,以C 为坐标原点,射线CD 、CB 、1CC 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系.(1)求向量1D E 与1C F的数量积;(2)若点,M N 分别是线段1D E 与线段1C F 上的点,问是否存在直线MN ,MN ⊥平面ABCD ?若存在,求点,M N 的坐标;若不存在,请说明理由EFB 1A 1C 1D 1BC DA6、(闵行区2016届高三二模)如图,在直角梯形PBCD 中,//PB DC ,DC BC ⊥,22PB BC CD ===,点A 是PB 的中点,现沿AD 将平面PAD 折起,设PAB θ∠=.(1)当θ为直角时,求异面直线PC 与BD 所成角的大小; (2)当θ为多少时,三棱锥P ABD -的体积为26.7、(浦东新区2016届高三二模)如图,在圆锥SO 中,AB 为底面圆O 的直径,点C 为»AB 的中点,SO AB =.(1)证明:AB ⊥平面SOC ;(2)若点D 为母线SC 的中点,求AD 与平面SOC 所成的角.(结果用反三角函数表示)8、(普陀区2016届高三二模)在正四棱柱1111D C B A ABCD -中,底面边长为1,B C 1与底面ABCD 所成的角的大小为2arctan ,如果平面11C BD 与底面ABCD 所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值)D .A 1CEABCD B 19、(徐汇、金山、松江区2016届高三二模)在直三棱柱111C B A ABC -中,1==AC AB ,090=∠BAC ,且异面直线B A 1与11C B 所成的角等于060,设a AA =1. (1)求a 的值;(2)求三棱锥BC A B 11-的体积.10、(杨浦区2016届高三二模)如图,底面是直角三角形的直三棱柱111ABC A B C -中,1112AC BC AA ===,D 是棱1AA 上的动点. (1)证明:1DC BC ⊥; (2)求三棱锥1C BDC -的体积.11、(闸北区2016届高三二模)在长方体1111ABCD A BC D -中,2AB =,1AD =,11AA =,点E 在棱AB 上移动.(1)探求AE 多长时,直线1D E 与平面11AA D D成45角;(2)点E 移动为棱AB 中点时,求点E 到平面11A DC 的距离.1A 1B 1CA BC12、(长宁、青浦、宝山、嘉定四区2016届高三二模)如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA的中点. (1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角 函数值表示).参考答案一、填空、选择题1、12π2、23、64π4、3325、4106、37、1 或38、C9、D 10、D 11、A 12、D 13、B 14、D二、解答题1、可得有关点的坐标为 11111(0,0,1),(1,1,1),(,1,0),(0,,0),(0,1,1)22D BEF C 11(,,0)22EF =-- ,11(1,1,0)B D =-- ......................4分所以112B D EF =...............................5分所以11EF B D ∥...............................6分(2)设1(,,)n u v w =是平面1C EF 的一个法向量. 因为111,n EF n FC ⊥⊥所以1111110,0222n EF u v n FC v w ⋅=--=⋅=+= 解得,2u v v w =-=- .取1w = ,得1(2,2,1)n =-.............................9分因为1DD ABCD ⊥平面,所以平面ABCD 的一个法向量是2(0,0,1)n =.........10分 设1n 与2n 的夹角为α ,则12121cos 3||||n n n n α⋅==⋅.......................11分 ACBC 1A 1B 1(第19题图)D 1D FE x yzAB C A 1B 1C 1D结合图形,可判别得二面角1C EF A --是钝角,其大小为1arccos3π- ........12分 2、(1)根据条件知:PE 与AD 交点恰好是C 1分 ,C PE C ∈∴∈面PBE ,,C AC C ∈∴∈面ABC 2分B ∈面PBE ,B ∈面ABC 3分 面PBE 与面ABC 的交线BC 5分 (2)(理) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯= 9分 233BA ∴=10分建立空间直角坐标系,设平面的法向量是()1,,n x y z23,0,03B ⎛⎫ ⎪ ⎪⎝⎭ ,()0,2,0C ()0,1,0D ()0,1,1E ()0,0,2P 23,0,23BP ⎛⎫=- ⎪ ⎪⎝⎭ ,23,1,13BE ⎛⎫=- ⎪ ⎪⎝⎭123203n BP x z ⋅=-+=12303n BE x y z ⋅=-++=()13,1,1n ∴=11分面ABC 的法向量()20,0,1n =1212cos n n n n θ⋅==⋅ 1555= 12分 所以面PBE 与面ABC 所成的锐二面角大小5arccos513分 注:若作出二面角得2分,计算再3分(2)(文) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分 多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯= 9分 233BA ∴=10分 连接AEAE 是BE 在面EDAP 的射影BEA ∠是BE 与面PADE 所成的线面角. 11分计算2AE =,2363tan 32BAE ∠== 12分ADBCPEA DBC P E z x yQA D CBP (第20题解答图)zyx BEA ∠是BE 与面PADE 所成的线面角6arctan3. 13分3、(理)解:(1)以},,{AP AD AB 为正交基底建立空间 直角坐标系xyz A -,则相关点的坐标为B (2,0,0),(2,1,0),(0,2,0),(0,0,2).C D P ……2分设平面PCD 的法向量为(,,),n x y z =由(2,1,0),DC =- (0,2,2),DP =- (0,2,0).DA =-则202,2.220n DC x y y x z x n DPy z ìïì?-==ïïïÞ眄镲=?-+=ïîïî 令1x =,则(1,2,2)n =. ……5分所以点A 到平面PCD 的距离为:(0,2,0)(1,2,2)4.(1,2,2)3DA n d n×-?=== ……7分 (2) 由条件,得(1,0,1),Q =(0,2,0),(1,0,1),AD AQ ==且(1,1,1).CQ=-- 设平面ADQ 的法向量为0000(,,),n x y z = 则00000000200,.0n AD y y z x n AQ x z ìïì?==ïï镲Þ眄镲=-?+=ïïîî 令01x =,则0(1,0,1)n =-. ……10分设直线CQ 与平面ADQ 所成角为,θ则00026sin cos ,.332CQ n CQ n CQ n θ⋅=<>===⋅故直线CQ 与平面ADQ 所成角的大小为6sin.3arc ……14分 注:第(1)小题也可用等积法来做.4、[解] 联结PO ,AO ,由题意,PO ⊥平面ABC ,因为凳面与地面平行, 所以PAO ∠就是PA 与平面ABC 所成的角,即60PAO ∠=︒.(2分) 在等边三角形ABC 中,18AB =,得63AO =,(4分) 在直角三角形PAO 中,318OP AO ==,(6分)由0.618OPh OP=-,解得47.13h ≈厘米.(9分)三根细钢管的总长度3163.25sin60h≈︒厘米.(12分)5、(1)在给定空间直角坐标系中,相关点及向量坐标为11(2,0,2),(1,2,0),(1,2,2)D E D E =--…………2分PA B C D xy z PA BCD11(0,0,2),(2,2,1),(2,2,1)C F C F =-…………4分所以111222(2)(1)4D E C F ⋅=-⨯+⨯+-⨯-=。
闵行区2015-2016学年第二学期高三年级质量调研考试数 学 理试 卷考生注意:1.本试卷共4页,23道试题,满分150分。
考试时间120分钟。
2.本考试分设试卷和答题纸。
试卷包括三大题,第一大题为填空题,第二大题为选择题,第三大题为解答题。
3.答卷前,务必在答题纸上填写学校、姓名、准考证号。
4.作答必须涂或写在答题纸上,在试卷上作答一律不得分。
第二大题的作答必须涂在答题纸上相应的区域,第一、第三大题的作答必须写在答题纸上与试卷题号对应的位置。
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数3log (1)y x =-的定义域是 .2.集合{}2|30A x x x =-<,{}2B x x =<,则U A B 等于 . 3.若复数1i 11i 2b ++-(i 为虚数单位)的实部与虚部相等,则实数b 的值为 . 4.已知函数3log 1()21x f x =,则1(0)f-= .5.若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的 倍.6.平面向量a r 与b r 的夹角为60︒,1a =r ,(3,0)b =r ,则2a b +=r r.7.已知ABC △的周长为4,且sin sin 3sin A B C +=,则AB 边的长为 .8.若6x ⎛ ⎝的展开式中的3x 项大于15,且x 为等比数列{}n a 的公比,则1234limnn na a a a a a →∞+++=+++L L .9.若0m >,0n >,1m n +=,且1t m n+(0t >)的最小值为9,则t = . 10.若以x 轴正方向为始边,曲线上的点与圆心的连线为终边的角θ为参数,则圆2220x y x +-=的参数方程为 .1cos sin x y θθ=+⎧⎨=⎩(02θ≤<π)11.若AB 是圆22(3)1x y +-=的任意一条直径,O 为坐标原点,则OA OB ⋅u u u r u u u r的值为 .12.在极坐标系中,从四条曲线1:1C ρ=,2:C θπ=3(0ρ≥),3:cos C ρθ=,4:sin 1C ρθ=中随机选择两条,记它们的交点个数为随机变量ξ,则随机变量ξ的数学期望E ξ= .13.设数列{}n a 的前n 项和为n S ,22|2016|n S n a n =+-(0a >),则使得1n n a a +≤(n ∈*N )恒成立的a 的最大值为 .14. (理科)若两函数y x a =+与212y x =-的图像有两个交点A 、B ,O 是坐标原点,OAB △是锐角三角形,则实数a 的取值范围是 .二. 选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.如果a b >,那么下列不等式中正确的是( ). (A)11a b> (B) 22a b > (C) ()()lg 1lg 1a b +>+ (D) 22a b > 16.若l m 、是两条直线,m ⊥平面α,则“l m ⊥”是“//l α”的( ). (A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既非充分又非必要条件17.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线18.将函数()2sin 2f x x =的图像向右平移ϕ(0ϕ<<π)个单位后得到函数()g x 的图像.若对满足12()()4f x g x -=的12x x 、,有12x x -的最小值为π6.则ϕ=( ). (A )π3 (B) π6 (C )π3或2π3 (D) π6或5π6三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)ABC DPPABCD P ABCD复数21sin i cos2z x x =+⋅,22sin i cos z x x =+⋅(其中x ∈R ,i 为虚数单位). 在复平面上,复数1z 、2z 能否表示同一个点,若能,指出该点表示的复数;若不能,说明理由.20.(本题满分14分)本题共有2个小题,每小题满分各7分.如图,在直角梯形PBCD 中,//PB DC ,DC BC ⊥,22PB BC CD ===,点A 是PB 的中点,现沿AD 将平面PAD 折起,设PAB θ∠=. (1)当θ为直角时,求异面直线PC 与BD 所成角的大小; (2)当θ为多少时,三棱锥P ABD -的体积为6.21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分. 为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型()n ∈*N :以8122002000,(18)()36033000,(932)32400720,(3345)n n n f n n n n -⋅+≤≤⎧⎪⎪=⋅+≤≤⎨⎪-⋅≤≤⎪⎩表示第n 个时刻进入园区的人数;以0,(118)()5009000,(1932)8800,(3345)n g n n n n ≤≤⎧⎪=⋅-≤≤⎨⎪≤≤⎩表示第n 个时刻离开园区的人数.设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即1=n ;9点30分作为第2个计算单位,即2=n ;依次类推,把一天内从上午9点到晚上8点15分分成45个计算单位(最后结果四舍五入,精确到整数).(1)试计算当天14点至15点这一小时内,进入园区的游客人数(21)(22)(23)(24)f f f f +++、离开园区的游客人数(21)(22)(23)(24)g g g g +++各为多少?(2)从13点45分(即19n =)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.22.(本题满分16分)本题共有3个小题,第(1)(2)小题满分各5分,第(3)小题满分6分.已知椭圆Γ:22221x y a b+=(0)a b >>的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点. (1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线2y =上,且OA OB ⊥, 求证:2211OA OB+为定值; (3)设点C 在椭圆Γ上运动,OC OD ⊥,且点O 到直线CD 的距离为常数d ()02d <<,求动点D 的轨迹方程.23.(本题满分18分)本题共有3个小题,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分7分.已知n ∈*N ,数列{}n a 、{}n b 满足:11n n a a +=+,112n n n b b a +=+,记24n n n c a b =-. (1)若11a =,10b =,求数列{}n a 、{}n b 的通项公式; (2)证明:数列{}n c 是等差数列;(3)定义2()n n n f x x a x b =++,证明:若存在k ∈*N ,使得k a 、k b 为整数,且()k f x 有两个整数零点,则必有无穷多个()n f x 有两个整数零点.参考答案与评分标准一、填空题(第1题至第14题)每题正确得4分,否则一律得0分.1.()1,+∞; 2.()2,3-; 3.2;4.9; 5.3; 6 7.1; 8.1; 9.4; 10.1cos sin x y θθ=+⎧⎨=⎩(02θ≤<π)、 11.8; 12.113.12016 14.,33⎛⎫ ⎪ ⎪⎝⎭、 二. 选择题(第15题至18题)每题正确得5分,否则一律得0分. 15.D ; 16.C ; 17.B ; 18. C 三、解答题(第19题至23题) 19.(本题满分12分)解:设复数1z ,2z 能表示同一个点,则cos2cos x x = ……………………3分 解得cos 1x =或1cos 2x =-, ………………………………7分 当cos 1x =时,得2sin 0x =,此时12i z z ==; ……………9分当1cos 2x =-时,得23sin 4x =,此时1231i 42z z ==-; ……………11分PA BCD综上,复平面上该点表示的复数为i 或31i 42-. ……………12分 20.(本题满分14分)本题共有2个小题,每小题满分各7分.解:理:(1)当θ为直角时,即,,AB AD AP 两两互相垂直,以点A 为坐标原点,,,AB AD AP 为坐标轴建立空间直角坐标系, ………………1分则(1,0,0)(1,2,0)(0,2,0)(0,0,1)B C D P ,(1,2,1)PC =-u u u r ,(1,2,0)BD =-u u u r……3分设异面直线PC 与BD 所成角为α,则cos PC BDPC BD α⋅=⋅u u u r u u u ru u u r u u u r 10= (5)分 故异面直线PC 与BD 所成角为.…7分(2)Θ沿AD 将平面PAD 折起的过程中,始终 有PA AD ⊥,AB AD ⊥,AD PAB ∴⊥面,由PAB D ABD P V V --=得 ……………………9分 163PAB S DA =⋅⋅△11211sin 32θ=⋅⋅⋅⋅⋅,sin 2θ∴= ……………………12分 4πθ∴=或34π. ……………………………14分 21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分. 解:(1)当天14点至15点这一小时内进入园区人数为(21)(22)(23)(24)f f f f +++1314151612121212360[3333]30004=⨯++++⨯17460≈(人) …………………3分离开园区的人数(21)(22)(23)(24)=9000g g g g +++(人) ………………6分 (2)(理)当0)()(≥-n g n f 时,园内游客人数递增;当0)()(<-n g n f 时,园内游客人数递减. ………………7分 ①当1932n ≤≤时,由812()()3603500120000n f n g n n --=⋅-+≥,可得:当1928n ≤≤时,进入园区游客人数多于离开园区游客人数,总人数越来越多;…9分 当3229≤≤n 时,进入园区游客人数少于离开游客人数,总人数将变少; ……11分 (049.246)28()28(>=-g f ;013.38)29()29(<-=-g f )②当4533≤≤n 时,由()()72023600f n g n n -=-+递减,且其值恒为负数.进入园区游客人数少于离开游客人数,总人数将变少. ………………13分综上,当天下午16点时(28n =)园区内的游客人数最多,此时计算可知园区大约共有77264人. ………………14分22.(本题满分16分)本题共有3个小题,第(1)(2)小题满分各5分,第(3)小题满分6分. 解:(1)由条件可得b c ==2a =, …………………………3分椭圆Γ的方程为22142x y +=.………………………………………………………5分 (2)设00(,)A x y ,则OB 的方程为000x x y y +=,由2y =得02(,2)y B x -…7分 ∴22222000201111=44y OA OB x y x ++++22002222000044=4()4(2)2x x x x y x ++=++-12=.…10分 (3)设00(,),(,)C x y D x y ,由OC OD ⊥得000x x y y += ①又C 点在椭圆上得:2200142x y += ② 联立①②可得222200222244,22y x x y x y x y ==++ ③ …………………………12分由OC OD ⊥得=OC OD CD d ⋅⋅,即22222=(+)OC OD OC OD d ⋅⋅ 可得222111d OC OD=+, ………………………………………………………14分 将③代入得:22222220011111d OC OD x y x y =+=+++2222222222221124444()22x y x y x y x y x y x y ++=+=+++++, 化简得D 点轨迹方程为:22221111()()124x y d d -+-=.…………………………16分 23.(本题满分18分)本题共有3个小题,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分7分.解: (1)n a n =, ………………………………………………………………2分Θ1122n n n n nb b a b +=+=+,∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- …………………4分1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.……………………………………6分 (2)221114(4)n n n n n n c c a b a b +++-=---……………………………………………8分221(1)4()(4)12n n n n n a a b a b =+-+--=∴{}n c 是公差为1的等差数列.……………………………………………………11分(3)由解方程得:x =()0k f x =两根x = 为整数,则k c ∆=必为完全平方数,不妨设2()k c m m =∈N , …………12分此时2k a mx -±==为整数,∴k a 和m 具有相同的奇偶性,………13分 由(2)知{}n c 是公差为1的等差数列,取21n k m =++∴()222121211k m k c c m m m m ++=++=++=+ ………………………………15分此时(21)(1)2k a m m x -++±+==Θk a 和m 具有相同的奇偶性,∴21k a m ++和1m +具有相同的奇偶性, …17分所以函数21()k m f x ++有两个整数零点.由递推性可知存在无穷多个()n f x 有两个整数零点.………………………………18分2016年闵行区高考数学二模卷一、填空题1.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/函数及其基本性质/函数的有关概念. 【参考答案】(1,)+∞【试题分析】依题意可知,10x ->,即1x >,所以函数3log (1)y x =-的定义域为(1,)+∞,故答案为[1,)+∞.2.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/集合与命题/交集,并集,补集;方程与代数/不等式/一元二次不等式(组)的解法、含有绝对值的不等式的解法. 【参考答案】(2,3)-【试题分析】集合2{|30}{|03}A x x x x x =-<=<<,{|||2}{|22}B x x x x =<=-<<, 所以{|23}A B x x =-<<U ,故答案为(2,3)-.3.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数与运算的基本知识. 【知识内容】数与运算/复数初步/复数的概念、复数的四则运算. 【参考答案】2【试题分析】复数21i 1(1i)11i 1i 2(1i)(1i)22b b b +++=+=+--+,因为复数的实部与虚部相等,则有112b =,解得2b =,故答案为2. 4.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/指数函数与对数函数/反函数;方程与代数/矩阵与行列式初步/二阶、三阶行列式. 【参考答案】9【试题分析】函数33log 1()log 221x f x x ==-,令()0f x =,解得9x =.根据互为反函数的两个函数之间的关系可知1(0)9f -=,故答案为9.5.【测量目标】空间想象能力/能根据图形想象出直观形象. 【知识内容】图形与几何/简单几何体的研究/锥体. 【参考答案】3【试题分析】设圆锥的母线长为l ,底面半径为r ,依题意有,3l r =,则圆锥的底面积为2πS r =底,圆锥的侧面积为212π3π2S l r r =⋅⋅=侧,所以圆锥的侧面积与底面积的比为223π3πS r S r==侧底,故答案为3. 6.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/平面向量的坐标表示/向量的度量计算.【试题分析】因为(3,0)b =r ,所以||3b =r ,又因为||1a =r ,||a r 与||b r的夹角为60°,所以3||||cos602a b a b ⋅=⋅=or r r r .因为222|2|4419a b a a b b +=+⋅+=r r r r r r,所以|2|a b +=r r ,7.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/三角比/正弦定理和余弦定理. 【参考答案】1【试题分析】因为sin sin 3sin A B C +=,所以3a b c +=,又ABC △的周长为4,即4a b c ++=,所以43,1c AB c -===.8.【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理. 【知识内容】整理与概率统计/排列、组合、二项式定理/二项式定理: 方程与代数/数列与数学归纳法/数列的极限. 【参考答案】1【试题分析】6x ⎛+ ⎝的展开式中第r 项为3662166C C rr r r r r T x x --+⎛=⋅=,令3632r -=得2r =,所以展开式的第2项为2336C 1515x x =>,1x >,因为x 为等比数列{}n a 的公比,所以121222341+(1)11lim lim =lim +1(1)n nn n n n n n n a a a a x x x a a a xa x x x x -→∞→∞→∞⎛⎫++---=⋅ ⎪ ++---⎭⎝…… =221lim 11n n x x x →∞⎛⎫--= ⎪-⎭⎝. 9.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/不等式/基本不等式. 【参考答案】4【试题分析】因为1m n +=,所以11()()11t t nt mm n t t m n m n m n+=++=+++++≥=211)t ++=,当22m nt =时,取等号,又因为1t m n+的最小值为9,即21)9=,所以4t =,故答案为4.10.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/曲线与方程/圆的标准方程和几何性质; 图形与几何/参数方程和极坐标/参数方程. 【参考答案】1cos sin x y θθ=+⎧⎨=⎩(02π)θ≤≤【试题分析】圆2220x y x +-=化为标准方程为22(1)1x y -+=,所以圆心(1,0),半径为1,所以圆上的点的坐标为(1cos ,sin )θθ+,(02π)θ≤≤,所以圆的参数方程为1cos ,sin x y θθ=+⎧⎨=⎩(θ为参数),故答案为1cos sin x y θθ=+⎧⎨=⎩(02π)θ≤≤.11.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/平面向量的坐标表示/平面向量的数量积. 【参考答案】8【试题分析】由圆的标准方程知,圆的圆心在y 轴上且圆心坐标为(0,3),半径为1,因为AB 是圆的任意一条直径,不妨假设AB 是位于y 轴上的一条直径,则1(0,)A y ,2(0,)B y ,所以1212(0,)(0,)OA OB y y y y ==u u u r u u u r g g ,又因为当0x =时,122,4y y ==, 所以128OA OB y y ==u u u r u u u r g ,故答案为8.12.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/参数方程和极坐标/极坐标:数据整理与概率统计/概率与统计/随机变量的分布及数字特征. 【参考答案】1【试题分析】曲线1234,,,C C C C 的极坐标方程化为普通方程分别为221x y +=,y =(0)x ≥,2211()24x y -+=,1y =,从四条曲线中随机选取两条,可能的结果及它们的交点个数为:12(,)C C ,1;13(,)C C ,1;14(,)C C ,1;23(,)C C ,1;24(,)C C ,1;34(,)C C ,1;所以1111116E ξ+++++==.13.【测量目标】运算能力/能通过运算,对问题进行推理和探求. 【知识内容】方程与代数/数列和数学归纳法/简单的递推数列. 【参考答案】12016【试题分析】因为22224032,120162|2016|24032,2017n n an a n S n a n n an a n ⎧-+⎪=+-=⎨+-⎪⎩≤≤≥,所以212(1)2(1)4032,22017(1)2(1)4032,2018n n a n a n S n a n a n -⎧---+⎪=⎨-+--⎪⎩≤≤≥,所以1n n n a S S -=-= 212,22016,4033+2,2017,212,2018n a n a n n a n --⎧⎪=⎨⎪-+⎩≤≤≤,1140301a S a ==+,因为+1n n a a ≤恒成立,所以122016201720172018,,,a a a a a a ⎧⎪⎨⎪⎩≤≤≤即4030132,403124033+2,4033+240352a a a a a a+-⎧⎪-⎨⎪+⎩≤≤≤解得1,20161,2a a ⎧⎪⎪⎨⎪⎪⎩≤≥-,又0a >,所以102016a <≤,故答案为12016. 14.【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】图形与几何/曲线与方程/曲线与方程的概念.【参考答案】(,33【试题分析】函数y[22-,值域为[0,)+∞,联立两函数的方程,y x a y =+⎧⎪⎨=⎪⎩消去x 得2234210y ay a -+-=,y =,因为两函数的图像有两个交点,所以222(4)43(21)0,210,4023a a a a⎧⎪∆=-⨯->⎪-⎨⎪-⎪->⨯⎩≥,解得,设1122(,),(,)A x y B x y ,则124=3a y y +,212213a y y -=,22121212121()()()=3a x x y a y a y y a y y a -=--=-++,因为OAB △是锐角三角形,所以1212221121120,0,0,0x x y y OA OB x x x y y y OA BA ⎧+>⎧⋅>⎪⇒⎨⎨-+->⋅>⎪⎩⎩u u u r u u u r u u u r u u u r 即222320,32313a a ⎧->⎪⎪⎨-⎪+>⎪⎭⎝⎩,a <<,所以a的取值范围为,故答案为. 二、填空题15.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/不等式/不等式的性质及其证明. 【正确选项】D【试题分析】选项A 中,若a b >>1,则有11a b<,所以A 不正确;选项B 中,若0a b >>,且||||a b <,则22a b <,所以B 不正确;同理选项C 也不正确,选项D 中,函数是R 上的增函数,所以有22ab >,所以D 正确,故答案为D.16.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/空间图形/空间直线与平面的位置关系; 方程与代数/集合与命题/充分条件,必要条件,充分必要条件. 【正确选项】C【试题分析】因为m ⊥平面α,若l m ⊥,则l α∥或l α⊂,所以充分性不成立,若l α∥,则有l m ⊥,必要性成立,所以“l m ⊥”是“l α∥”的必要不充分条件,故答案为C. 17. 【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理.【知识内容】图形与几何/空间图形/空间直线与平面的位置关系; 图形与几何/曲线与方程/曲线与方程的概念. 【正确选项】B【试题分析】在正方体1111ABCD A B C D -中,1D D ⊥平面ABCD ,11D D A A ∥,所以112,DPD EPD θθ=∠=∠,因为12θθ=,所以1tan tan DPD EPD ∠=∠,即1D DAE AP DP=,因为E 为1A A 的中点,所以2DPAP=,设正方体边长为2,以DA 方向为x 轴,线段DA 的垂直平分线为y 轴建立如图所示的坐标系,则(1,0),(1,0)D A -,因为2DPAP=,所以2222(1)2(1)x y x y ++=-+,化简得22525()39x y -+=,所以动点P 的轨迹为圆的一部分.第17题图 apnn218.【测量目标】逻辑思维能力/具有对数学问题进行观察、分析、综合、比较、抽象、概括、判断和论述的能力.【知识内容】函数与分析/三角函数/正弦函数和余弦函数的性质. 【正确选项】C【试题分析】函数()2sin 2f x x =的图像向右平移ϕ个单位得到函数()2sin 2()g x x ϕ=-的图像,则1212|()()|2sin 22sin 2()f x g x x x ϕ-=--1212=4cos()sin())=4x x x x ϕϕ+--++,所以12sin()=1x x ϕ-++,因为12π||6x x -=,所以12π6x x -=±,当12π6x x -=时,πsin()16ϕ-=,22ππ()3k k ϕ=+∈Z ,又因为0πϕ<<,所以2π=3ϕ,同理,可得12π6x x -=-时,π=3ϕ,所以2π3ϕ=或π3,故答案为C.三、解答题19.(本题满分12分)【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数与运算的基本知识. 【知识内容】数与运算/复数初步/复平面;函数与分析/三角比/二倍角及半角的正弦、余弦、正切.【参考答案】设复数1z ,2z 能表示同一个点,则cos2cos x x =, ……………………3分 解得cos 1x =或1cos 2x =-. ………………………………7分 当cos 1x =时,得2sin 0x =,此时12i z z ==. ……………9分当1cos 2x =-时,得23sin 4x =,此时1231i 42z z ==-. ……………11分综上,复平面上该点表示的复数为i 或31i 42-. ……………12分 20.(本题满分14分)本题共有2个小题,每小题满分各7分. 【测量目标】(1)空间想象能力/能正确地分析图形中的基本元素和相互关系. (2)空间想象能力/能正确地分析图形中的基本元素和相互关系. 【知识内容】(1)图形与几何/空间向量及其应用/距离和角. (2)图形与几何/简单几何体的研究/锥体.【参考答案】(1)当θ为直角时,即,,AB AD AP 两两互相垂直,以点A 为坐标原点,,,AB AD AP 为坐标轴建立空间直角坐标系, ………………1分 则(1,0,0)(1,2,0)(0,2,0)(0,0,1)B C D P ,(1,2,1)PC =-u u u r ,(1,2,0)BD =-u u u r……3分设异面直线PC 与BD 所成角为α,则cos PC BDPC BDα⋅=⋅u u u r u u u ru u u r u u u r 3010=………………5分 故异面直线PC 与BD 所成角为30arccos10.…7分MHLD1第19题图(1)(2)Θ沿AD 将平面PAD 折起的过程中,始终 有PA AD ⊥,AB AD ⊥,AD PAB ∴⊥面,由PAB D ABD P V V --=得 ……………………9分 2163PAB S DA ∴=⋅⋅△11211sin 32θ=⨯⨯⨯⨯⨯,2sin 2θ∴= ……………………12分 π4θ∴=或3π4. ……………………………14分MHLD2第19题图(2)21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分. 【测量目标】(1)分析问题与解决问题的能力/能通过建立数学模型,解决有关社会生活、生产实际或其他学科的问题,并能解释其实际意义.(2)分析问题与解决问题的能力/能通过建立数学模型,解决有关社会生活、生产实际或其他学科的问题,并能解释其实际意义. 【知识内容】(1)函数与分析/指数函数与对数函数/函数的应用. (2)函数与分析/指数函数与对数函数/函数的应用. 【参考答案】(1)当天14点至15点这一小时内进入园区人数为(21)(22)(23)(24)f f f f +++1314151612121212360[3333]30004=⨯++++⨯17460≈(人)…………………3分离开园区的人数(21)(22)(23)(24)=9000g g g g +++(人) ………………6分 (2)当()()0f n g n -≥时,园内游客人数递增;当0)()(<-n g n f 时,园内游客人数递减. ………………7分 ①当1932n ≤≤时,由812()()3603500120000n f n g n n --=⨯-+≥,可得:当1928n ≤≤时,进入园区游客人数多于离开园区游客人数,总人数越来越多;…9分 当2932n ≤≤时,进入园区游客人数少于离开游客人数,总人数将变少; ……11分 (049.246)28()28(>=-g f ;013.38)29()29(<-=-g f )②当3345n ≤≤时,由()()72023600f n g n n -=-+递减,且其值恒为负数.进入园区游客人数少于离开游客人数,总人数将变少. ………………13分综上,当天下午16点时(28n =)园区内的游客人数最多,此时计算可知园区大约共有77264人. ………………14分 22.(本题满分16分)本题共有3个小题,第(1)(2)小题满分各5分,第(3)小题满分6分. 【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题. 【知识内容】(1)图形与几何/曲线与方程/椭圆的标准方程和几何性质. (2)图形与几何/曲线与方程/椭圆的标准方程和几何性质. (3)图形与几何/曲线与方程/曲线与方程的概念.【参考答案】(1)由条件可得b c ==2a =, …………………………3分椭圆Γ的方程为22142x y +=.………………………………………………………5分(2)设00(,)A x y ,则OB 的方程为000x x y y +=,由2y =得02(,2)y B x -………7分 ∴2222200021111=44y OA OB x y x ++++22002222000044=4()4(2)2x x x x y x ++=++-12=.…10分 (3)设00(,),(,)C x y D x y ,由OC OD ⊥得000x x y y += ①又C 点在椭圆上得:2200142x y += ② 联立①②可得222200222244,22y x x y x y x y ==++ ③ …………………………12分由OC OD ⊥得=OC OD CD d ⋅⋅,即22222=(+)OC OD OC OD d ⋅⋅ 可得222111d OC OD=+, ………………………………………………………14分 将③代入得:22222220011111d OC OD x y x y=+=+++ 2222222222221124444()22x y x y x y x y x y x y ++=+=+++++, 化简得D 点轨迹方程为:22221111()()124x y d d -+-=.…………………………16分 23.(本题满分18分)本题共有3个小题,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分7分. 【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)数学探究与创新能力/能运用有关的数学思想方法和科学研究方法,对问题进行探究,寻求数学对象的规律和联系;能正确地表述探究过程和结果,并予以证明. 【知识内容】(1)方程与代数/数列与数学归纳法/简单的递推数列. (2)方程与代数/数列与数学归纳法/等差数列.(3)方程与代数/数列与数学归纳法/简单的递推数列;函数与分析/函数及其基本性质/函数的基本性质.【参考答案】(1)n a n =, ………………………………………………………………2分Θ1122n n n n nb b a b +=+=+,∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- …………………4分1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.……………………………………6分 (2)221114(4)n n n n n n c c a b a b +++-=---……………………………………………8分221(1)4()(4)12n n n n n a a b a b =+-+--=∴{}n c 是公差为1的等差数列.……………………………………………………11分(3)由解方程得:x =由条件,()0k f x =两根x =为整数,则kc ∆=必为完全平方数,不妨设2()k c m m =∈N , …………12分此时2k a mx -±==为整数,∴k a 和m 具有相同的奇偶性,………13分 由(2)知{}n c 是公差为1的等差数列,取21n k m =++∴()222121211k m k c c m m m m ++=++=++=+ ………………………………15分此时(21)(1)2k a m m x -++±+==Θk a 和m 具有相同的奇偶性,∴21k a m ++和1m +具有相同的奇偶性, …17分所以函数21()k m f x ++有两个整数零点.由递推性可知存在无穷多个()n f x 有两个整数零点.………………………18分。
2016年上海市浦东新区高考数学二模试卷(理科)一、填空题(共14小题,每小题5分,满分70分)1.已知全集U=R,若集合A={x|},则∁U A= .2.已知复数z满足z(1﹣i)=2i,其中i为虚数单位,则|z|= .3.双曲线2x2﹣y2=6的焦距为.4.已知(ax+)6二项展开式的第五项系数为,则正实数a的值为.5.方程log2(9x+7)=2+log2(3x+1)的解为.6.已知函数f(x)=(a)图象与它的反函数图象重合,则实数a= .7.在△ABC中,边a、b、c所对角分别为A、B、C,若=0,则△ABC的形状为.8.在极坐标系中,点A(2,)到直线ρcos()=的距离为.,则Dξ的值为的角为,则EF= .11.设m、n分别为连续两次投掷骰子得到的点数,且向量=(m,n),=(1,﹣1),则与的夹角为锐角的概率是.12.已知{a n}的通项公式为a n=(﹣1)n•n+2n,n∈N+,则前n项和S n= .13.任意实数a、b,定义a⊗b=,设函数f(x)=(log2x)⊗x,数列{a n}是公比大于0的等比数列,且a6=1.f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,则a1= .14.关于x的方程=|sin|在[﹣2016,2016]上解的个数为.二、选择题(共4小题,每小题5分,满分20分)15.“﹣”是“不等式|x﹣1|<1成立”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分亦非必要条件16.给出下列命题,其中正确的命题为()A.若直线a和b共面,直线b和c共面,则a和c共面B.直线a与平面α不垂直,则a与平面α内所有的直线都不垂直C.直线a与平面α不平行,则a与平面α内的所有直线都不平行D.异面直线a、b不垂直,则过a的任何平面与b都不垂直17.抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(﹣1,0),则的最小值是()A. B. C. D.18.已知平面直角坐标系中两个定点E(3,2),F(﹣3,2),如果对于常数λ,在函数y=|x+2|+|x﹣2|﹣4,(x∈[﹣4,4])的图象上有且只有6个不同的点P,使得=λ成立,那么λ的取值范围是()A.(﹣5,﹣)B.(﹣,11)C.(﹣,﹣1)D.(﹣5,11)三、解答题(共5小题,满分60分)19.如图,在圆锥SO中,AB为底面圆O的直径,点C为弧的中点,SO=AB;(1)证明:AB⊥平面SOC;(2)若点D为母线SC的中点,求AD与平面SOC所成角;(结果用反三角函数表示)20.如图,一智能扫地机器人在A处发现位于它正西方向的B处和B处和北偏东30°方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4m,于是选择沿A→B→C路线清扫,已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务;(1)求B、C两处垃圾之间的距离;(精确到0.1)(2)求智能扫地机器人此次清扫行走路线的夹角∠B的大小;(用反三角函数表示)21.数列{a n}满足:a1=2,a,且a1、a2+1、a3成等差数列,其中n∈N+;(1)求实数λ的值及数列{a n}的通项公式;(2)若不等式成立的自然数n恰有4个,求正整数p的值.22.教材曾有介绍:圆x2+y2=r2上的点(x0,y0)处的切线方程为x,我们将其结论推广:椭圆=1(a>b>0)上的点(x0,y0)处的切线方程为,在解本题时可以直接应用,已知:直线x﹣y+=0与椭圆E: =1(a>1)有且只有一个公共点;(1)求a的值;(2)设O为坐标原点,过椭圆E上的两点A、B分别作该椭圆的两条切线l1、l2,且l1与l2交于点M(2,m),当m变化时,求△OAB面积的最大值;(3)在(2)的条件下,经过点M(2,m)作直线l与该椭圆E交于C、D两点,在线段CD上存在点N,使成立,试问:点N是否在直线AB上,请说明理由.23.(理科)已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<x n﹣1<x n=b,和式≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:;(1)证明函数f(x)=sinx+cosx在[﹣,0]上是“绝对差有界函数”;(2)证明函数f(x)=不是[0,1]上的“绝对差有界函数”;(3)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立},证明集合A中的任意函数f(x)均为“绝对差有界函数”,并判断g(x)=2016sin 是否在集合A中,如果在,请证明并求k的最小值,如果不在,请说明理由.2016年上海市浦东新区高考数学二模试卷(理科)参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.已知全集U=R,若集合A={x|},则∁U A= [0,1] .【考点】补集及其运算.【分析】求解不等式化简集合A,然后直接利用补集运算求解.【解答】解:由得到x(x﹣1)>0,解得x<0或x>1,∴A=(﹣∞,0)∪(1,+∞),∴∁U A=[0,1],故答案为:[0,1].2.已知复数z满足z(1﹣i)=2i,其中i为虚数单位,则|z|= .【考点】复数求模.【分析】利用复数的运算性质、模的计算公式即可得出.【解答】解:∵复数z满足z(1﹣i)=2i,∴z(1﹣i)(1+i)=2i(1+i),∴2z=2(i﹣1),∴z=i﹣1.则|z|=.故答案为:.3.双曲线2x2﹣y2=6的焦距为 6 .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,c,可得焦距2c的值.【解答】解:双曲线2x2﹣y2=6即为﹣=1,可得a=,b=,c==3,即有焦距为2c=6.故答案为:6.4.已知(ax+)6二项展开式的第五项系数为,则正实数a的值为.【考点】二项式系数的性质.【分析】T5=x﹣2,由已知可得: =,a>0.解出即可得出.【解答】解:T5==x﹣2,∴=,a>0.解得a=.故答案为:.5.方程log2(9x+7)=2+log2(3x+1)的解为x=0和x=1 .【考点】对数的运算性质.【分析】由对数的运算性质化对数方程为关于3x的一元二次方程,求得3x的值,进一步求得x值得答案.【解答】解:由log2(9x+7)=2+log2(3x+1),得log2(9x+7)=log24(3x+1),即9x+7=4(3x+1),化为(3x)2﹣4•3x+3=0,解得:3x=1和3x=3,∴x=0和x=1.故答案为:x=0和x=1.6.已知函数f(x)=(a)图象与它的反函数图象重合,则实数a= ﹣3 .【考点】反函数.【分析】由y=(a),可得反函数:y=,利用函数f(x)=(a)图象与它的反函数图象重合,即为同一个函数即可得出.【解答】解:由y=(a),解得x=(y≠3),把x与y互换可得:y==,∵函数f(x)=(a)图象与它的反函数图象重合,∴﹣a=3,解得a=﹣3.故答案为:﹣3.7.在△ABC中,边a、b、c所对角分别为A、B、C,若=0,则△ABC的形状为等腰三角形或直角三角形.【考点】三角函数中的恒等变换应用;正弦定理.【分析】由题意可得acosA﹣bcosB=0,利用正弦定理化边为角,得到sin2A=sin2B.再由A,B为三角形的两个内角,可得A=B或A+B=,得到三角形为等腰三角形或直角三角形.【解答】解:由=0,得a•cosA﹣b,即acosA﹣bcosB=0,由正弦定理可得:sinAcosA﹣sinBcosB=0,∴sin2A=sin2B.∵A,B为三角形的两个内角,∴2A=2B或2A+2B=π.即A=B或A+B=,∴△ABC的形状为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.8.在极坐标系中,点A(2,)到直线ρcos()=的距离为2.【考点】简单曲线的极坐标方程.【分析】先求出A(0,2),直线为x﹣y﹣2=0,由此利用点到直线的距离公式能求出点A(2,)到直线ρcos()=的距离.【解答】解:在极坐标系中,点A(2,),∴在平面直角坐标系中,A(2cos,2sin),即A(0,2),∵ρcos()=ρ(cos﹣sin)=cosθ﹣sinθ=,∴=1,∴ρcosθ=x,ρsinθ=y,∴直线为x﹣y﹣2=0,点A(0,2)到直线x﹣y﹣2=0的距离:d==2,∴点A(2,)到直线ρcos()=的距离为2.故答案为:2.【分析】利用离散型分布列的性质,先求出a,b,由此能求出Dξ的值.【解答】解:∵Eξ=1,∴由离散型随机变量ξ的概率分布列,得,解得a=0.6,b=0.2,∴Dξ=(0﹣1)2×0.2+(1﹣1)2×0.6+(2﹣1)2×0.2=0.4.故答案为:0.4.10.已知四面体ABCD中,AB=CD=2,E、F分别为BC、AD的中点,且异面直线AB与CD所成的角为,则EF= 1 .【考点】异面直线及其所成的角.【分析】取BD中点O,连结EO、FO,推导出EO=FO=1,,由此能求出EF.【解答】解:取BD中点O,连结EO、FO,∵四面体ABCD中,AB=CD=2,E、F分别为BC、AD的中点,且异面直线AB与CD所成的角为,∴EO∥CD,且EO=,FO∥AB,且FO==1,∴∠EOF是异面直线AB与CD所成的角,∴,∴△EOF是等边三角形,∴EF=1.故答案为:1.11.设m、n分别为连续两次投掷骰子得到的点数,且向量=(m,n),=(1,﹣1),则与的夹角为锐角的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】由与的夹角为锐角,得到,由此能求出与的夹角为锐角的概率.【解答】解:∵m、n分别为连续两次投掷骰子得到的点数,且向量=(m,n),=(1,﹣1),与的夹角为锐角,∴,基本事件总数n=6×6=36,m﹣n>0包含的基本事件个数m=15,∴与的夹角为锐角的概率是p===.故答案为:.12.已知{a n}的通项公式为a n=(﹣1)n•n+2n,n∈N+,则前n项和S n=.【考点】数列的求和.【分析】a n=(﹣1)n•n+2n,n∈N+,∴a2k﹣1+a2k=﹣(2k﹣1)+22k﹣1+2k+22k=1+.当n为偶数时,则前n项和S n=S2k=(a1+a2)+(a3+a4)+…+(a2k﹣1+a2k),再利用等比数列的前n 项和公式即可得出.当n为奇数时,则前n项和S n=S2k﹣2+a n.【解答】解:∵a n=(﹣1)n•n+2n,n∈N+,∴a2k﹣1+a2k=﹣(2k﹣1)+22k﹣1+2k+22k=1+.当n为偶数时,则前n项和S n=S2k=(a1+a2)+(a3+a4)+…+(a2k﹣1+a2k)=k+×=+2(4k﹣1)=+2n+1﹣2.当n为奇数时,则前n项和S n=S2k﹣2+a n=+2n﹣2﹣n+2n=2n+1﹣2﹣.综上可得:S n=.故答案为:S n=.13.任意实数a、b,定义a⊗b=,设函数f(x)=(log2x)⊗x,数列{a n}是公比大于0的等比数列,且a6=1.f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,则a1= 4 .【考点】等比数列的通项公式.【分析】f(x)=(log2x)⊗x=,及其数列{a n}是公比大于0的等比数列,且a6=1,对公比q分类讨论,再利用对数的运算性质即可得出.【解答】解:∵f(x)=(log2x)⊗x=,∵数列{a n}是公比大于0的等比数列,且a6=1,①1<q时,a1,a2,…,a5∈(0,1),a7,a8,a9,a10∈[1,+∞),=1.∴,分别为:,,…,,1,q,…,q4.∵f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,∴++…++0+a7log2a7+…+a10log2a10=2a1,∴+q4+…++qlog2q+…+=2×.∴=2×.左边小于0,右边大于0,不成立,舍去.②0<q<1时, =1,∴,分别为:,,…,,1,q,…,q4,a1,a2,…,a5∈(1,+∞);a7,a8,a9,a10∈(0,1),∵f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,∴++…++log2q+…+=2×.∴=2×.∴=4,∴a1=4.③q=1时,a1=…=a6=…=a10=1,不满足f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,舍去.综上可得:a1=4.故答案为:4.14.关于x的方程=|sin|在[﹣2016,2016]上解的个数为4031 .【考点】根的存在性及根的个数判断.【分析】根据函数与方程的关系转化为两个函数的交点个数问题,作出两个函数的图象,利用数形结合进行求解即可得到结论.【解答】解:y==,作函数y=与y=|sinπx|在[﹣2016,2016]上的图象如下,由图象知函数y=|sin|的周期是2,两个函数都关于x=1对称,当x≤0时,两个函数在每个周期内都有两个交点,此时在[﹣2016,0]内有1008×2=2016个交点,在[0,2]内两个函数只有一个交点,当x≥2时,两个函数在每个周期内都有两个交点,此时在[2,2016]内有1007×2=2014个交点,则在[﹣2016,2016]上解的个数为2016+1+2014=4031,故答案为:4031二、选择题(共4小题,每小题5分,满分20分)15.“﹣”是“不等式|x﹣1|<1成立”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分亦非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】不等式|x﹣1|<1成立,化为﹣1<x﹣1<1,解得即可判断出结论.【解答】解:不等式|x﹣1|<1成立,化为﹣1<x﹣1<1,解得0<x<2,∴“﹣”是“不等式|x﹣1|<1成立”的既不充分也不必要条件.故选:D.16.给出下列命题,其中正确的命题为()A.若直线a和b共面,直线b和c共面,则a和c共面B.直线a与平面α不垂直,则a与平面α内所有的直线都不垂直C.直线a与平面α不平行,则a与平面α内的所有直线都不平行D.异面直线a、b不垂直,则过a的任何平面与b都不垂直【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】根据各命题条件,举出反例判断,使用排除法选出答案.【解答】解:对于A,若b为异面直线a,c的公垂线,则a与b,b与c都相交,但a,c 异面,故A错误;对于B,若直线a⊂α,则α内有无数条直线都与直线a垂直,故B错误;对于C,若直线a⊂α,则α内有无数条直线都与直线a平行,故C错误;对于D,假设存在平面α,使得a⊂α,b⊥α,则b⊥a,与条件矛盾,所以假设错误,故D正确故选:D.17.抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(﹣1,0),则的最小值是()A. B. C. D.【考点】直线与圆锥曲线的关系;抛物线的简单性质.【分析】通过抛物线的定义,转化PF=PN,要使有最小值,只需∠APN最大即可,作出切线方程即可求出比值的最小值.【解答】解:由题意可知,抛物线的准线方程为x=﹣1,A(﹣1,0),过P作PN垂直直线x=﹣1于N,由抛物线的定义可知PF=PN,连结PA,当PA是抛物线的切线时,有最小值,则∠APN 最大,即∠PAF最大,就是直线PA的斜率最大,设在PA的方程为:y=k(x+1),所以,解得:k2x2+(2k2﹣4)x+k2=0,所以△=(2k2﹣4)2﹣4k4=0,解得k=±1,所以∠NPA=45°,=cos∠NPA=.故选B.18.已知平面直角坐标系中两个定点E(3,2),F(﹣3,2),如果对于常数λ,在函数y=|x+2|+|x﹣2|﹣4,(x∈[﹣4,4])的图象上有且只有6个不同的点P,使得=λ成立,那么λ的取值范围是()A.(﹣5,﹣)B.(﹣,11)C.(﹣,﹣1)D.(﹣5,11)【考点】平面向量数量积的运算.【分析】画出函数y=|x+2|+|x﹣2|﹣4在[﹣4,4]的图象,讨论若P在AB上,设P(x,﹣2x﹣4);若P在BC上,设P(x,0);若P在CD上,设P(x,2x﹣4).求得向量PE,PF 的坐标,求得数量积,由二次函数的最值的求法,求得取值范围,讨论交点个数,即可得到所求范围.【解答】解:函数y=|x+2|+|x﹣2|﹣4=,(1)若P在AB上,设P(x,﹣2x﹣4),﹣4≤x≤﹣2.∴=(3﹣x,6+2x),=(﹣3﹣x,6+2x).∴=x2﹣9+(6+2x)2=5x2+24x+27,∵x∈[﹣4,﹣2],∴﹣≤λ≤11.∴当λ=﹣时有一解,当﹣<λ≤11时有两解;(2)若P在BC上,设P(x,0),﹣2<x≤2.∴=(3﹣x,2),=(﹣3﹣x,2).∴=x2﹣9+4=x2﹣5,∵﹣2<x≤2,∴﹣5≤λ≤﹣1.∴当λ=﹣5或﹣1时有一解,当﹣5<λ<﹣1时有两解;(3)若P在CD上,设P(x,2x﹣4),2<x≤4.=(3﹣x,6﹣2x),=(﹣3﹣x,6﹣2x),∴=x2﹣9+(6﹣2x)2=5x2﹣24x+27,∵2<x≤4,∴﹣≤=λ≤11.∴当λ=﹣时有一解,当﹣<λ<11时有两解.综上,可得有且只有6个不同的点P的情况是﹣<λ<﹣1.故选:C.三、解答题(共5小题,满分60分)19.如图,在圆锥SO中,AB为底面圆O的直径,点C为弧的中点,SO=AB;(1)证明:AB⊥平面SOC;(2)若点D为母线SC的中点,求AD与平面SOC所成角;(结果用反三角函数表示)【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)由圆的性质得出AB⊥OC,由SO⊥平面ABC得出SO⊥AB,故而AB⊥平面SOC;(2)连结OD,由A B⊥平面SOC可知∠ADO为所求角,设圆锥底面半径为a,求出OD,得出tan∠ADO.【解答】证明:(1)∵SO⊥平面ABC,AB⊂平面ABC,∴SO⊥AB,∵C为的中点,∴AB⊥OC,又SO⊂平面SOC,OC⊂平面SOC,SO∩OC=O,∴AB⊥平面SOC.(2)连结OD.∵AB⊥平面SOC,∴∠ADO为AD与平面SOC所成的角,设OA=a,则OC=a,SO=AB=2a,∴SC==a,∴OD=,∴tan∠ADO==.∴AD与平面SOC所成角为arctan.20.如图,一智能扫地机器人在A处发现位于它正西方向的B处和B处和北偏东30°方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4m,于是选择沿A→B→C路线清扫,已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务;(1)求B、C两处垃圾之间的距离;(精确到0.1)(2)求智能扫地机器人此次清扫行走路线的夹角∠B的大小;(用反三角函数表示)【考点】解三角形的实际应用.【分析】(1)设BC=x,则AB=2﹣x,AC=2.4﹣x,A=120°,利用余弦定理列方程解出x;(2)利用(1)的结论得出三角形ABC的三边长,使用余弦定理求出cosB,得到B的大小.【解答】解;(1)设BC=x,则AB=2﹣x,AC=2﹣x+0.4=2.4﹣x,由题意得A=120°,在△ABC中,由余弦定理得:cosA===﹣.解得x=1.4.∴BC=1.4m.(2)由(1)知AB=0.6,AC=1,BC=1.4.∴cosB==.∴B=arccos.21.数列{a n}满足:a1=2,a,且a1、a2+1、a3成等差数列,其中n∈N+;(1)求实数λ的值及数列{a n}的通项公式;(2)若不等式成立的自然数n恰有4个,求正整数p的值.【考点】数列与不等式的综合;数列递推式.【分析】(1)由题意和等差中项的性质列出方程求出λ,再利用累加法求出数列{a n}的通项公式;(2)结合条件对n进行分类讨论,当n≥3时利用分离常数法化简得p≤,利用取特值和做商法判断出的单调性,再判断出的单调性,根据条件即可求出正整数p的值.【解答】解:(1)∵a1=2,a n+1=a n+λ•2n,∴a2=a1+λ•2=2+2λ,a3=a2+4λ=2+6λ;∵a1,a2+1,a3成等差数列,∴2(2+2λ+1)=2+2+6λ,解得λ=1,即a n+1﹣a n=2n,∴a2﹣a1=2,a3﹣a2=4,…,a n﹣a n﹣1=2n﹣1,以上式子相加可得,a n﹣a1=2+4+8+…+2n﹣1=2n﹣2,得a n﹣2=2n﹣2,则a n=2n,∴λ=1,a n=2n;(2)由(1)得,,∵P>0,∴当n=1、2时,上式一定成立;当n≥3时,化简得p≤=,当n=3时,p≤==,当n=4时,p≤==4.8,当n=5时,p≤=,当n=6时,p≤,…设b n=,则===2(1﹣),当n≥4时,2(1﹣)≥,则>1,∴当n≥4时,b n随着n的增大而增大,则随着n的增大而减小,∵等式成立的自然数n恰有4个,即n=1、2、4、5,∴正整数p的值是3.22.教材曾有介绍:圆x2+y2=r2上的点(x0,y0)处的切线方程为x,我们将其结论推广:椭圆=1(a>b>0)上的点(x0,y0)处的切线方程为,在解本题时可以直接应用,已知:直线x﹣y+=0与椭圆E: =1(a>1)有且只有一个公共点;(1)求a的值;(2)设O为坐标原点,过椭圆E上的两点A、B分别作该椭圆的两条切线l1、l2,且l1与l2交于点M(2,m),当m变化时,求△OAB面积的最大值;(3)在(2)的条件下,经过点M(2,m)作直线l与该椭圆E交于C、D两点,在线段CD上存在点N,使成立,试问:点N是否在直线AB上,请说明理由.【考点】椭圆的简单性质.【分析】(1)将直线y=x+代入椭圆方程,得到x的方程,由直线和椭圆相切的条件:判别式为0,解方程可得a的值;(2)设切点A(x1,y1),B(x2,y2),可得切线l1:x1x+2y1y=2,l2:x2x+2y2y=2,再由M代入上式,结合两点确定一条直线,可得切点弦方程,AB的方程为x+my=1,运用点到直线的距离公式和直线与椭圆方程联立,运用韦达定理和弦长公式,求得△OAB的面积,化简整理,运用基本不等式即可得到所求最大值;(3)设C(x3,y3),D(x4,y4),N(x0,y0),由直线y=k(x﹣2)+m代入椭圆方程x2+2y2=2,运用韦达定理,由题意可得,可得=,求得N的坐标,代入切点弦AB的方程,计算即可判断.【解答】解:(1)将直线y=x+代入椭圆方程x2+a2y2=a2,可得(1+a2)x2+2a2x+2a2=0,由直线和椭圆相切,可得△=12a4﹣4(1+a2)•2a2=0,解得a=(由a>1);(2)设切点A(x1,y1),B(x2,y2),可得切线l1:x1x+2y1y=2,l2:x2x+2y2y=2,由l1与l2交于点M(2,m),可得2x1+2my1=2,2x2+2my2=2,由两点确定一条直线,可得AB的方程为2x+2my=2,即为x+my=1,原点到直线AB的距离为d=,由消去x,可得(2+m2)y2﹣2my﹣1=0,y1+y2=,y1y2=﹣,可得|AB|=•=•=,可得△OAB的面积S=d|AB|=•,设t=(t≥1),S==≤,当且仅当t=1即m=0时,S取得最大值;(3)设C(x3,y3),D(x4,y4),N(x0,y0),由直线y=k(x﹣2)+m代入椭圆方程x2+2y2=2,可得(1+2k2)x2+4k(m﹣2k)x+2(m﹣2k)2﹣2=0,即有x3+x4=﹣,x3x4=,由线段CD上存在点N,使成立,可得=,化为x0=,代入韦达定理,化简可得x0=,y0=k(x0﹣2)+m=k(﹣2)+m=,由x0+my0=+==1.即有N在直线AB上.23.(理科)已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<x n﹣1<x n=b,和式≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:;(1)证明函数f(x)=sinx+cosx在[﹣,0]上是“绝对差有界函数”;(2)证明函数f(x)=不是[0,1]上的“绝对差有界函数”;(3)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立},证明集合A中的任意函数f(x)均为“绝对差有界函数”,并判断g(x)=2016sin 是否在集合A中,如果在,请证明并求k的最小值,如果不在,请说明理由.【考点】三角函数的最值;函数的值域.【分析】(1)利用函数在[﹣,0]是增函数,去掉绝对值,将连和符号用函数值的和表示出,求出值为,取M大于等于此值,满足“绝对差有界函数”的定义;(2)举例说明函数f(x)对于和式= [+]≤M不成立即可;(3)利用已知不等式,将函数值差的连和表示成自变量差的连和,去掉绝对值,将连和写成自变量差的和形式,求出连和的值,找到M,满足有界变差的定义即可.【解答】解:(1)∵f(x)=sinx+cosx=sin(x+)在[﹣,0]上是增函数,∴对任意划分f(x n)>f(x n﹣1),∴|f(x i)﹣f(x i﹣1)|=f(x1)﹣f(x0)+…+f(x n)﹣f(x n﹣1)=f(0)﹣f(﹣)=2;取常数M≥2,则和式≤M恒成立,∴函数f(x)在[﹣,0]上是“绝对差有界函数”;(2)证明:∵函数f(x)=,令x i=,x i﹣1=,i∈N*,则f(x i)﹣f(x j)=﹣﹣;∴和式= [+]≤M 不成立, 故函数f (x )不是[0,1]上的“绝对差有界函数”;(3)∵存在常数k ,使得对于任意的x 1,x 2∈[a ,b],|f (x 1)﹣f (x 2)|≤k|x 1﹣x 2|,∴|f (x i )﹣f (x i ﹣1)|≤|x i ﹣x i ﹣1|=k (b ﹣a );故存在常数M=k (b ﹣a ),使得|f (x i )﹣f (x i ﹣1)|≤M 恒成立, 所以f (x )为[a ,b]上的“绝对差有界函数”;又函数g (x )=2016sin ,令x 1=﹣,x 2=,∴|f(x 1)﹣f (x 2)|≤2016×(﹣1﹣1)=4032,∴存在k≥4032,使g (x )=2016sin 在集合A 中.。
高中数学学习材料马鸣风萧萧*整理制作上海市17区县2016届高三第二次模拟数学理试题分类汇编:函数一、填空、选择题1、(崇明县2016届高三二模)已知函数22,0(),0x a x f x x ax x ⎧+⎪=⎨-<⎪⎩≥,若()f x 的最小值是a ,则a = .2、(奉贤区2016届高三二模)函数21x y =-的定义域是_______.(用区间表示)3、(虹口区2016届高三二模)已知函数()f x 的对应关系如下表:x2-1- 012()f x 32-15m若函数()f x 不存在反函数,则实数m 的取值集合为___________. 4、(黄浦区2016届高三二模)函数3()1f x x =+的反函数1()f x -=5、(静安区2016届高三二模)若函数()()2F x f x x =+为奇函数,且g (x )= f (x )+2,已知 f (1) =1,则g (-1)的值为( )A .-1B .1C .-2D .2 6、(闵行区2016届高三二模)函数3log (1)y x =-的定义域是 .7、(浦东新区2016届高三二模)方程22log (97)2log (31)x x+=++的解为8、(普陀区2016届高三二模)若函数xx f 11)(+=()0>x 的反函数为)(1x f -,则不等式2)(1>-x f 的解集为 .9、(徐汇、金山、松江区2016届高三二模)定义在R 上的奇函数(),f x 当0x ≥时,[)[)12log (1),0,1,()13,1,,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为________________(结果用a 表示).10、(杨浦区2016届高三二模)函数2()1x f x x +=-的定义域为 . 11、(闸北区2016届高三二模)设函数()(01xxf x a a a a -=+>≠且),且(1)3f =,则(0)(1)(2)f f f ++的值是 12、(长宁、青浦、宝山、嘉定四区2016届高三二模)设0>a 且1≠a ,若函数2)(1+=-x a x f 的反函数的图像经过定点P ,则点P 的坐标是___________.13、(崇明县2016届高三二模)已知函数()f x 是定义在[)1,+∞上的函数,且123,12()11,222x x f x f x x ⎧--<⎪=⎨⎛⎫⎪⎪⎝⎭⎩≤≥,则函数2()3y x f x =-在区间(1,2016)上的零点个数为 . 14、(奉贤区2016届高三二模)已知函数()22xxf x a -=-⋅的反函数是()1fx -,()1f x -在定义域上是奇函数,则正实数a =________.15、(黄浦区2016届高三二模)已知函数32()lg(1)f x x x x =+++,若()f x的定义域中的a 、b 满足()()3f a f b -+--=()()3f a f b ++,则()()f a f b += 16、(闵行区2016届高三二模)若两函数y x a =+与212y x =-的图像有两个交点A 、B ,O 是坐标原点,OAB △是锐角三角形,则实数a 的取值范围是 17、(浦东新区2016届高三二模)已知函数311()=3x f x a x a +⎛⎫≠ ⎪+⎝⎭的图像与它的反函数的图像重合,则实数a 的值为 .18、(普陀区2016届高三二模)若函数)(x f 是定义在R 上的奇函数,且满足)()2(x f x f -=+,则=)2016(f .19、(徐汇、金山、松江区2016届高三二模)函数y =22,0,,0x x x x ≥⎧⎨-<⎩的反函数是-------------------( )(A ),02,0x x y x x ⎧≥⎪=⎨⎪-<⎩(B ),02,0x x y x x ⎧≥⎪=⎨⎪--<⎩(C )2,0,0x x y x x ≥⎧⎪=⎨-<⎪⎩ (D )2,0,0x x y x x ≥⎧⎪=⎨--<⎪⎩20、(杨浦区2016届高三二模)下列函数中,既是奇函数,又在区间(0,)+∞上递增的是( )A.||2x y = B.ln y x = C.13y x = D.1y x x=+21、(闸北区2016届高三二模)设函数2()1f x x =-,对任意⎪⎭⎫⎢⎣⎡+∞∈,23x ,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是 . 22、(长宁、青浦、宝山、嘉定四区2016届高三二模)设定义在R 上的奇函数)(x f y =,当0>x 时,42)(-=xx f ,则不等式0)(≤x f 的解集是__________________.23、(普陀区2016届高三二模)设函数⎩⎨⎧>-≤+=-0),1(0,2)(x x f x a x f x ,记x x f x g -=)()(,若函数)(x g 有且仅有两个零点,则实数a 的取值范围是 .二、解答题1、(崇明县2016届高三二模) 已知函数()33x x f x λ-=+⋅()R λ∈ (1)根据λ的不同取值,讨论函数的奇偶性,并说明理由;(2)若不等式()6f x ≤在[]0,2x ∈上恒成立,求实数λ的取值范围.2、(奉贤区2016届高三二模)(1)已知120x x <<,求证:112211x x x x +>+; (2)已知()()31lg 1log 2f x x x =+-,求证:()f x 在定义域内是单调递减函数; (3)在(2)的条件下,求集合(){}221419980,M n f n n n Z =--≥∈的子集个数.3、(虹口区2016届高三二模) 已知函数131()log 1ax f x x -⎛⎫= ⎪-⎝⎭满足(2)1f -=,其中a 为实常数.(1)求a 的值,并判定函数()f x 的奇偶性;(2)若不等式1()2xf x t ⎛⎫>+ ⎪⎝⎭在[]2,3x ∈恒成立,求实数t 的取值范围.4、(黄浦区2016届高三二模)已知函数2()1xx f x a x -=++,其中1a >; (1)证明:函数()f x 在(1,)-∞上为增函数; (2)证明:不存在负实数0x 使得0()0f x =;5、(静安区2016届高三二模) 已知函数()y f x =,若在区间I 内有且只有一个实数c (c I ∈),使得()0f c =成立,则称函数()y f x =在区间I 内具有唯一零点.(1)判断函数()221,01,log ,1x x f x x x ⎧-≤<=⎨≥⎩在区间(0,)+∞内是否具有唯一零点,并说明理由;(2)已知向量31(,)22m =,(sin 2,cos 2)n x x =,(0,)x π∈,证明()1f x m n =⋅+在区间(0,)π内具有唯一零点;(3)若函数2()22f x x mx m =++在区间(2,2)-内具有唯一零点,求实数m 的取值范围.6、(闵行区2016届高三二模)为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型()n ∈*N :以8122002000,(18)()36033000,(932)32400720,(3345)n n n f n n n n -⋅+≤≤⎧⎪⎪=⋅+≤≤⎨⎪-⋅≤≤⎪⎩表示第n 个时刻进入园区的人数;以0,(118)()5009000,(1932)8800,(3345)n g n n n n ≤≤⎧⎪=⋅-≤≤⎨⎪≤≤⎩表示第n 个时刻离开园区的人数.设定以15分钟为一个计算单位,上午9点15分作为第1个计算人数单位,即1=n ;9点30分作为第2个计算单位,即2=n ;依次类推,把一天内从上午9点到晚上8点15分分成45个计算单位(最后结果四舍五入,精确到整数).(1)试计算当天14点至15点这一小时内,进入园区的游客人数(21)(22)(23)(24)f f f f +++、离开园区的游客人数(21)(22)(23)(24)g g g g +++各为多少?(2)从13点45分(即19n =)开始,有游客离开园区,请你求出这之后的园区内游客总人数最多的时刻,并说明理由.参考答案 一、填空题1、-12、[)0,+∞3、{}3,2,1,5-4、3(1)x - 5、A 6、()1,+∞7、{}0,1 8、⎪⎭⎫⎝⎛231, 9、12a - 10、11、12 12、)1,3(13、11 14、1 15、15 16、623,33⎛⎫⎪ ⎪⎝⎭17、3a =- 18、0 19、B 20、C 21、32m ≤-或32m ≥; 22、]2,0[]2,( --∞ 23、2->a二、解答题1、(1)函数()33x x f x λ-=+⋅的定义域为R当=1λ时,()33x x f x -=+,()()f x f x -=,函数为偶函数;..............2分 当=-1λ时,()33x x f x -=-,()()f x f x -=-,函数为奇函数;............4分 当||1λ≠时,1(1)3,(1)333f f λλ=+-=+ 此时(1)(1)(1)(1),f f f f -≠--≠且 所以函数为非奇非偶函数.........................................6分(2) 由于()6f x ≤得336xxλ-+≤,即363x xλ+≤,令3[1,9]xt =∈,................................................8分原不等式等价于6t tλ+≤在[]1,9t ∈上恒成立,亦即26t t λ≤-+在[]1,9t ∈上恒成立,.............................10分令[]2()6,1,9g t t t t =-+∈,当9t =时,()g t 有最小值()927g =-,所以27λ≤-................14分2、(1)解:任取210x x <<,则()()()211211222211111x x x x x x x x x x +-++-=++()21221x x x x -=+3分 210x x <<,所以()212201x xx x ->+ 4分∴212111x x x x >++5分(2)∵212111x x x x >++,∴2121lg 11lg x xx x >++. 6分 12()()f x f x -=)1lg()1lg(21+-+x x -)log (log 212313x x -=11lg 21++x x -213log 21x x 7分=11lg 21++x x -1119109222log log log x x x x x x >-109log 9log 101101,log log log 10log 9log 10log 9t t t t t t t t t -<<-=-=⋅log 90,log 100,log 9log 100,log 9log 100t t t t t t <<⋅>->log 9log 1001,0log 10log 9t t t t t -<<∴>⋅1110922log log 0x xx x ∴->8分∴>-)()(11x f x f 0∴)(x f 为),0(+∞上的减函数 9分 (3)注意到0)9(=f ∴当9>x 时,0)9()(=<f x f ,当90<<x 时,0)9()(=>f x f ,∴0)(=x f 有且仅有一个根9=x . 1 由)9()1998214(0)1998214(22f n n f n n f ≥--⇒≥--∴⎪⎩⎪⎨⎧>--≤--019982149199821422n n n n 13分⇔922310713447,100713447n n n -≤≤⎧⎪⎨>+<-⎪⎩或14分 ∴223=n 或9-=n , 15分 ∴}223,9{-=MM 的子集的个数是4. 16分3、解:(1)由1312121(2)log 1,,2133a a f ++-==-=--得解得 1.a =- ……3分于是131()log 1x f x x +⎛⎫=⎪-⎝⎭,其定义域为(,1)(1,).D =-∞-⋃+∞ ……4分 对于任意的(,1)(1,),x ∈-∞-⋃+∞有111133331111()+()log log log log 10,1111x x x x f x f x x x x x +-++-+⎛⎫⎛⎫⎛⎫-=+=⋅== ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭故()f x 为奇函数. ……7分(2)由1()2x f x t ⎛⎫>+ ⎪⎝⎭,得[]1()2,32xt f x ⎛⎫<- ⎪⎝⎭在恒成立. 由12111x x x +=+--在(,1)-∞-及(1,)+∞上均递减,且13()log g u u =在(0,)+∞上也递减,故函数()f x 在区间(,1)(1,)-∞-+∞及均单调递增. ……10分由()f x 及12xy ⎛⎫=- ⎪⎝⎭在区间[]2,3均单调递增,知[]1()()2,32xx f x ϕ⎛⎫=- ⎪⎝⎭在单调递增, ……12分故2min15()(2)(2).24x f ϕϕ⎛⎫==-=- ⎪⎝⎭因此,实数t 的取值范围为5(,).4-∞-……14分 4、[证明](1)任取121x x -<<,1212121222()()11x x x x f x f x a a x x ---=+--++ 121212121212223()()()11(1)(1)x x x x x x x x a a a a x x x x ⎛⎫---=-+-=-+ ⎪++++⎝⎭.(3分) 因为121x x -<<,1a >,所以12x x a a <,110x +>,210x +>,120x x -<,于是120x x a a -<,12123()0(1)(1)x x x x -<++,得12()()0f x f x -<,即12()()f x f x <.因此,函数()f x 在(1,)-+∞上为增函数.(6分)(2)(反证法)若存在负实数0x (01x ≠-),使得0()0f x =,即方程201x x a x -+=+有负实数根.(8分)对于21x x a x -=-+,当00x <且01x ≠-时,因为1a >,所以0110,,1x a a a ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭,(10分)而000231(,1)(2,)11x x x --=-+∈-∞-+∞++.(13分) 因此,不存在负实数0x 使得21x x a x -=-+,得证.5、(1)函数()221,01log ,1x x f x x x ⎧-≤<=⎨≥⎩在区间(0,)+∞内具有唯一零点. …2分理由:当1x =时,有()10f =,且当01x <<时,有()210f x x =-<;当1x >时,()2log f x x =是增函数,有()22log log 10f x x =>=. …………4分(2)因为311sin 2cos 21sin(2)1226m n x x x π⋅+=++=++,所以()s i n (2)16f x x π=++, …………7分 ()0f x =的解集为,3A x x k k Z ππ⎧⎫==-∈⎨⎬⎩⎭;因为23A I π⎧⎫=⎨⎬⎩⎭,所以在区间(0,)π内有且只有一个实数23π,使得2()03f π=成立,因此()1f x m n =⋅+在开区间(0,)π内具有唯一零点; …………10分(3) 函数2()22f x x mx m =++在开区间(2,2)-内具有唯一零点,该二次函数的对称轴为x m =-.以下分-m 与区间(2,2)-的位置关系进行讨论.1)当2m -≤-即2m ≥时, 2()22f x x mx m =++在开区间(2,2)-是增函数,只需(2)0,(2)0f f -<⎧⎨>⎩解得2m >; …………12分2) 当22m -<-<即22m -<<时,若使函数在开区间(2,2)-内具有唯一零点,220m m -<,所以0m <。
2016年上海市普陀区高考数学二模试卷(理科)一、填空题(本大题共有14题,满分56分)考生应在答题及纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B=.2.若函数f(x)=1+(x>0)的反函数为f﹣1(x),则不等式f﹣1(x)>2的解集为.3.若sinα=且α是第二象限角,则=.4.若函数f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f在(x3﹣)8的展开式中,其常数项的值为.6.若函数f(x)=sin2x,g(x)=f(x+),则函数g(x)的单调递增区间为.7.设P是曲线(θ为参数)上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹的普通方程为.8.在极坐标系中,O为极点,若A(1,),B(2,),则△AOB的面积为.9.袋中装有5只大小相同的球,编号分别为1,2,3,4,5,现从该袋中随机地取出3只,被取出的球中最大的号码为ξ,则Eξ=.10.若函数f(x)=log5x(x>0),则方程f(x+1)+f(x﹣3)=1的解x=.11.某同学用球形模具自制棒棒糖.现熬制的糖浆恰好装满一圆柱形容器(底面半径为3cm,高为10cm),共做了20颗完全相同的棒棒糖,则每个棒棒糖的表面积为cm2(损耗忽略不计).12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为.13.设函数f(x)=,记g(x)=f(x)﹣x,若函数g(x)有且仅有两个零点,则实数a的取值范围是.14.已知n∈N*,从集合{1,2,3,…,n}中选出k(k∈N,k≥2)个数j1,j2,…,j k,使之同时满足下面两个条件:①1≤j1<j2<…j k≤n;②j i+1﹣j i≥m(i=1,2,…,k﹣1),则称数组(j1,j2,…j k)为从n个元素中选出k个元素且限距为m的组合,其组合数记为.例如根据集合{1,2,3}可得.给定集合{1,2,3,4,5,6,7},可得=.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.若a、b表示两条直线,α表示平面,下列命题中的真命题为()A.若a⊥α,a⊥b,则b∥αB.若a∥α,a⊥b,则b⊥αC.若a⊥α,b⊆α,则a⊥b D.若a∥α,b∥α,则a∥b16.过抛物线y2=8x的焦点作一条直线与抛物线相交于A、B两点,且这两点的横坐标之和为9,则满足条件的直线()A.有且只有一条 B.有两条C.有无穷多条D.必不存在17.若z∈C,则“|Rez|≤1,|Imz|≤1”是“|z|≤1”成立的条件.()A.充分非必要B.必要非充分C.充要 D.既非充分又非必要18.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1)成立.下列结论中正确的是()A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则∈C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)﹣g(x)∈三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在正四棱柱ABCD﹣A1B1C1D1中,底面边长为1,C1B与底面ABCD所成的角的大小为arctan2,如果平面BD1C1与底面ABCD所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值).20.已知函数f(x)=2sin(x+)cosx.(Ⅰ)若x∈[0,],求f(x)的取值范围;(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=,b=2,c=3,求cos(A﹣B)的值.21.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10(a﹣)万元(a>0),A项目余下的工人每年创造利润需要提高0.2x%.(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.22.已知椭圆Γ: +=1的中心为O,一个方向向量为=(1,k)的直线l与Γ只有一个公共点M.(1)若k=1且点M在第二象限,求点M的坐标;(2)若经过O的直线l1与l垂直,求证:点M到直线l1的距离d≤﹣2;(3)若点N、P在椭圆上,记直线ON的斜率为k1,且为直线OP的一个法向量,且=,求|ON|2+|OP|2的值.23.已知各项不为零的数列{a n}的前n项和为S n,且a1=1,S n=a n•a n+1(n∈N*)(1)求证:数列{a n}是等差数列;(2)设数列{b n}满足:b n=,且(b k b k+1+b k+1b k+2+…+b n b n+1)=,求正整数k的值;(3)若m、k均为正整数,且m≥2,k<m.在数列{c k}中,c1=1,=,求c1+c2+…+c m.2016年上海市普陀区高考数学二模试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分56分)考生应在答题及纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B={1} .【考点】交集及其运算.【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.【解答】解:由A中y=,得到x﹣1≥0,解得:x≥1,即A={x|x≥1},由B中不等式变形得:﹣1≤x≤1,即B={x|﹣1≤x≤1},则A∩B={1},故答案为:{1}.2.若函数f(x)=1+(x>0)的反函数为f﹣1(x),则不等式f﹣1(x)>2的解集为.【考点】反函数.【分析】由,可得,因此,解出即可.【解答】解:∵,∴有,则,必有x﹣1>0,∴2(x﹣1)<1,解得1<x.故答案为:.3.若sinα=且α是第二象限角,则=2.【考点】两角和与差的正切函数;三角函数的化简求值.【分析】由θ是第二象限角,及sinθ的值,利用同角三角函数间的基本关系求出cosθ的值,进而确定出tanθ的值,利用二倍角的正切函数公式化简,求出tan的值,将所求式子利用两角和与差的正切函数公式及特殊角的三角函数值化简,把tan的值代入计算,即可求出值.【解答】解:∵α是第二象限角,且sinα=,∴cosα=﹣=﹣,tanα=﹣,∴tanα==﹣,即3tan2﹣8tan﹣3=0,解得:tan=﹣(不合题意,舍去.因为α是第二象限角,是第一象限或第三象限角,tan>0)或tan=3,则tan()===.则=2.故答案为:2.4.若函数f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f是定义在R上的奇函数,所以有f(0)=0,又因为f(x+2)=﹣f(x),所以有f(x+4)=﹣f(x+2)=f(x),所以函数f(x)的周期为4,根据周期性可得出f=f(0)=0.【解答】解:∵f(x)是定义在R上的奇函数,∴f(0)=0,∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),∴f(x)的周期为4,∴f=f(0)=0,故答案为0.5.在(x3﹣)8的展开式中,其常数项的值为28.【考点】二项式定理的应用.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为0求出r,将r的值代入通项求出展开式的常数项【解答】解:由二项式定理得,令(x3)8﹣r•(x﹣1)r=1,即24﹣4r=0,r=6,所以常数项为,故答案为:28.6.若函数f(x)=sin2x,g(x)=f(x+),则函数g(x)的单调递增区间为..【考点】正弦函数的图象.【分析】先求的g(x)的解析式,再利用正弦函数的单调增区间求得g(x)的单调递增区间.【解答】解:对于函数,当时,函数g(x)单调递增,求得,故答案为:.7.设P是曲线(θ为参数)上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹的普通方程为8x2﹣4y2=1.【考点】参数方程化成普通方程.【分析】由sec2θ﹣tan2θ=1,可得曲线的方程为2x2﹣y2=1,设P(x0,y0),M(x,y),运用中点坐标公式,代入曲线方程,化简整理即可得到所求轨迹方程.【解答】解:曲线(θ为参数),即有,由sec2θ﹣tan2θ=1,可得曲线的方程为2x2﹣y2=1,设P(x0,y0),M(x,y),可得,代入曲线方程,可得2x02﹣y02=1,即为2(2x)2﹣(2y)2=1,即为8x2﹣4y2=1.故答案为:8x2﹣4y2=1.8.在极坐标系中,O为极点,若A(1,),B(2,),则△AOB的面积为1.【考点】简单曲线的极坐标方程.【分析】由=,可得OA⊥OB.即可得出△AOB的面积.【解答】解:∵=,∴OA⊥OB.∴S△AOB===1.故答案为:1.9.袋中装有5只大小相同的球,编号分别为1,2,3,4,5,现从该袋中随机地取出3只,被取出的球中最大的号码为ξ,则Eξ=.【考点】离散型随机变量的期望与方差.【分析】由题意得ξ的可能取值为3,4,5,分别求出相应的概率,由此能求出Eξ.【解答】解:由题意得ξ的可能取值为3,4,5,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==,∴Eξ==.故答案为:.10.若函数f(x)=log5x(x>0),则方程f(x+1)+f(x﹣3)=1的解x=4.【考点】二次函数的性质;对数函数的图象与性质.【分析】根据对数的运算性质,可得(x+1)(x﹣3)=5,解得答案.【解答】解:因为f(x)=log5x,所以f(x+1)+f(x﹣3)=log5x+1+log5x﹣3=log5(x+1)(x﹣3)=1,即(x+1)(x﹣3)=5,所以x=4或x=﹣2(舍去),故答案为:4.11.某同学用球形模具自制棒棒糖.现熬制的糖浆恰好装满一圆柱形容器(底面半径为3cm,高为10cm),共做了20颗完全相同的棒棒糖,则每个棒棒糖的表面积为9πcm2(损耗忽略不计).【考点】组合几何体的面积、体积问题.【分析】根据糖浆的体积不变性求出每个棒棒糖的半径,从而求出棒棒糖的面积.【解答】解:圆柱形容器的体积为,设棒棒糖的半径为r,则每个棒棒糖的体积为,解得,∴,故答案为:9π.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为180.【考点】平面向量数量积的运算.【分析】以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B2(3,),B3(5,),C3(6,0),求出直线B3C3的方程,可设P i(x i,y i),可得x i+y i=6,运用向量的数量积的坐标表示,计算即可得到所求和.【解答】解:以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B2(3,),B3(5,),C3(6,0),直线B3C3的方程为y=﹣(x﹣6),可设P i(x i,y i),可得x i+y i=6,即有m i=•=3x i+y i=(x i+y i)=18,则m1+m2+…+m10=18×10=180.故答案为:180.13.设函数f(x)=,记g(x)=f(x)﹣x,若函数g(x)有且仅有两个零点,则实数a的取值范围是(﹣2,+∞).【考点】根的存在性及根的个数判断;函数的零点与方程根的关系.【分析】由函数解析式知,当x>0时,f(x)是周期为1的函数,易求x<1,f(x)=21﹣x+a,依题意,得方程21﹣x=x﹣a有且仅有两解,在同一坐标系中作出y=21﹣x与y=x﹣a图象,数形结合即可求得实数a的取值范围.【解答】解:∵x>0时,f(x)=f(x﹣1)∴当x>0时,f(x)是周期为1的函数,设x<1,则x﹣1<0,f(x)=f(x﹣1)=21﹣x+a;即x<1,f(x)=21﹣x﹣a,∵f(x)=x有且仅有两个实数根,∴方程21﹣x=x﹣a有且仅有两解,在同一坐标系中作出y=21﹣x与y=x﹣a图象如右图:∴f(x)=x有且仅有两个实数根,只要直线y=x﹣a介于图中蓝色直线下方即可.依f(x)=21﹣x可求出A点坐标为(0,2),B点坐标为(1,2),∵A,B两点均为虚点,∴﹣2<a.故答案为:(﹣2,+∞).14.已知n∈N*,从集合{1,2,3,…,n}中选出k(k∈N,k≥2)个数j1,j2,…,j k,使之同时满足下面两个条件:①1≤j1<j2<…j k≤n;②j i+1﹣j i≥m(i=1,2,…,k﹣1),则称数组(j1,j2,…j k)为从n个元素中选出k个元素且限距为m的组合,其组合数记为.例如根据集合{1,2,3}可得.给定集合{1,2,3,4,5,6,7},可得=10.【考点】进行简单的合情推理.【分析】由题意得即从定集{1,2,3,4,5,6,7}中选出3个元素且限距为2的组合,即可得出结论.【解答】解:由题意得即从定集{1,2,3,4,5,6,7}中选出3个元素且限距为2的组合.于是若从{1,3,5,7}中任选3个均符合要求则有个,若选{2,4,6}页满足条件;另外还有{1,3,7},{1,3,6},{1,4,7},{1,5,7},{2,5,7}均满足条件,故=4+1+5=10,故答案为:10.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.若a、b表示两条直线,α表示平面,下列命题中的真命题为()A.若a⊥α,a⊥b,则b∥αB.若a∥α,a⊥b,则b⊥αC.若a⊥α,b⊆α,则a⊥b D.若a∥α,b∥α,则a∥b【考点】空间中直线与平面之间的位置关系.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:选项A中,由a⊥α,a⊥b,则b可能在平面α内,故该命题为假命题;选项B中,由a∥α,a⊥b,则b⊥α或b∥α,故该命题为假命题;选项C中,由线面垂直的判定定理可知,该命题为真命题;选项D中,由a∥α,b∥α可得到a,b相交或平行,故该命题是假命题,故选:C.16.过抛物线y2=8x的焦点作一条直线与抛物线相交于A、B两点,且这两点的横坐标之和为9,则满足条件的直线()A.有且只有一条 B.有两条C.有无穷多条D.必不存在【考点】抛物线的简单性质.【分析】设出AB的方程,联立方程组消元,根据根与系数的关系列方程判断解得个数.【解答】解:抛物线的焦点坐标为(2,0),若l无斜率,则l方程为x=2,显然不符合题意.若l有斜率,设直线l的方程为:y=k(x﹣2),联立方程组,消元得:k2x2﹣(4k2+8)x+4k2=0,设A(x1,y1),B(x2,y2),∴,∴.故选B.17.若z∈C,则“|Rez|≤1,|Imz|≤1”是“|z|≤1”成立的条件.()A.充分非必要B.必要非充分C.充要 D.既非充分又非必要【考点】必要条件、充分条件与充要条件的判断.【分析】设z=x+yi,由|x|≤1,|y|≤1,可得|z|,充分性不成立;反之成立.【解答】解:设z=x+yi,由|x|≤1,|y|≤1,则|z|=,故充分性不成立;由,则x2+y2≤1,所以|x|≤1,|y|<1,即必要性成立.故答案为:B.18.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1)成立.下列结论中正确的是()A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则∈C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)﹣g(x)∈【考点】元素与集合关系的判断.【分析】由题意知,从而求得.【解答】解:对于﹣α1(x2﹣x1)<f(x2)﹣f(x1)<α1(x2﹣x1),即有,令,则﹣α<k<α,若,即有﹣α1<k f<α1,﹣α2<k g<α2,所以﹣α1﹣α2<k f+k g<α1+α2,则有,故选C.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在正四棱柱ABCD﹣A1B1C1D1中,底面边长为1,C1B与底面ABCD所成的角的大小为arctan2,如果平面BD1C1与底面ABCD所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值).【考点】二面角的平面角及求法.【分析】以D为原点,DA,DC,DD1所在的直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出平面BD1C1与底面ABCD所成的二面角的大小.【解答】解:∵在正四棱柱ABCD﹣A1B1C1D1中,CC1⊥底面ABCD,∴BC是BC1在平面ABCD上的射影,∴∠C1BC是直线C1B与底面ABCD所成的角,∵C1B与底面ABCD所成的角的大小为arctan2,∴∠C1BC=arctan2,在Rt△C1BC中,C1C=BC•tan∠B1BC=2,以D为原点,DA,DC,DD1所在的直线分别为x,y,z轴,建立空间直角坐标系,如图,∵D1D⊥平面ABCD,∴==(0,0,2)是平面ABCD的一个法向量,B(1,1,0),D1(0,0,1),C1(0,1,2),=(﹣1,﹣1,2),=(﹣1,0,2),设=(x,y,z)是平面BD1C1的一个法向量,∴,取z=1,得=(2,0,1),设平面BD1C1与底面ABCD所成的二面角为θ,则cosθ===,∴θ=arccos.20.已知函数f(x)=2sin(x+)cosx.(Ⅰ)若x∈[0,],求f(x)的取值范围;(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=,b=2,c=3,求cos(A﹣B)的值.【考点】三角函数中的恒等变换应用;正弦定理.【分析】(Ⅰ)利用三角函数中的恒等变换应用可求得f(x)=sin(2x+)+,利用x∈[0,],可求得2x+∈[,],从而可求得f(x)的取值范围;(Ⅱ)依题意可求得sin(2A+)=0,A为锐角,可知A=,b=2,c=3,利用余弦定理可求得a=,继而可求得sinB及cosB的值,利用两角差的余弦可得cos(A﹣B)的值.【解答】解:(Ⅰ)===….∵,∴,.∴.….(Ⅱ)由,得sin(2A+)=0,又A为锐角,故A=,又b=2,c=3,∴a2=4+9﹣2×2×3×cos=7,解得a=.….由,得,又b<a,从而B<A,cosB=.∴…21.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10(a﹣)万元(a>0),A项目余下的工人每年创造利润需要提高0.2x%.(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.【考点】函数模型的选择与应用.【分析】(1)根据题意,列出不等式10(1+0.2x%)≥10×1000,求解即可;(2)求出x的范围,得出不等式10(a﹣)x≤10(1+0.2x%),整理可得a≤++1恒成立,根据x的范围,可知在定义域内函数为减函数,当x=400时,函数取得最小值.【解答】解:设调出x人参加B项目从事售后服务工作(1)由题意得:10(1+0.2x%)≥10×1000,即x2﹣500x≤0,又x>0,所以0<x≤500.即最多调整500名员工从事第三产业.(2)由题知,0<x≤400,从事第三产业的员工创造的年总利润为10(a﹣)x万元,从事原来产业的员工的年总利润为10(1+x)万元,则10(a﹣)x≤10(1+0.2x%)所以ax﹣≤1000+2x﹣x﹣x2,所以ax≤+1000+x,即a≤++1恒成立,因为0<x≤400,∴++1≥++1=5.1,所以a≤5.1,又a>0,所以0<a≤5.1,即a的取值范围为(0,5.1].22.已知椭圆Γ: +=1的中心为O,一个方向向量为=(1,k)的直线l与Γ只有一个公共点M.(1)若k=1且点M在第二象限,求点M的坐标;(2)若经过O的直线l1与l垂直,求证:点M到直线l1的距离d≤﹣2;(3)若点N、P在椭圆上,记直线ON的斜率为k1,且为直线OP的一个法向量,且=,求|ON|2+|OP|2的值.【考点】椭圆的简单性质.【分析】(1)设直线l的方程为y=kx+t,代入椭圆方程4x2+5y2=20,可得x的方程,运用直线和椭圆只有一个公共点M,可得△=0,化简整理,解方程可得M的坐标;(2)设直线l1:x+ky=0,运用(1)求得M到直线l1的距离公式,再由基本不等式可得最大值,即可得证;(3)直线ON的方程为y=kx,代入椭圆方程4x2+5y2=20,可得交点N,求得|ON|,同样将直线OP:x+ky=0代入椭圆方程求得P的坐标,可得|OP|,化简整理即可得到所求值.【解答】解:(1)设直线l的方程为y=kx+t,代入椭圆方程4x2+5y2=20,可得(4+5k2)x2+10ktx+5t2﹣20=0,直线l与Γ只有一个公共点M,可得△=0,即有100k2t2﹣4(4+5k2)(5t2﹣20)=0,化简可得t2=4+5k2,由k=1可得t=±3,由点M在第二象限,可得M(﹣,),即为(﹣,);(2)证明:设直线l1:x+ky=0,由(1)可得M(﹣,),t2=4+5k2,则点M到直线l1的距离d===≤==﹣2,当且仅当5k2=时,取得等号;(3)由题意可得直线ON的方程为y=kx,代入椭圆方程4x2+5y2=20,可得(20+16k2)x2=100,即有x2=,y2=,即有|ON|2=,将直线OP的方程x+ky=0,代入椭圆方程可得,y2=,x2=,即有|OP|2=,则|ON|2+|OP|2==9.23.已知各项不为零的数列{a n}的前n项和为S n,且a1=1,S n=a n•a n+1(n∈N*)(1)求证:数列{a n}是等差数列;(2)设数列{b n}满足:b n=,且(b k b k+1+b k+1b k+2+…+b n b n+1)=,求正整数k的值;(3)若m、k均为正整数,且m≥2,k<m.在数列{c k}中,c1=1,=,求c1+c2+…+c m.【考点】数列的求和;等差关系的确定.【分析】(1)通过S n=a n a n+1,利用a n+1=S n+1﹣S n整理得a n+2﹣a n=2,进而可知数列{a n}是首项、公差均为1的等差数列;(2)通过(1)可知b n=,进而可知b n b n+1=•,进而利用等比数列的求和公式计算、取极限即得结论;(3)通过=及a n=n分别计算出、、、的表达式,进而累乘化简即得结论.【解答】(1)证明:∵S n=a n a n+1,∴a n+1=S n+1﹣S n=a n+1a n+2﹣a n a n+1,整理得:a n+2﹣a n=2,又∵a1=1,a2==2,∴数列{a n}的通项公式a n=n,即数列{a n}是首项、公差均为1的等差数列;(2)解:由(1)可知b n==2n﹣2(n+1)=,∴b n b n+1=•=•,∴b k b k+1+b k+1b k+2+…+b n b n+1=(++…+)=••=•(1﹣),又∵(b k b k+1+b k+1b k+2+…+b n b n+1)=,即•=,解得:k=2;(3)解:∵c1=1,=,a n=n,∴=,∴=,=,=,…,=,∴当n≥2时,c m=••…••c1=••…•••1=(﹣1)m﹣1•=(﹣1)m﹣1•,显然当m=1时满足上式,即c m=(﹣1)m﹣1•,∴c1+c2+…+c m=.2016年8月27日。
上海市17区县2016届高三第二次模拟数学理试题分类汇编:数列一、填空、选择题1、(崇明县2016届高三二模)若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是 .2、(奉贤区2016届高三二模)无穷等比数列首项为1,公比为()0q q >的等比数列前n 项和为n S ,则lim 2n n S →∞=, 则q =________.3、(虹口区2016届高三二模)在正项等比数列{}n a 中,132341,,3a a a a =+=则12lim()n n a a a →∞+++=L ___________. 4、(黄浦区2016届高三二模)已知数列{}n a 中,若10a =,2i a k =*1(,22,1,2,3,)k k i N i k +∈≤<=L ,则满足2100i i a a +≥的i的最小值为5、(静安区2016届高三二模)已知数列{}n a 满足181a =,1311log ,2,(*)3,21n n n a a n k a k N n k ---+=⎧=∈⎨=+⎩,则数列{}n a 的前n 项和n S 的最大值为 .6、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S ,22|2016|n S n a n =+-(0a >),则使得1n n a a +≤(n ∈*N 学科网)恒成立的a 的最大值为 .7、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-⋅+,*n N ∈,则这个数列的前n 项和n S =___________.8、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为__________________.9、(徐汇、金山、松江区2016届高三二模)对于给定的正整数n 和正数R ,若等差数列123,,,a a a L 满足22121n a a R ++≤,则21222341n n n n S a a a a ++++=++++L 的最大值为__________________. 10、(杨浦区2016届高三二模)已知等比数列{}n a 的各项均为正数,且满足:174a a =,则数列2{log }n a 的前7项之和为 .11、(闸北区2016届高三二模)已知数列{}n a 的前n 项和为n S ,对任意正整数n ,13n n a S +=,则下列关于{}n a 的论断中正确的是( )A .一定是等差数列B .一定是等比数列C .可能是等差数列,但不会是等比数列D .可能是等比数列,但不会是等差数列12、(长宁、青浦、宝山、嘉定四区2016届高三二模)已知各项均为正数的数列}{n a 满足2123n a a a n n +++=+L (*N ∈n ),则12231n a a a n +++=+L ___________. 13、(崇明县2016届高三二模)下面是关于公差0d >的等差数列{}n a 的四个命题: (1)数列{}n a 是递增数列; (2)数列{}n n a 是递增数列;(3)数列n a n ⎧⎫⎨⎬⎩⎭是递减数列; (4)数列{}3n a nd +是递增数列.其中的真命题的个数为A .0B .1C .2D .314、(奉贤区2016届高三二模)若数列{}n a 前n 项`和n S 满足()2*1212,n n S S n n n N -+=+≥∈,且1a x =,{}n a 单调递增,则x 的取值范围是_______.15、(浦东新区2016届高三二模)任意实数,a b ,定义00ab ab a b a ab b ≥⎧⎪⊗=⎨<⎪⎩,设函数2()log f x x x =⊗().数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()2f a f a f a f a f a a +++++=L ,则1a =_______.二、解答题1、(崇明县2016届高三二模)已知数列{}n a 与{}n b 满足11*(),n n n n a a b b n N λ++-=-∈. (1)若123,1,2n b n a λ=-==,求数列{}n a 的通项公式;(2)若111,2a b ==,且数列{}n b 是公比等于2的等比数列,求λ的值,使数列{}n a 也是等比数列; (3)若1*,,n n a b n N λλ==∈,且(1,0)λ∈-,数列{}n a 有最大值M 与最小值m ,求Mm的取值范围.2、(奉贤区2016届高三二模)数列{}n a ,{}n b 满足1111221111122n n n n n na ab b a b ++⎧=+⎪⎪⎨⎪=⋅+⋅⎪⎩,0,011>>b a .(1)求证:{}n n b a ⋅是常数列;(2)若{}n a 是递减数列,求1a 与1b 的关系; (3)设114,1a b ==,当2n ≥时,求n a 的取值范围.3、(虹口区2016届高三二模)设数列{}n a 的前n 项和为,n S 且2(1)().n n n S a S n N *-=∈(1)求123S S S 、、的值,并求出n S 及数列{}n a 的通项公式;(2)设121(1)(1)(),n n n n b n a a n N +*+=-+⋅∈求数列{}n b 的前n 项和.n T(3)设(1)(),n n c n a n N *=+⋅∈在数列{}n c 中取出(,3)m m N m *∈≥为常数项,按照原来的顺序排成一列,构成等比数列{}n d .若对任意的数列{}n d ,均有123,m d d d d M ++++≤L 试求M 的最小值.4、(黄浦区2016届高三二模)已知数列{}n a 的通项公式为12()()n a n k n k =--,其中12,k k Z ∈; (1)试写出一组12,k k Z ∈的值,使得数列{}n a 中的各项均为正数; (2)若11k =、*2k N ∈,数列{}n b 满足n n a b n=,且对任意*m N ∈(3)m ≠,均有3m b b <, 写出所有满足条件的2k 的值;(3)若120k k <<,数列{}n c 满足||n n n c a a =+,其前n 项和为n S ,且使0i j c c =≠*(,,)i j N i j ∈<的i 和j 有且仅有4组,1S 、2S 、…、n S 中至少3个连续项的值相等,其它项的值均不相等,求12,k k 的最小值;5、(静安区2016届高三二模)已知数列{}n a 满足nn n a a 331+=-(*∈≥N n n ,2),首项31=a .(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)数列{}n b 满足n a b nn 3log =,记数列⎭⎬⎫⎩⎨⎧⋅+11n n b b 的前n 项和为n T ,A 是△ABC 的内角,若n T A A 43cos sin >对于任意n N *∈恒成立,求角A 的取值范围. 6、(闵行区2016届高三二模)已知n ∈*N ,数列{}n a 、{}n b 满足:11n n a a +=+,112n n n b b a +=+,记24n n n c a b =-.(1)若11a =,10b =,求数列{}n a 、{}n b 的通项公式; (2)证明:数列{}n c 是等差数列;(3)定义2()n n n f x x a x b =++,证明:若存在k ∈*N ,使得k a 、k b 为整数,且()k f x 有两个整数零点,则必有无穷多个()n f x 有两个整数零点.7、(浦东新区2016届高三二模)数列{}n a 满足:112,2nn n a a a λ+==+⋅,且123,1,a a a +成等差数列,其中*n N ∈。
2016届上海市高三(二模模拟)检测理科数学试题及答案核准通过,归档资料。
未经允许,请勿外传~2014届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分(2cos,,sin2cos2,,,,,1.若,则a,1,bia,bi2.若,其中都是实数,是虚数单位,则= a,bi1,im,7n,9XY3.现在某类病毒记作,其中正整数m,n(,)可以任mnm,n意选取,则都取到奇数的概率为52MF,Mxy(,)yx,24.抛物线的焦点为,点在此抛物线上,且,F002x,则______ 05.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒3mgm/物)的数据(单位:)分别为115,125,132,128,125,则该组数据的方差为,,,,,,,,,,,,,,,,6.平行四边形中,=(1,0),=(2,2),则等于ABCDACABADBD,an7.已知关于的二项式展开式的二项式系数之和为32,常x,(x)3x数项为80,则的值为 a8.在?中,角所对的边分别为,已知,,ABCa,2c,3ABC,,abc,,,则= B,:60b29.用半径为cm,面积为cm的扇形铁皮制作一个无盖的圆1021002,锥形容器(衔接部分忽略不计),则该容器盛满水时的体积是22xy31,10.已知椭圆()右顶点与右焦点的距离为,,,1a,b,022ab短轴长为22椭圆方程为,x,011.设为实常数,是定义在R上的奇函数,当时,yfx,()a2a若“对于任意,fxa()1,,”是假命题,则的取,,x,0,,,afxx()97,,,x 值范围为pp3,,3q,,,aa,tan3qa12.已知,等比数列中,,,数列的a,1,,,,,,n4n1669,, 前2014项的和为0,则的值为 q[x]x,0f(x),,a13.表示不超过x的最大整数,若函数,当时,[x]f(x)xa有且仅有3个零点,则的取值范围为 .22xOyP(1,2)14.在平面直角坐标系中,已知圆O:xy,,16,点,M,N,,,,,,,,,,,,,,,,,,,,,,,,,,PMPN,,0为圆O上不同的两点,且满足(若,则的最PQPMPN,,PQ小值为二( 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分(x15.如图,在复平面内,点表示复数,则图中表示的共轭复数的zzAAC点是OyBDCA( B. C( D( ABDanlim,limaAbB,,16.“”是“”的 limnn存在,,,,nnn,,bnA.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件.x17.已知函数,将函数图象上所有点的横坐标缩yfx,()fxx()sin,,,R21倍(纵坐不变),得到函数的图象,则关于有短为原来的gx()fxgx()(),2 下列命题,其中真命题的个数是?函数是奇函数; yfxgx,,()()?函数不是周期函数; yfxgx,,()()?函数yfxgx,,()()的图像关于点(π,0)中心对称;3?函数yfxgx,,()()的最大值为 3A.1B.2C.3D.4ABBC18.如图,、分别为棱长为1的正方体的棱、的中点,EF1111D GACDD点、分别为面对角线和棱上的动HC1GAB EFGH,点(包括端点),则下列关于四面体的HD1C1 体积正确的是 F A1B 1E A此四面体体积既存在最大值,也存在最小值;B此四面体的体积为定值;C此四面体体积只存在最小值;D此四面体体积只存在最大值。
B AO2016年高三二模客观题难题解析(下)——闵行、杨浦、静安、普陀、闸北八、【闵行区】13(理)、设数列{}n a 的前n 项和为n S ,22|2016|n S n a n =+-(0a >),则使得1n n a a +≤(n ∈*N )恒成立的a 的最大值为 . 答案:12016详解:本题考查了数列的知识点,主要涉及绝对值需要分类讨论当1n =时,114030a a =+;当2n ≥时,()121220162017n n n a S S n a n n -=-=-+---所以14030,1212,22016212,2017n a n a n a n n a n +=⎧⎪=--≤≤⎨⎪-+≥⎩因为0a >,所以2n ≥时,1n n a a +≥必定成立,所以只需2112016a a a ≥⇒≤,所以1(0,]2016a ∈ 教法指导:本题是一道数列单调性的问题,使用作差法求通项,注意对于绝对值的分类讨论.14 (理)、若两函数y x a =+与212y x =-A 、B ,O 是坐标原点,OAB △是锐角三角形,则实数a 的取值范围是 . 答案:623a << 详解:函数212y x =-2221x y +=的上半部分, 设1122(,),(,)A x y B x y ,如图所示;联立方程,消元可得2234210y ay a -+-=(因为是上半椭圆,y 首先根据两函数图像有两个交点,即方程有2个相异的非负根,即12120260[20y y a y y ∆>⎧⎪+>⇒∈⎨⎪⋅≥⎩; (1)AOB ∠是锐角1212660(,(,)33OA OB x x y y a ⇒⋅=+>⇒∈-∞-∞u u u r u u u r U ; (2)由图像(椭圆的性质)易得OB OA OAB OBA >⇒∠>∠(大边对大角),所以OBA ∠ 是锐角;AA 1 DCBD 1C 1B 1E P• • (3)OAB ∠是锐角,直线AB 的倾斜角是4π,所以由图像易得直线OA 的倾斜角34πα>,只需计算临界情况,直线OA 的斜率等于1-时,23a =23a <623a <<; 教法指导:本题主要考查了“半椭圆”的表示、分类讨论、数形结合等17、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线 答案:B详解:根据12θθ=可得1DD AE PE PD=,于是2PD PA =,在平面ABCD 上建立直角坐标系,设(,)P x y ,根据2PD PA =建立方程,会发现点P 的轨迹是一个圆(阿波罗尼斯圆)。
2016年闵行区高考数学(理科)二模卷一、填空题1.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/函数及其基本性质/函数的有关概念. 【参考答案】(1,)+∞【试题分析】依题意可知,10x ->,即1x >,所以函数3log (1)y x =-的定义域为(1,)+∞,故答案为[1,)+∞.2.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/集合与命题/交集,并集,补集;方程与代数/不等式/一元二次不等式(组)的解法、含有绝对值的不等式的解法. 【参考答案】(2,3)-【试题分析】集合2{|30}{|03}A x x x x x =-<=<<,{|||2}{|22}B x x x x =<=-<<, 所以{|23}AB x x =-<<,故答案为(2,3)-.3.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数与运算的基本知识. 【知识内容】数与运算/复数初步/复数的概念、复数的四则运算. 【参考答案】2【试题分析】复数21i 1(1i)11i 1i 2(1i)(1i)22b b b +++=+=+--+,因为复数的实部与虚部相等,则有112b =,解得2b =,故答案为2. 4.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/指数函数与对数函数/反函数;方程与代数/矩阵与行列式初步/二阶、三阶行列式. 【参考答案】9【试题分析】函数33log 1()log 221x f x x ==-,令()0f x =,解得9x =.根据互为反函数的两个函数之间的关系可知1(0)9f -=,故答案为9.5.【测量目标】空间想象能力/能根据图形想象出直观形象.【知识内容】图形与几何/简单几何体的研究/锥体. 【参考答案】3【试题分析】设圆锥的母线长为l ,底面半径为r ,依题意有,3l r =,则圆锥的底面积为2πS r =底,圆锥的侧面积为212π3π2S l r r =⋅⋅=侧,所以圆锥的侧面积与底面积的比为223π3πS r S r==侧底,故答案为3. 6.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/平面向量的坐标表示/向量的度量计算. 【参考答案【试题分析】因为(3,0)b =,所以||3b =,又因为||1a =,||a 与||b 的夹角为60°,所以3||||cos 602a b a b ⋅=⋅=.因为222|2|4419a b a a b b +=+⋅+=,所以|2|19a b +=,故7.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识.【知识内容】函数与分析/三角比/正弦定理和余弦定理. 【参考答案】1【试题分析】因为sin sin3sin A B C +=,所以3a b c +=,又ABC △的周长为4,即4a b c ++=,所以43,1c AB c -===.8.【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理. 【知识内容】整理与概率统计/排列、组合、二项式定理/二项式定理: 方程与代数/数列与数学归纳法/数列的极限. 【参考答案】1【试题分析】6x ⎛+ ⎝的展开式中第r 项为3662166C C rr r r rr T x x --+⎛=⋅=,令3632r -=得2r =,所以展开式的第2项为2336C 1515x x =>,1x >,因为x 为等比数列{}n a 的公比,所以121222341+(1)11lim lim =lim +1(1)n nn n n n n n n a a a a x x x a a a x a x x x x -→∞→∞→∞⎛⎫++---=⋅ ⎪ ++---⎭⎝…… =221lim 11nn x x x →∞⎛⎫--= ⎪-⎭⎝. 9.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/不等式/基本不等式. 【参考答案】4【试题分析】因为1m n +=,所以11()()11t t nt mm n t t m n m n m n+=++=+++++≥m n=211)t ++=,当22m nt =时,取等号,又因为1t m n +的最小值为9,即21)9=,所以4t =,故答案为4.10.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/曲线与方程/圆的标准方程和几何性质; 图形与几何/参数方程和极坐标/参数方程. 【参考答案】1cos sin x y θθ=+⎧⎨=⎩(02π)θ≤≤【试题分析】圆2220x y x +-=化为标准方程为22(1)1x y -+=,所以圆心(1,0),半径为1,所以圆上的点的坐标为(1cos ,sin )θθ+,(02π)θ≤≤,所以圆的参数方程为1c o s ,s i n x y θθ=+⎧⎨=⎩(θ为参数),故答案为1cos sin x y θθ=+⎧⎨=⎩(02π)θ≤≤. 11.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/平面向量的坐标表示/平面向量的数量积. 【参考答案】8【试题分析】由圆的标准方程知,圆的圆心在y 轴上且圆心坐标为(0,3),半径为1, 因为AB 是圆的任意一条直径,不妨假设AB 是位于y 轴上的一条直径,则1(0,)A y ,2(0,)B y ,所以1212(0,)(0,)OA OB y y y y ==,又因为当0x =时,122,4y y ==, 所以128OA OB y y ==,故答案为8.12.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/参数方程和极坐标/极坐标: 数据整理与概率统计/概率与统计/随机变量的分布及数字特征. 【参考答案】1【试题分析】曲线1234,,,C C C C 的极坐标方程化为普通方程分别为221x y +=,y =(0)x ≥,2211()24x y -+=,1y =,从四条曲线中随机选取两条,可能的结果及它们的交点个数为:12(,)C C ,1;13(,)C C ,1;14(,)C C ,1;23(,)C C ,1;24(,)C C ,1; 34(,)C C ,1;所以1111116E ξ+++++==. 13.【测量目标】运算能力/能通过运算,对问题进行推理和探求. 【知识内容】方程与代数/数列和数学归纳法/简单的递推数列. 【参考答案】12016【试题分析】因为22224032,120162|2016|24032,2017n n a n a n S n a n n a na n ⎧-+⎪=+-=⎨+-⎪⎩≤≤≥,所以212(1)2(1)4032,22017(1)2(1)4032,2018n n a n a n S n a n a n -⎧---+⎪=⎨-+--⎪⎩≤≤≥,所以1n n n a S S -=-= 212,22016,4033+2,2017,212,2018n a n a n n a n --⎧⎪=⎨⎪-+⎩≤≤≤,1140301a S a ==+,因为+1n n a a ≤恒成立,所以122016201720172018,,,a a a a a a ⎧⎪⎨⎪⎩≤≤≤即4030132,403124033+2,4033+240352a a a a a a +-⎧⎪-⎨⎪+⎩≤≤≤解得1,20161,2a a ⎧⎪⎪⎨⎪⎪⎩≤≥-,又0a >,所以102016a <≤,故答案为12016. 14.【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】图形与几何/曲线与方程/曲线与方程的概念.【参考答案】 【试题分析】函数y =[]22-,值域为[0,)+∞,联立两函数的方程,y x a y =+⎧⎪⎨=⎪⎩x 得2234210y ay a -+-=,y =,因为两函数的图像有两个交点,所以222(4)43(21)0,210,4023a a a a⎧⎪∆=-⨯->⎪-⎨⎪-⎪->⨯⎩≥,解得,设1122(,),(,)Ax y Bxy ,则124=3a y y +,212213a y y -=,22121212121()()()=3a x x y a y a y y a y y a -=--=-++,因为OAB △是锐角三角形,所以1212221121120,0,0,0x x y y OA OB x x x y y y OA BA ⎧+>⎧⋅>⎪⇒⎨⎨-+->⋅>⎪⎩⎩即222320,32313a a ⎧->⎪⎪⎨-⎪+>⎪⎭⎝⎩,解得a <<,所以a的取值范围为,故答案为. 二、填空题15.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.【知识内容】方程与代数/不等式/不等式的性质及其证明. 【正确选项】D【试题分析】选项A 中,若a b >>1,则有11a b<,所以A 不正确;选项B 中,若0a b >>,且||||a b <,则22a b <,所以B 不正确;同理选项C 也不正确,选项D 中,函数是R 上的增函数,所以有22ab>,所以D 正确,故答案为D.16.【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.【知识内容】图形与几何/空间图形/空间直线与平面的位置关系; 方程与代数/集合与命题/充分条件,必要条件,充分必要条件. 【正确选项】C【试题分析】因为m ⊥平面α,若l m ⊥,则l α∥或l α⊂,所以充分性不成立,若l α∥,则有l m ⊥,必要性成立,所以“l m ⊥”是“l α∥”的必要不充分条件,故答案为C. 17. 【测量目标】数学基本知识和基本技能/能按照一定的规则和步骤进行计算、画图和推理.【知识内容】图形与几何/空间图形/空间直线与平面的位置关系; 图形与几何/曲线与方程/曲线与方程的概念. 【正确选项】B【试题分析】在正方体1111ABCD A BC D -中,1D D ⊥平面ABCD ,11D D A A ∥,所以112,DPD EPD θθ=∠=∠,因为12θθ=,所以1tan tan DPD EPD ∠=∠,即1D DAE AP DP=,因为E 为1A A 的中点,所以2DPAP=,设正方体边长为2,以DA 方向为x 轴,线段DA 的垂直平分线为y 轴建立如图所示的坐标系,则(1,0),(1,0)D A -,因为2DPAP=,所以=22525()39x y -+=,所以动点P 的轨迹为圆的一部分.第17题图 apnn218.【测量目标】逻辑思维能力/具有对数学问题进行观察、分析、综合、比较、抽象、概括、判断和论述的能力.【知识内容】函数与分析/三角函数/正弦函数和余弦函数的性质. 【正确选项】C【试题分析】函数()2sin 2f x x =的图像向右平移ϕ个单位得到函数()2sin 2()g x x ϕ=-的图像,则1212|()()|2sin 22sin 2()f x g x x x ϕ-=--1212=4cos()sin())=4x x x x ϕϕ+--++,所以12sin()=1x x ϕ-++,因为12π||6x x -=,所以12π6x x -=±,当12π6x x -=时,πsin()16ϕ-=,22ππ()3k k ϕ=+∈Z ,又因为0πϕ<<,所以2π=3ϕ,同理,可得12π6x x -=-时,π=3ϕ,所以2π3ϕ=或π3,故答案为C.三、解答题19.(本题满分12分)【测量目标】数学基本知识和基本技能/理解或掌握初等数学中有关数与运算的基本知识. 【知识内容】数与运算/复数初步/复平面;函数与分析/三角比/二倍角及半角的正弦、余弦、正切.【参考答案】设复数1z ,2z 能表示同一个点,则cos 2cos x x =, ……………………3分 解得cos 1x =或1cos 2x =-. ………………………………7分 当cos 1x =时,得2sin 0x =,此时12i z z ==. ……………9分 当1cos 2x =-时,得23sin 4x =,此时1231i 42z z ==-. ……………11分综上,复平面上该点表示的复数为i 或31i 42-. ……………12分 20.(本题满分14分)本题共有2个小题,每小题满分各7分. 【测量目标】(1)空间想象能力/能正确地分析图形中的基本元素和相互关系. (2)空间想象能力/能正确地分析图形中的基本元素和相互关系. 【知识内容】(1)图形与几何/空间向量及其应用/距离和角. (2)图形与几何/简单几何体的研究/锥体.【参考答案】(1)当θ为直角时,即,,AB AD AP 两两互相垂直,以点A 为坐标原点,,,AB AD AP 为坐标轴建立空间直角坐标系, ………………1分则(1,0,0)(1,2,0)(0,2,0)(0,0,1)B C D P ,(1,2,1)PC =-,(1,2,0)BD =- ……3分 设异面直线PC 与BD 所成角为α,则cos PC BD PC BDα⋅=⋅10=………………5分故异面直线PC 与BD 所成角为.…7分MHLD1第19题图(1)(2) 沿AD 将平面PAD 折起的过程中,始终 有PA AD ⊥,AB AD ⊥,AD PAB ∴⊥面,由PAB D ABD P V V --=得 ……………………9分13PAB S DA =⋅⋅△11211sin 32θ=⨯⨯⨯⨯⨯,sin θ∴=……………………12分 π4θ∴=或3π4. ……………………………14分MHLD2第19题图(2) 21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分. 【测量目标】(1)分析问题与解决问题的能力/能通过建立数学模型,解决有关社会生活、生产实际或其他学科的问题,并能解释其实际意义.(2)分析问题与解决问题的能力/能通过建立数学模型,解决有关社会生活、生产实际或其他学科的问题,并能解释其实际意义. 【知识内容】(1)函数与分析/指数函数与对数函数/函数的应用. (2)函数与分析/指数函数与对数函数/函数的应用. 【参考答案】(1)当天14点至15点这一小时内进入园区人数为(21)(22)(23)(24)f f f f +++1314151612121212360]30004=⨯++++⨯17460≈(人)…………………3分离开园区的人数(21)(22)(23)(24)=9000g g g g +++(人) ………………6分 (2)当()()0f n g n -≥时,园内游客人数递增;当0)()(<-n g n f 时,园内游客人数递减. ………………7分 ①当1932n ≤≤时,由812()()3603500120000n f n g n n --=⨯-+≥,可得:当1928n ≤≤时,进入园区游客人数多于离开园区游客人数,总人数越来越多;…9分 当2932n ≤≤时,进入园区游客人数少于离开游客人数,总人数将变少; ……11分(049.246)28()28(>=-g f ;013.38)29()29(<-=-g f )②当3345n ≤≤时,由()()72023600f n g n n -=-+递减,且其值恒为负数.进入园区游客人数少于离开游客人数,总人数将变少. ………………13分综上,当天下午16点时(28n =)园区内的游客人数最多,此时计算可知园区大约共有77264人. ………………14分 22.(本题满分16分)本题共有3个小题,第(1)(2)小题满分各5分,第(3)小题满分6分. 【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关图形与几何的基本知识.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题. 【知识内容】(1)图形与几何/曲线与方程/椭圆的标准方程和几何性质. (2)图形与几何/曲线与方程/椭圆的标准方程和几何性质. (3)图形与几何/曲线与方程/曲线与方程的概念. 【参考答案】(1)由条件可得b c ==2a =, …………………………3分椭圆Γ的方程为22142x y +=.………………………………………………………5分 (2)设00(,)A x y ,则OB 的方程为000x x y y +=,由2y =得02(,2)y B x -………7分 ∴22222000201111=44y OA OB x y x ++++22002222000044=4()4(2)2x x x x y x ++=++-12=.…10分 (3)设00(,),(,)C x y D x y ,由OC OD ⊥得000x x y y += ①又C 点在椭圆上得:2200142x y += ② 联立①②可得222200222244,22y x x y x y x y ==++ ③ …………………………12分 由OC OD ⊥得=OC OD CD d ⋅⋅,即22222=(+)OC OD OC OD d ⋅⋅可得222111d OC OD =+, ………………………………………………………14分 将③代入得:22222220011111d OC OD x y x y =+=+++2222222222221124444()22x y x y x y x y x y x y ++=+=+++++, 化简得D 点轨迹方程为:22221111()()124x y d d -+-=.…………………………16分 23.(本题满分18分)本题共有3个小题,第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分7分. 【测量目标】(1)数学基本知识和基本技能/理解或掌握初等数学中有关方程与代数的基本知识.(2)逻辑思维能力/会正确而简明地表述推理过程,能合理地、符合逻辑地解释演绎推理的正确性.(3)数学探究与创新能力/能运用有关的数学思想方法和科学研究方法,对问题进行探究,寻求数学对象的规律和联系;能正确地表述探究过程和结果,并予以证明. 【知识内容】(1)方程与代数/数列与数学归纳法/简单的递推数列. (2)方程与代数/数列与数学归纳法/等差数列.(3)方程与代数/数列与数学归纳法/简单的递推数列;函数与分析/函数及其基本性质/函数的基本性质.【参考答案】(1)n a n =, ………………………………………………………………2分1122n n n n n b b a b +=+=+,∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- …………………4分1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.……………………………………6分(2)221114(4)n n n n n n c c a b a b +++-=---……………………………………………8分221(1)4()(4)12n n n n n a a b a b =+-+--=∴{}n c 是公差为1的等差数列.……………………………………………………11分(3)由解方程得:x =由条件,()0k f x =两根x =为整数,则kc ∆=必为完全平方数,不妨设2()k c m m =∈N , …………12分此时2k a mx -±==为整数,∴k a 和m 具有相同的奇偶性,………13分 由(2)知{}n c 是公差为1的等差数列,取21n k m =++∴()222121211k m k c c m m m m ++=++=++=+ ………………………………15分此时(21)(1)2k a m m x -++±+==k a 和m 具有相同的奇偶性,∴21k a m ++和1m +具有相同的奇偶性, …17分所以函数21()k m f x ++有两个整数零点.由递推性可知存在无穷多个()n f x 有两个整数零点.………………………18分。
崇明县2015-2016学年第二次高考模拟考试试卷高三数学(理卷)(考试时间120分钟,满分150分)考生注意:1. 每位考生应同时领到试卷与答题纸两份材料,所有解答必须写在答题纸上规定位置,写在试卷上或答题纸上非规定位置一律无效;2. 答卷前,考生务必将姓名、准考证号码等相关信息在答题纸上填写清楚; 3. 本试卷共23道试题,满分150分,考试时间120分钟。
一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知全集U R =,{}2|20A x x x =-<,{}|1B x x =≥,则U A C B = . 2.设复数z 满足 (4)32i z i -=+(i 是虚数单位),则复数z 的虚部为 . 3.若函数2cos y x ω=(0)ω>的最小正周期是π,则ω= .4.圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = . 5.已知圆锥的母线长为5cm ,侧面积为15πcm 2,则此圆锥的体积为 cm 2. 6.已知,x y R +∈,且满足134x y+=,则xy 的最大值为 . 7216y x =的焦点相同,则双曲线的标准方程为 .8.已知函数22,0(),0xa x f x x ax x ⎧+⎪=⎨-<⎪⎩≥,若()f x 的最小值是a ,则a = .9.从6名男医生和3名女医生中选出5人组成一个医疗小组,若这个小组中必须男女医生都有,共有 种不同的组建方案(结果用数值表示).10.若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是.11.设0a ≠,n 是大于1的自然数,1nx a ⎛⎫+ ⎪⎝⎭的展开式为2012n n a a x a x a x ++++.若13a =,24a =,则a = .12.某种填数字彩票,购票者花2元买一张小卡片,在卡片上填10以内(0,1,2,…,9)的三个数字(允许重复).如果依次填写的三个数字与开奖的三个有序的数字分别对应相等,得奖金1000元.只要有一个数字不符(大小或次序),无奖金.则购买一张彩票的期望收益是 元 .13.矩形ABCD 中,2,1AB AD ==,P 为矩形内部一点,且1AP =.若AP AB AD λμ=+(,)R λμ∈,则2λ+的最大值是 .14.已知函数()f x 是定义在[)1,+∞上的函数,且123,12()11,222x x f x f x x ⎧--<⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩≤≥,则函数2()3y x f x =-在区间(1,2016)上的零点个数为 .二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。
闵行区2016学年第二学期高三年级质量调研考试数 学 试 卷(满分150分,时间120分钟)考生注意:1.答卷前,考生务必在答题纸上将学校、班级、考生号、姓名等填写清楚.2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 3.本试卷共有21道试题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸上相应编号的空格内直接填写结果. 1. 方程()3log 212x +=的解是 . 2. 已知集合{}{}11,1,0,1,M x x N =+≤=-则MN = .3. 若复数122,2z a i z i =+=+(i 是虚数单位),且12z z 为纯虚数,则实数a =.4. 直线23x y ⎧=--⎪⎨=+⎪⎩t 为参数)对应的普通方程是 .5. 若()1(2),3n n n x x ax bx c n n -*+=++++∈≥N ,且4b c =,则a 的值为 .6. 某空间几何体的三视图如右图所示,则该几何体的侧面积是 .7. 若函数()2()1xf x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是 .8. 在约束条件123x y ++-≤下,目标函数2z x y =+的最大值为 .9. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学的路上到第二个路口时第一次遇到红灯的概率是 .10. 已知椭圆()222101y x b b+=<<,其左、右焦点分别为12F F 、,122F F c =.若此椭圆上存在点P ,使P 到直线1x c=的距离是1PF 与2PF 的等差中项,则b 的最大值为 .11. 已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP '=,O 是坐标原点,则PQ 的取值范围是 .12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =___.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 设a b 、分别是两条异面直线12l l 、的方向向量,向量a b 、的夹角的取值范围为A ,12l l 、所成的角的取值范围为B ,则“A α∈”是“B α∈”的 ( )(A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既不充分也不必要条件 14. 将函数sin 12y x π⎛⎫=-⎪⎝⎭图像上的点,4P t π⎛⎫⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数sin 2y x =的图像上,则( )(A) 12t =,s 的最小值为6π(B) t =,s 的最小值为6π(C) 12t =,s 的最小值为12π (D) 2t =,s 的最小值为12π15. 某条公共汽车线路收支差额y 与乘客量x 的函数关系如下图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则 ( )(A) ①反映了建议(Ⅱ),③反映了建议(Ⅰ) (B) ①反映了建议(Ⅰ),③反映了建议(Ⅱ) (C) ②反映了建议(Ⅰ),④反映了建议(Ⅱ) (D) ④反映了建议(Ⅰ),②反映了建议(Ⅱ)16. 设函数()y f x =的定义域是R ,对于以下四个命题: (1)若()y f x =是奇函数,则(())y f f x =也是奇函数; (2)若()y f x =是周期函数,则(())y f f x =也是周期函数; (3)若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数; (4)若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有 ( ) (A)1个 (B) 2个 (C) 3个 (D) 4个三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)直三棱柱111C B A ABC -中,底面ABC 为等腰直角三角形,AC AB ⊥,2==AC AB ,41=AA , M 是侧棱1CC 上一点,设h MC =.(1)若C A BM 1⊥,求h 的值;(2)若2h =,求直线1BA 与平面ABM 所成的角.18. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)设函数()2xf x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称. (1)若()4()3f x g x =+,求x 的值;(2)若存在[]0,4x ∈,使不等式(+)(2)3f a x g x --≥成立,求实数a 的取值范围.BMBA B CPQ D19. (本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)如图所示,PAQ ∠是某海湾旅游区的一角,其中120=∠PAQ ,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB 和AC的长度分别为多少米?(2) 在(1)的条件下,建直线通道AD 还需要多少钱?20. (本题满分16分,本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)设直线l 与抛物线24y x =相交于不同两点A B 、,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.(1) 若AOB △是正三角形(O 为坐标原点),求此三角形的边长;(2) 若4r =,求直线l 的方程;(3) 试对()0,r ∈+∞进行讨论,请你写出符合条件的直线l 的条数(只需直接写出结果).21. (本题满分18分,本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分)已知()y f x =是R 上的奇函数,(1)1f -=-,且对任意(),0x ∈-∞,()11x f x f x x ⎛⎫=⎪-⎝⎭都成立. (1) 求12f ⎛⎫-⎪⎝⎭、13f ⎛⎫- ⎪⎝⎭的值;(2) 设1()n a f n n*=∈N ,求数列{}n a 的递推公式和通项公式;(3) 记121321n n n n n T a a a a a a a a --=++++,求1limn n nT T +→∞的值.闵行区2016学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.4x =; 2.{1,0}-; 3.1; 4.10x y +-=; 5.16; 6.; 7.1,12⎡⎤-⎢⎥⎣⎦; 8.9; 9.29; 10.2; 11.; 12.1009;二. 选择题 13.C ; 14.A ; 15.B ; 16.B . 三. 解答题17.[解](1)以A 为坐标原点,以射线AB 、AC 、1AA 分别为x 、y 、z 轴建立空间直角坐标系,如图所示,则)0,0,2(B ,)4,0,0(1A ,)0,2,0(C ,),2,0(h M ……………………2分),2,2(h -=,)4,2,0(1-=C A ……………………4分由C A BM 1⊥得01=⋅C A BM ,即0422=-⨯h解得1=h . ……………………6分 (2) 解法一:此时(0,2,2)M()()()12,0,0,0,2,2,2,0,4AB AM BA ===-……………8分设平面ABM 的一个法向量为(,,)n x y z =由00n AB n AM ⎧⋅=⎪⎨⋅=⎪⎩得00x y z =⎧⎨+=⎩所以(0,1,1)n =- ……………………10分 设直线1BA 与平面ABM 所成的角为θ则11sin 52n BA n BA θ⋅===⋅ ……………12分 所以arc θ= 所以直线1BA 与平面ABM 所成的角为arc ………………14分 解法二:联结1A M ,则1AM AM ⊥, 1,AB AC AB AA ⊥⊥,AB∴⊥平面11AAC C …………………8分 1AB A M ∴⊥1A M ∴⊥平面ABM所以1A BM ∠是直线1BA 与平面ABM 所成的角; ……………………10分 在1A BM Rt △中,11A M A B ==所以111sin 5A M A BM AB ∠===……………………12分所以1arcsin5A BM ∠= 所以直线1BA 与平面ABM所成的角为arc ………………14分 18.[解](1)由()4()3f x g x =+得2423xx-=⋅+ ……………………2分223240x x ⇒-⋅-=所以21x =-(舍)或24x =, ……………………4分 所以2x = ……………………6分 (2)由()(2)3f a x g x +--≥得2223a xx +-≥ ……………………8分2223a x x +≥+2232a x x -⇒≥+⋅ ……………………10分而232xx-+⋅≥,当且仅当[]4232,log 30,4x x x -=⋅=∈即时取等号…12分所以2a ≥211log 32a ≥+.………………………………14分 19.[解](1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=, ………………………………2分1sin1202ABC S x y ∆=⋅⋅y x ⋅⋅=43 …………………………4分 y x ⋅⋅=28322283⎪⎭⎫ ⎝⎛+≤y x=2m 当且仅当y x =2,即750,1500x y ==时等号成立,所以当ABC △的面积最大时,AB 和AC 的长度分别为750米和1500米……6分 (2)在(1)的条件下,因为750,1500AB m AC m ==. 由2133AD AB AC =+ …………………………8分 得222133AD AB AC ⎛⎫=+ ⎪⎝⎭22919494AC AC AB AB +⋅+= …………………………10分 2244117507501500()15009929=⨯+⨯⨯⨯-+⨯250000= ||500AD ∴=, …………………………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分 解法二:在ABC ∆中, 120cos 222AC AB AC AB BC ⋅-+==7750= ………8分在ABD ∆中,ACAB AC BC AB B ⋅-+=2cos 222775075021500)7750(750222⨯⨯-+=772= …………………………10分 在ABD ∆中,B BD AB BD AB AD cos 222⋅-+=772)7250(7502)7250(75022⋅⨯⨯-+==500 …………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则)0,0(A ,)0,750(B)120sin 1500,120cos 1500( C ,即)3750,750(-C ,设),(00y x D ………8分由2CD DB =,求得⎪⎩⎪⎨⎧==325025000y x ,所以(D …………10分所以,22)03250()0250(||-+-=AD 500=……………………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分20.[解] (1)设AOB △的边长为a ,则A的坐标为1,)2a ±………2分所以214,2a ⎛⎫±= ⎪⎝⎭所以a =此三角形的边长为 ……………………………4分 (2)设直线:l x ky b =+当0k =时,1,9x x ==符合题意 ……………………………6分当0k ≠时,224404x ky by ky b y x =+⎧⇒--=⎨=⎩…………………8分222121216()0,4,42(2,2)k b y y k x x k b M k b k ∆=+>+=+=+⇒+11,AB CM AB k k k k⋅=-= 2223225CM k k k b k k b ∴==-⇒=-+- 22216()16(3)003k b k k ∴∆=+=->⇒<<4r ===()230,3k ∴=∉,舍去综上所述,直线l 的方程为:1,9x x == ……………………………10分 (3)(][)0,24,5r ∈时,共2条;……………………………12分()2,4r ∈时,共4条; ……………………………14分[)5,r ∈+∞时,共1条. ……………………………16分21.[解](1)对等式()11x f x f x x ⎛⎫=⎪-⎝⎭, 令11(1)12x f f ⎛⎫=-⇒-=-=-⎪⎝⎭所以112f ⎛⎫-=- ⎪⎝⎭ ……………………………2分 令1111222233x f f f ⎛⎫⎛⎫⎛⎫=-⇒-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1132f ⎛⎫-=- ⎪⎝⎭……………………………4分 (2)取1x n =-,可得111()()1f f n n n =--+,………………6分 即111()()1f f n n n=+,所以11()n n a a n n *+=∈N1(1)(1)1,a f f ==--=所以数列{}n a 的递推公式为1111,()n n a a a n n*+==∈N ……………………………8分 故()13212211111111221!n n n n n a a a a a a a a a a n n n ---⋅⋅⋅⋅==⋅⋅⋅=--- ………………10分 所以数列{}n a 的通项公式为1(1)!n a n =-. …………………12分(3)由(2)1(1)!n a n =-代入121321n n n n n T a a a a a a a a --=++++得111110!(1)!1!(2)!2!(3)!3!(3)!(1)!0!n T n n n n n =+++++⋅-⋅-⋅-⋅--⋅……14分1(1)!(1)!(1)!(1)!11(1)!1!(2)!2!(3)!3!(3)!(2)!1!n n n n n T n n n n n ⎡⎤----⇒=++++++⎢⎥-⋅-⋅-⋅--⋅⎣⎦101232111111112(1)!(1)!n n n n n n n n n n T C C C C CCn n ---------⎡⎤⇒=++++++=⎣⎦--……16分12!nn T n +⇒=则12limlim 0n n n nT T n +→∞→∞== ……………………………18分。
高中数学学习材料唐玲出品上海市17区县2016届高三第二次模拟数学理试题分类汇编:立体几何一、填空、选择题1、(崇明县2016届高三二模)已知圆锥的母线长为5cm ,侧面积为15πcm 2,则此圆锥的体积为cm 2.2、(奉贤区2016届高三二模)在棱长为1的正方体ABCD A B C D ''''-中,若点P 是棱上一点,则满足2PA PC '+=的点P 的个数_______.3、(虹口区2016届高三二模)已知A 、B 是球O 的球面上两点,90AOB ∠=,C 为该球面上的动点,若三棱锥ABC O -体积的最大值为323, 则球O 的表面积为__________4、(黄浦区2016届高三二模)已知一个凸多边形的平面展开图由两个正六边形和六个正方形构成,如右上图所示,若该凸多面体所有棱长均为1,则其体积V = 5、(静安区2016届高三二模)如图,正四棱锥P ABCD -的底面边长为23cm ,侧面积为 283cm ,则它的体积为 .6、(闵行区2016届高三二模)若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的 倍.7、(浦东新区2016届高三二模)已知四面体ABCD 中,2==CD AB ,E ,F 分别为BC ,AD 的中点,且异面直线AB 与CD 所成的角为3π,则EF =________. 8、(普陀区2016届高三二模)若a 、b 表示两条直线,α表示平面,下列命题中的真命题为( ) (A )若α⊥a ,b a ⊥,则α//b (B )若α//a ,b a ⊥,则α⊥b (C )若α⊥a ,α⊆b ,则b a ⊥ (D )若α//a ,α//b ,则b a //9、(徐汇、金山、松江区2016届高三二模).如图,圆锥形容器的高为,h 圆锥内水面的高为1,h 且11,3h h =若将圆锥倒置,水面高为2,h 则2h 等于------------------------------------------------( )(A )23h (B )1927h (C )363h (D )3193h10、(杨浦区2016届高三二模)已知命题:“若a ,b 为异面直线,平面α过直线a 且与直线b 平行,则直线b 与平面α的距离等于异面直线a ,b 之间的距离”为真命题.根据上述命题,若a ,b 为异面直线,且它们之间的距离为d ,则空间中与a ,b 均异面且距离也均为d 的直线c 的条数为( )A0条 B.1条 C.多于1条,但为有限条 D.无数多条 11、(闸北区2016届高三二模)已知,,,S A B C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB == 2BC =,则球O 的表面积等于( )A .π4B .π3C .π2D .π12、(长宁、青浦、宝山、嘉定四区2016届高三二模)下列命题正确的是( ). (A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α;(C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π; (D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .13、(闵行区2016届高三二模)如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线14、(浦东新区2016届高三二模)给出下列命题,其中正确的命题为( ) (A )若直线a 和b 共面,直线b 和c 共面,则a 和c 共面;(B )直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (C )直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (D )异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直. 二、解答题1、(崇明县2016届高三二模)如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 是棱CD 的中点. (1)求证:11EF B D ∥; (2)求二面角1C EF A --的大小(结果用反三角函数值表示).2、(奉贤区2016届高三二模)面ABC 外的一点P ,,,AP AB AC 两两互相垂直,过AC 的中点D 作ED ⊥面ABC ,且1ED =,2PA =,2AC =,连,BP BE ,多面体B PADE -的体积是33. (1)画出面PBE 与面ABC 的交线,说明理由;(2)求面PBE 与面ABC 所成的锐二面角的大小.AC BC 1A 1B 1(第19题图)D 1 DFEADCPEQ A DCBP (第20题图)3、(虹口区2016届高三二模)如图,在四棱锥ABCD P -中,已知⊥PA 平面ABCD , 且四边形ABCD 为直角梯形,90ABC BAD ∠=∠=︒,2AB AD AP ===,1BC =.(1) 求点A 到平面PCD 的距离;(2) 若点Q 为线段BP 的中点,求直线CQ 与平面ADQ 所成角的大小.4、(黄浦区2016届高三二模)如图,小凳的凳面为圆形,凳脚为三根细钢管,考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点P 与凳面圆形的圆心O 的连线垂直于凳面和地面,且P 分两钢管上下两段的比值为0.618,三只凳脚与地面所成的角均为60°,若A 、B 、C 是凳面圆周的三等分点,18AB =厘米,求凳面的高度h 及三根细钢管的总长度(精确到0.01);5、(静安区2016届高三二模)设点,E F 分别是棱长为2的正方体1111ABCD A B C D -的棱1,AB AA 的中点.如图,以C 为坐标原点,射线CD 、CB 、1CC 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系.(1)求向量1D E 与1C F 的数量积;(2)若点,M N 分别是线段1D E 与线段1C F 上的点,问是否存在直线MN ,MN ⊥平面ABCD ?若存在,求点,M N 的坐标;若不存在,请说明理由EFB 1A 1C 1D 1BC DA6、(闵行区2016届高三二模)如图,在直角梯形PBCD 中,//PB DC ,DC BC ⊥,22PB BC CD ===,点A 是PB 的中点,现沿AD 将平面PAD 折起,设PAB θ∠=.(1)当θ为直角时,求异面直线PC 与BD所成角的大小; (2)当θ为多少时,三棱锥P ABD -的体积为26.7、(浦东新区2016届高三二模)如图,在圆锥SO 中,AB 为底面圆O 的直径,点C 为»AB 的中点,SO AB =.(1)证明:AB⊥平面SOC ;(2)若点D 为母线SC 的中点,求AD 与平面SOC 所成的角.(结果用反三角函数表示)8、(普陀区2016届高三二模)在正四棱柱1111D C B A ABCD -中,底面边长为1,B C 1与底面ABCD 所成的角的大小为2arctan ,如果平面11C BD 与底面ABCD 所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值)9、(徐汇、金山、松江区2016届高三二模)在直三棱柱111C B A ABC -中,1==AC AB ,090=∠BAC ,且异面直线B A 1与11C B 所成的角等于060,设a AA =1. (1)求a 的值;(2)求三棱锥BC A B 11-的体积.10、(杨浦区2016届高三二模)如图,底面是直角三角形的直三棱柱111ABC A B C -中,1112AC BC AA ===,D 是棱1AA 上的动点. (1)证明:1DC BC ⊥; (2)求三棱锥1C BDC -的体积.1A 1B 1CA BCD .A 1CEABCD B 111、(闸北区2016届高三二模)在长方体1111ABCD A B C D -中,2AB =,1AD =,11AA =,点E 在棱AB 上移动.(1)探求AE 多长时,直线1D E 与平面11AA D D成45角;(2)点E 移动为棱AB 中点时,求点E 到平面11A DC 的距离.12、(长宁、青浦、宝山、嘉定四区2016届高三二模)如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA 的中点. (1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角 函数值表示).参考答案一、填空、选择题1、12π2、23、64π4、3325、4106、3 ABC A 1B 1C 1D7、1 或3 8、C 9、D 10、D 11、A 12、D 13、B 14、D二、解答题1、可得有关点的坐标为 11111(0,0,1),(1,1,1),(,1,0),(0,,0),(0,1,1)22D BEF C 11(,,0)22EF =-- ,11(1,1,0)B D =--......................4分所以112B D EF =...............................5分 所以11EF B D ∥...............................6分 (2)设1(,,)n u v w = 是平面1C EF 的一个法向量. 因为111,n EF n FC ⊥⊥ 所以1111110,0222n EF u v n FC v w ⋅=--=⋅=+=解得,2u v v w =-=- .取1w = ,得1(2,2,1)n =-.............................9分 因为1DD ABCD ⊥平面,所以平面ABCD 的一个法向量是2(0,0,1)n = .........10分 设1n 与2n 的夹角为α ,则12121cos 3||||n n n n α⋅==⋅ .......................11分结合图形,可判别得二面角1C EF A --是钝角,其大小为1arccos3π- ........12分 2、(1)根据条件知:PE 与AD 交点恰好是C 1分 ,C PE C ∈∴∈面PBE ,,C AC C ∈∴∈面ABC 2分B ∈面PBE ,B ∈面ABC 3分 面PBE 与面ABC 的交线BC 5分 (2)(理) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯= 9分 233BA ∴=10分建立空间直角坐标系,设平面的法向量是()1,,n x y z23,0,03B ⎛⎫ ⎪ ⎪⎝⎭ ,()0,2,0C ()0,1,0D ()0,1,1E ()0,0,2P 23,0,23BP ⎛⎫=- ⎪ ⎪⎝⎭,23,1,13BE ⎛⎫=- ⎪ ⎪⎝⎭AC BC 1A 1B 1(第19题图)D 1D FExyzQA D CBP (第20题解答图)zyx 123203n BP x z ⋅=-+=12303n BE x y z ⋅=-++=()13,1,1n ∴=11分面ABC 的法向量()20,0,1n =1212cos n n n n θ⋅==⋅1555= 12分 所以面PBE 与面ABC 所成的锐二面角大小5arccos513分 注:若作出二面角得2分,计算再3分(2)(文) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分 多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯= 9分 233BA ∴=10分 连接AEAE 是BE 在面EDAP 的射影BEA ∠是BE 与面PADE 所成的线面角. 11分计算2AE =,2363tan 32BAE ∠== 12分BEA ∠是BE 与面PADE 所成的线面角6arctan3. 13分3、(理)解:(1)以},,{AP AD AB 为正交基底建立空间 直角坐标系xyz A -,则相关点的坐标为B (2,0,0),(2,1,0),(0,2,0),(0,0,2).C D P ……2分设平面PCD 的法向量为(,,),n x y z =由(2,1,0),DC =-(0,2,2),DP =-(0,2,0).DA =-则202,2.220n DC x y y x z x n DPy z ìïì?-==ïïïÞ眄镲=?-+=ïîïî 令1x =,则(1,2,2)n =. ……5分ADB CPEADBC PEzxy所以点A 到平面PCD 的距离为:(0,2,0)(1,2,2)4.(1,2,2)3DA n d n×-?=== ……7分(2) 由条件,得(1,0,1),Q =(0,2,0),(1,0,1),AD AQ ==且(1,1,1).CQ =-- 设平面ADQ 的法向量为0000(,,),n x y z =则00000000200,.0n ADy y z x n AQx z ìïì?==ïï镲Þ眄镲=-?+=ïïîî令01x =,则0(1,0,1)n =-. ……10分设直线CQ 与平面ADQ 所成角为,θ则00026sin cos ,.332CQ n CQ n CQ n θ⋅=<>===⋅故直线CQ 与平面ADQ 所成角的大小为6sin.3arc ……14分 注:第(1)小题也可用等积法来做.4、[解] 联结PO ,AO ,由题意,PO ⊥平面ABC ,因为凳面与地面平行, 所以PAO ∠就是PA 与平面ABC 所成的角,即60PAO ∠=︒.(2分) 在等边三角形ABC 中,18AB =,得63AO =,(4分) 在直角三角形PAO 中,318OP AO ==,(6分)由0.618OPh OP=-,解得47.13h ≈厘米.(9分)三根细钢管的总长度3163.25sin 60h≈︒厘米.(12分)5、(1)在给定空间直角坐标系中,相关点及向量坐标为11(2,0,2),(1,2,0),(1,2,2)D E D E =-- …………2分 11(0,0,2),(2,2,1),(2,2,1)C F C F =- …………4分所以111222(2)(1)4D E C F ⋅=-⨯+⨯+-⨯-=。
上海市17区县2016届高三第二次模拟数学理试题分类汇编:数列一、填空、选择题1、(崇明县2016届高三二模)若数列{}n a 是首项为1,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是 .2、(奉贤区2016届高三二模)无穷等比数列首项为1,公比为()0q q >的等比数列前n 项和为n S ,则lim 2n n S →∞=, 则q =________.3、(虹口区2016届高三二模)在正项等比数列{}n a 中,132341,,3a a a a =+=则12lim()n n a a a →∞+++=L ___________.4、(黄浦区2016届高三二模)已知数列{}n a 中,若10a =,2i a k =*1(,22,1,2,3,)k k i N i k +∈≤<=L ,则满足2100i i a a +≥的i 的最小值为5、(静安区2016届高三二模)已知数列{}n a 满足181a =,1311log ,2,(*)3,21n n n a a n k a k N n k ---+=⎧=∈⎨=+⎩,则数列{}n a 的前n 项和n S 的最大值为 .6、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S ,22|2016|n S n a n =+-(0a >),则使得1n n a a +≤(n ∈*N 学科网)恒成立的a 的最大值为 .7、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-⋅+,*n N ∈,则这个数列的前n 项和n S =___________.8、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为__________________.9、(徐汇、金山、松江区2016届高三二模)对于给定的正整数n 和正数R ,若等差数列123,,,a a a L 满足22121n a a R ++≤,则21222341n n n n S a a a a ++++=++++L 的最大值为__________________.10、(杨浦区2016届高三二模)已知等比数列{}n a 的各项均为正数,且满足:174a a =,则数列2{log }n a 的前7项之和为 .11、(闸北区2016届高三二模)已知数列{}n a 的前n 项和为n S ,对任意正整数n ,13n n a S +=,则下列关于{}n a 的论断中正确的是( )A .一定是等差数列B .一定是等比数列C .可能是等差数列,但不会是等比数列D .可能是等比数列,但不会是等差数列12、(长宁、青浦、宝山、嘉定四区2016届高三二模)已知各项均为正数的数列}{n a满足23n n =+L (*N ∈n ),则12231n a a a n +++=+L ___________. 13、(崇明县2016届高三二模)下面是关于公差0d >的等差数列{}n a 的四个命题: (1)数列{}n a 是递增数列; (2)数列{}n n a 是递增数列;(3)数列n a n ⎧⎫⎨⎬⎩⎭是递减数列; (4)数列{}3n a nd +是递增数列.其中的真命题的个数为A .0B .1C .2D .314、(奉贤区2016届高三二模)若数列{}n a 前n 项`和n S 满足()2*1212,n n S S n n n N -+=+≥∈,且1a x =,{}n a 单调递增,则x 的取值范围是_______.15、(浦东新区2016届高三二模)任意实数,a b ,定义00ab ab a b a ab b ≥⎧⎪⊗=⎨<⎪⎩,设函数2()log f x x x =⊗().数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()2f a f a f a f a f a a +++++=L ,则1a =_______.二、解答题1、(崇明县2016届高三二模)已知数列{}n a 与{}n b 满足11*(),n n n n a a b b n N λ++-=-∈. (1)若123,1,2n b n a λ=-==,求数列{}n a 的通项公式;(2)若111,2a b ==,且数列{}n b 是公比等于2的等比数列,求λ的值,使数列{}n a 也是等比数列;(3)若1*,,n n a b n N λλ==∈,且(1,0)λ∈-,数列{}n a 有最大值M 与最小值m ,求Mm的取值范围.2、(奉贤区2016届高三二模)数列{}n a ,{}n b 满足1111221111122n n n n n na ab b a b ++⎧=+⎪⎪⎨⎪=⋅+⋅⎪⎩,0,011>>b a .(1)求证:{}n n b a ⋅是常数列;(2)若{}n a 是递减数列,求1a 与1b 的关系; (3)设114,1a b ==,当2n ≥时,求n a 的取值范围.3、(虹口区2016届高三二模)设数列{}n a 的前n 项和为,n S 且2(1)().n n n S a S n N *-=∈(1)求123S S S 、、的值,并求出n S 及数列{}n a 的通项公式;(2)设121(1)(1)(),n n n n b n a a n N +*+=-+⋅∈求数列{}n b 的前n 项和.n T(3)设(1)(),n n c n a n N *=+⋅∈在数列{}n c 中取出(,3)m m N m *∈≥为常数项,按照原来的顺序排成一列,构成等比数列{}n d .若对任意的数列{}n d ,均有123,m d d d d M ++++≤L 试求M 的最小值.4、(黄浦区2016届高三二模)已知数列{}n a 的通项公式为12()()n a n k n k =--,其中12,k k Z ∈;(1)试写出一组12,k k Z ∈的值,使得数列{}n a 中的各项均为正数; (2)若11k =、*2k N ∈,数列{}n b 满足nn a b n=,且对任意*m N ∈(3)m ≠,均有3m b b <,写出所有满足条件的2k 的值;(3)若120k k <<,数列{}n c 满足||n n n c a a =+,其前n 项和为n S ,且使0i j c c =≠*(,,)i j N i j ∈<的i 和j 有且仅有4组,1S 、2S 、…、n S 中至少3个连续项的值相等,其它项的值均不相等,求12,k k 的最小值;5、(静安区2016届高三二模)已知数列{}n a 满足n n n a a 331+=-(*∈≥N n n ,2),首项31=a .(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)数列{}n b 满足n a b nn 3log =,记数列⎭⎬⎫⎩⎨⎧⋅+11n n b b 的前n 项和为n T ,A 是△ABC 的内角,若n T A A 43cos sin >对于任意n N *∈恒成立,求角A 的取值范围.6、(闵行区2016届高三二模)已知n ∈*N ,数列{}n a 、{}n b 满足:11n n a a +=+,112n n n b b a +=+,记24n n n c a b =-. (1)若11a =,10b =,求数列{}n a 、{}n b 的通项公式; (2)证明:数列{}n c 是等差数列;(3)定义2()n n n f x x a x b =++,证明:若存在k ∈*N ,使得k a 、k b 为整数,且()k f x 有两个整数零点,则必有无穷多个()n f x 有两个整数零点.7、(浦东新区2016届高三二模)数列{}n a 满足:112,2nn n a a a λ+==+⋅,且123,1,a a a +成等差数列,其中*n N ∈。
(1)求实数λ的值及数列{}n a 的通项公式; (2)若不等式21625np p n a +≤-成立的自然数n 恰有4个,求正整数p 的值.8、(普陀区2016届高三二模)已知各项不为零的数列{}n a 的前n 项和为n S ,且11=a ,121+⋅=n n n a a S (*N n ∈) (1)求证:数列{}n a 是等差数列; (2)设数列{}n b 满足:122+-=n n a a n b ,且()3841lim 1211=+++++++∞→n n k k k k n b b b b b b Λ,求正整数k 的值;(3)若m 、k 均为正整数,且2≥m ,m k <,在数列{}k c 中,11=c ,11++-=k k k a mk c c ,求m c c c +++Λ21.9、(徐汇、金山、松江区2016届高三二模)设集合W 由满足下列两个条件的数列{}n a 构成:①21;2n n n a a a +++<②存在实数,a b 使n a a b ≤≤对任意正整数n 都成立. (1) 现在给出只有5项的有限数列{}{},,n n a b 其中123452,6,8,9,12a a a a a =====;2log (1,2,3,4,5).k b k k ==试判断数列{}{},n n a b 是否为集合W 的元素;(2)数列{}n c 的前n 项和为1,1,n S c =且对任意正整数,n 点1(,)n n c S +在直线220x y +-=上,证明:数列{},n S W ∈并写出实数,a b 的取值范围;(3)设数列{},n d W ∈且对满足条件②中的实数b 的最小值0,b 都有*0().n d b n N ≠∈求证:数列{}n d 一定是单调递增数列.10、(闸北区2016届高三二模)已知数列{}n a ,n S 为其前n 项的和,满足(1)2n n n S +=. (1)求数列{}n a 的通项公式; (2)设数列1{}na 的前n 项和为n T ,数列{}n T 的前n 项和为n R ,求证:当2,*n n N ≥∈时1(1)n n R n T -=-;(3)(理)已知当*n N ∈,且6n ≥时有1(1)()32n m m n -<+,其中1,2,,m n =L ,求满足34(2)(3)n a n n n n n a ++++=+L 的所有n 的值.11、(长宁、青浦、宝山、嘉定四区2016届高三二模)已知正项数列}{n a ,}{n b 满足:对任意*N ∈n ,都有n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且101=a ,152=a .(1)求证:数列{}nb 是等差数列;(2)求数列}{n a ,}{n b 的通项公式; (3)设12111n nS a a a =+++L ,如果对任意*N ∈n ,不等式n n n a baS -<22恒成立,求实数a 的取值范围. 参考答案 一、填空、选择题 1、2 2、12 3、92 4、128 5、127 6、120167、1122,252,22n n n nn S n n ++⎧+-⎪⎪=⎨⎪--⎪⎩为偶数为奇数 8、200 9、(212n + 10、711、C 12、n n 622+ 13、C 14、(2,3) 15、4二、解答题1、(1)112()4n n n n a a b b ++-=-=所以数列{}n a 为等差数列................................2分 因为11a =,所以43n a n =-.............................4分 (2)数列{}n b 是公比等于2的等比数列,12b =,所以2n n b =,所以111()2(2,*)n n n n n a a b b n n N λλ----=-=⋅≥∈所以112211()()...()n n n n n a a a a a a a a ---=-+-++-+ 12(22...2)1212n n n λλλ--=⋅++++=⋅+- ...........7分因为数列{}n a 是等比数列所以2213a a a =,所以12λ=, 当12λ=时,12n n a -= ,数列{}n a 是等比数列 所以12λ=..................................................10分(3)当2,*n n N ≥∈ 时,11()n n n n a a b b λ---=- 所以112211()()...()n n n n n a a a a a a a a ---=-+-++-+ 112211()()...()n n n n b b b b b b a λλλ---=-+-++-+1211n n b b a λλλλλ+=-+=-+当1n =时,上式依然成立,所以12n n a λλλ+=-+................12分2122n n a λλλ+=-+,因为(1,0)λ∈-,所以212222(1)0n n n a a λλ++-=-> 即数列{}n a 的偶数项构成的数列2{}n a 是单调增数列同理222121(1)0n n n a a λλ+--=-<即数列{}n a 的奇数项构成的数列21{}n a -是单调减数列又212210n n a a λλ+-=-<,所以数列{}n a 的最大值1M a λ==2232120n n a a λλ++-=->,所以数列{}n a 的最小值322m a λλλ==-+.....14分所以32221113()241M m λλλλλλλ-+-=-+==+ 因为(1,0)λ∈-,所以213()(1,3)24λ-+∈所以1(,1)3M m ∈..................................................16分 2、(1)12n n n a a b +=+ 1分112n n n n na b b a b ++= 2分12n nn n na b b a b +∴=+ 3分1122n nn n a b b a ++∴=4分 1111....b a b a b a n n n n ===∴-- 5分{}n n b a ⋅是常数列; 6分(2) {}n a 是递减数列,10n n a a +-<1121111110222b a a a a b a --=+-=< 11a b ∴> 7分2232220,2b a a a a b --=<∴>,()2111111112,02a b a b a b a b +>∴->+猜想1110,2n nn n n n b a a a a b a b +--=<∴>⇒>恒成立 8分 ()()21121220224k k k kk k k k k k k k k k a b a b a b b a a b a a a b +++++----+-===<+ 9分11a b ∴>时{}n a 是递减数列 10分(3)、(理)整理得1142n n n a a a +⎛⎫=+ ⎪⎝⎭11分 252a =12分 1230000n a a a a ∴>⇒>⇒>⇒>L 13分2n ≥,()2121122022n n n nn a a a a a +-⎛⎫-=+-=> ⎪⎝⎭14分 12n a +∴> 15分2144222nn n n nn n na b a a a a a a +----===16分 2,n a >Q 10n n a a +∴-<{}n a ∴单调递减,2n a a ∴≤ 17分52,2n a ⎛⎤∴∈ ⎥⎝⎦18分3、解:(1)当1n =时, 22111111(1);2S a S S S -==⇒= 当2n =时, 222222212(1)();23S a S S S S -==-⇒=当3n =时, 233333323(1)().34S a S S S S -==-⇒= ……2分由此,猜测: ().1n nS n N n *=∈+下面用数学归纳法证明:(i )当1n =时,结论显然成立;(ii )假设当()n k k N *=∈时,1k kS k =+;则当1n k =+时,由条件,得 21111111(1)().2221k k k k k k k k k k k S a S S S S S k S k k +++++++-==-⇒===-+-+即当1n k =+时,结论也成立.于是,由(i ),(ii )可知,对任意的,.1n nn N S n *∈=+均有……4分 当1112,.1(1)n n n n n n a S S n n n n --≥=-=-=++时又1111,212a S ===⨯ 于是数列{}n a 的通项公式为:1().(1)n a n N n n *=∈+ ……6分 (2)因 121111111(1)(1)(1)(1)(),(2)22n n n n n n b n a a n n n n ++++=-+⋅=-⋅=-⋅-++……8分当n 为奇数时,12111111111111(1)()()()()()232435461121111111(1)?10221222(1)(2)n n T b b b n n n n n n n n ⎡⎤=+++=---+---+--+-⎢⎥-++⎣⎦⎡⎤=-+-=+⎢⎥++++⎣⎦L L L L 分当n 为偶数时,12111111111111(1)()()()()()232435461121111111(1).221222(1)(2)n n T b b b n n n n n n n n ⎡⎤=+++=---+---++---⎢⎥-++⎣⎦⎡⎤=--+=-⎢⎥++++⎣⎦L L故111,(22(1)(2)11(1)=.22(1)(2)111,(22(1)(2)nnn n n T n n n n n ⎧⎡⎤+⎪⎢⎥++⎡⎤-⎪⎣⎦=-⎨⎢⎥++⎡⎤⎣⎦⎪-⎢⎥⎪++⎣⎦⎩当为奇数)当为偶数)……12分 (3)因1(1),n n c n a n=+⋅=由于数列{}n c 的(3)m m ≥项子列{}n d 构成等比数列,设其公比为,q 则 211231(1).m m d d d d d q q q -++++=++++L L11,1,(),q Q q d a N a +*∈<=∈因且 设(,,2,,).vq u v N u u v u *=∈≥且互质 (i )当1v =时,因11,2q u =≤故 2112312111111(1)12.2222m m m m d d d d d q q q ---++++=++++≤++++=-L L L ……15分(ii )当1v ≠时,因11111m m m m v d d q a u---==⋅是数列{}n c 中的项,故1().m a v a a N -*''=⋅∈ 2112311232211232211232211111(1)111111()111111111122323233121()321232(3).223213m m m m m m m m m m m m m m m m m m m m m m d d d d d q q q a v v u v u vu u v v u v u vu u m --------------------++++=++++=+++++'≤+++++≤+++++⋅⋅⋅⎡⎤-⎢⎥⎣⎦==-<-≥-L L L L L Q 从而综合(i ),(ii ),得:在数列{}n c 中的所有(3)m m ≥项等比子数列{}n d 中,其和最大的是:211111.222m -L ,,,,故由题意知:M 的最小值为112.2m -- (18)分另解(3):因1(1),n n c n a n=+⋅=由于数列{}n c 的(3)m m ≥项子列{}n d 构成等比数列,设其公比为,q 则 211231(1).m m d d d d d q q q -++++=++++L L11,1,().q Q q d a N a +*∈<=∈因且 (i )当1a =时,因1,2q ≤故 211232111111112.2222m m m m d d d d q q q ---++++=++++≤++++=-L L L ……15分(ii )当2a ≥时,因11,11a a q a a+≤=+ 故2112311111(1)111312(3).22m m m d d d d q q q a a a aa m --++++=++++<⋅=+-+≤<-≥L L Q综合(i ),(ii ),得:在数列{}n c 中的所有(3)m m ≥项等比子数列{}n d 中,其和最大的是:211111.222m -L ,,,,故由题意知:M 的最小值为112.2m -- (18)分4、[解](1)11k =-、22k =-(答案不唯一).(4分)(2)由题设,22(1)n n a kb n k n n==+-+.(6分) 当21k =,2时,2()kf n n n =+均单调递增,不合题意,因此,23k ≥.当23k ≥时,对于2()kf n n n=+,当n ()f n单调递减;当n ()f n 单调递增.由题设,有123b b b >>,34b b <<L .(8分) 于是由23b b >及43b b >,可解得2612k <<. 因此,2k 的值为7,8,9,10,11.(10分)(3)2,0,||0,0.n n n n nn a a c a a a >⎧=+=⎨⎩≤ 其中2121212()()()n a n k n k n k k n k k =--=-++,且12k k <.当120k k <≤时,{}n a 各项均为正数,且单调递增,2n n c a =,也单调递增,不合题意;当120k k <≤时,222,,0,.n n a n k c n k >⎧=⎨⎩≤ 不合题意;(12分)于是,有120k k <<,此时12122,,0,.n n a n k or n k c k n k <>⎧=⎨⎩≤≤(14分)因为0i j c c =≠(i 、*j ∈N ,i j <),所以i 、12(,)j k k ∉. 于是由212121222()()2[()]n n c a n k n k n k k n k k ==--=-++,可得1222k k i j++=,进一步得120i k k j <<<<,此时,i 的四个值为1,2,3,4,因此,1k 的最小值为5.(16分) 又1S 、2S 、…、n S 中有至少3个连续项的值相等,其它项的值均不相等, 不妨设+1+2==m m m S S S =L ,于是有+1+2==0m m c c =L ,因为当12k n k ≤≤时,0n c =,所以12512k m m k =+<+<L ≤≤, 因此,26k ≥,即2k 的最小值为6.(18分)5、(1)数列{}n a 满足n n n a a 331+=-(*∈≥N n n ,2)∴n n n a a 331=--,∵03≠n ,∴13311=---n n n n a a 为常数,…………2分 ∴数列⎭⎬⎫⎩⎨⎧n n a 3是等差数列,首项为131=a ,公差为1…………4分 n a nn =3∴nn n a 3⋅= )(*∈N n …………6分 (2)23413233343(1)33n n n S n n -=+⋅+⋅+⋅++-⋅+⋅L2345133233343(1)33n n n S n n +=+⋅+⋅+⋅++-⋅+⋅L 234112333333n n n S n -+-=+++++-⋅L1133322n n n S n ++=⋅-+…………10分 (3)数列{}n b 满足na b nn 3log =,则n b n n ==3log 3,…………11分11n n b b +=111(1)1n n n n =-++因此有: 1111111(1)()()()223341n T n n =-+-+-++-+L =111+-n …………13分∴由题知△ABC 中,1sin cos sin 22n A A A =>恒成立,而对于任意n N *∈,1n T <成立,所以1sin 22A ≥即232sin ≥A , …………16分 又),0(π∈A ,即)2,0(2π∈A ∴3223ππ≤≤A ,即⎥⎦⎤⎢⎣⎡∈3,6ππA . …………18分 6、(1)n a n =, ………………………………………………………………2分Θ1122n n n n nb b a b +=+=+,∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- …………………4分1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.……………………………………6分 (2)221114(4)n n n n n n c c a b a b +++-=---……………………………………………8分221(1)4()(4)12n n n n n a a b a b =+-+--=∴{}n c 是公差为1的等差数列.……………………………………………………11分(3)由解方程得:x =由条件,()0k f x =两根x =为整数,则kc ∆=必为完全平方数,不妨设2()k c m m =∈N , …………12分此时2k a mx -±==为整数,∴k a 和m 具有相同的奇偶性,………13分 由(2)知{}n c 是公差为1的等差数列,取21n k m =++∴()222121211k m k c c m m m m ++=++=++=+ ………………………………15分此时(21)(1)2k a m m x -++±+==Θk a 和m 具有相同的奇偶性,∴21k a m ++和1m +具有相同的奇偶性, …17分所以函数21()k m f x ++有两个整数零点.由递推性可知存在无穷多个()n f x 有两个整数零点.………………………18分 7、(1)由题意:2322,26a a λλ=+=+∵123,1,a a a +成等差数列,()2(32)226λλ∴+=++,……………………(2分) 解得:1λ=………………………………………………………………………(3分)∵112,2nn n a a a +==+,112211()()()2n n n n n n a a a a a a a a ---∴=-+-++-+=L ,……………………(5分)解得:2nn a =………………………………………………………………………(6分)(2)解:∵21625n pp n a +≤-,18252n p p n -+∴≤- ∵0p >,1,2n ∴=显然成立……………………………………………………(8分)当3n ≥时,12582n p n p --≤+, …………………………………………………(9分) 设()11252n n b n -⎛⎫=-⋅ ⎪⎝⎭()()111112325(72)222nn nn n b b n n n -+⎛⎫⎛⎫⎛⎫∴-=-⋅--⋅=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭………………(11分)当3n =时,43b b >;当4n ≥时,456b b b >>>L ;34561357,,,481632b b b b ====,有4536b b b b >>>若12582n p n p --≤+还需有2解,则358p b b p <≤+,即154816p p <≤+,………(12分)解得840311p <≤,所以正整数3p =………………………………………(14分)8、【解】(1)当1=n 时,121211==a a S ,11=a ,故22=a ;……1分 当2≥n 时,=-=-1n n n S S a -⋅+121n n a a n n a a ⋅-121变形得()112-+-⋅=n n n n a a a a ,由于0≠n a ,所以211=--+n n a a ……2分 所以1212-=-n a n ,n a n 22=,*N n ∈,于是n a n =,*N n ∈.……3分由于11=-+n n a a ,所以数列{}n a 是以1首项,1为公差的等差数列 (4)分(2)由(1)得n a n =,所以122+-=n n a a n b nn n ⎪⎭⎫⎝⎛⋅==+-21412)1(2……5分 52121++⎪⎭⎫ ⎝⎛=⋅n n n b b ,且128121=b b ,当2≥n 时,4111=-+n n n n b b b b …………7分故数列{}1+n n b b 是以1281为首项,41为公比的等比数列.……8分 于是()=+++++++∞→1211lim n n k k k k n b b b b b b Λ=-+4111k k b b 3841,即912-+=⋅k k b b ……9分 k kk k b b 251241321--+=⎪⎭⎫⎝⎛=⋅,故92522---=k ,解得2=k .…………10分 (3)则由(1)得k a k =,11++-=k k k a m k c c 1+-=k m k ,12211c cc c c c c k k k k k ⋅⋅⋅=---Λ……12分 ()()km k k k C mk k k m k m c 1112)1()2)(1(111⋅-=⋅⋅-⋅+-+-⋅-=--Λ…………14分m c c c +++Λ21()[]m mm m m m C C C C m 132111--+-+-=Λ…………16分 ()()[]m C C C C m m m m m m m 1111210=-+-+--=Λ 故m c c c +++Λ21m1=.……18分9、【解答】(1)对于数列{},n a 35410,2a a a +=>Q 不满足集合W 的条件①,∴数列{}n a 不是集合W 中的元素.对于数列{},n b 13222log log 22b b b +=<=Q,24223log log 3,2b bb +=<=35224log log 4,2b b b +=<=而且,当{}1,2,3,4,5n ∈时有22log 1log 5,n b ≤≤显然满足集合W 的条件①②,故数列{}n b 是集合W 中的元素. -------------------4分 (2)因为点1(,)n nc S +在直线220x y +-=上,所以1220n n c S ++-= ①当2n ≥时,有 1220n n c S -+-= ②① -②,得1220(2),n n n c c c n +-+=≥所以,当2n ≥时,有11.2n n c c += 又2111220,1,c S S c +-=== 所以2111.22c c == 因此,对任意正整数,n 都有11,2n n c c +=所以,数列{}n c 是公比为12的等比数列, 故()1111,2.22n n n n c S n N *--==-∈ 对任意正整数,n 都有21211122,2222n n n n n n S S S ++++=--<-=且12,n S ≤<故{},n S W ∈实数a 的取值范围是(],1,-∞实数b 的取值范围是[)2,.+∞-------------------10分 (3)假设数列{}n d 不是单递增数列,则一定存在正整数0,k 使001.k k d d +≥------12分 此时,我们用数学归纳法证明:对于任意的正整数,n 当0n k ≥时都有1n n d d +≥成立. ①0n k =时,显然有1n n d d +≥成立; ② 假设0()n m m k =≥时,1,m m d d +≥ 则当1n m =+时,由212m m m d d d +++<可得212,m m m d d d ++<-从而有 1211(2)m m m m m d d d d d ++++->--10,m m d d +=-≥所以12.m m d d ++>由①②知,对任意的0,n k ≥都有1.n n d d +≥-----------------------------------------16分 显然012,,,k d d d L 这0k 个值中一定有一个最大的,不妨记为0.n d 于是0*(),n n d d n N ≥∈从而00,n d b =与已知条件*0()n d b n N ≠∈相矛盾.所以假设不成立,故命题得证.---------------------------------------------------------18分 10、解:(1)当2n ≥时,1(1)(1)22n n n n n n na S S n -+-=-=-= 又111a S ==Q ,所以n a n = ……………………………5分 (2)、<法一> 11n a n =Q,1112n T n∴=+++L , 1111111(1)(1)(1)22321n R n -∴=++++++++++-L L 111(1)1(2)(3)1231n n n n =-⋅+-⋅+-⋅++⋅-L11111111(11)(11)(1)(2)231231n n n n T n n n n n=++++-+=+++++-=-≥--L L …6分 <法二>:数学归纳法 ①2n =时,11111R T a ===,212112(1)2(1)1T a a -=+-= ………………………1分②假设(2,*)n k k k N =≥∈时有1(1)k k R k T -=- ………………………1分 当1n k =+时,1111(1)(1)(1)()k k k k k k k k R R T k T T k T k k T k a -++=+=-+=+-=+-- 111(1)(11)(1)(1)1k k k T k k T k ++=+-+--=+-+1n k ∴=+是原式成立 由①②可知当2,*n n N ≥∈时1(1)n n R n T -=-; ………………………4分 (3)、(理)Q 1(1)()32n m m n -<+,1,2,,m n =L 231211)32112)()3213)()32411)()3231)()32n n n n n n n n m n n m n n m n m n n m n n -+⎫=<⎪+⎪+⎪=<⎪+⎪⎪=<⎪+⎬⎪⎪⎪=-<⎪+⎪⎪=<⎪+⎭L时,(时,(时,(时,(时,(⇒相加得,231214311111()()()()()()()()333322222n n n n n n n n n n n n -++++++<+++++++++L L231111111()()()()1()1222222n n n -+++++=-<QL , 34(2)(3)n n n n n n ∴++++<+L ………………………4分6n ∴≥时,34(2)(3)n n n n n n ∴++++=+L 无解又当1n =时;34<,2n =时,222345+=;3n =时,33333456++=4n =时,44443456+++为偶数,而47为奇数,不符合 5n =时,5555534567++++为奇数,而58为偶数,不符合综上所述2n =或者3n = ……………………………4分(3)、易知0q ≠,否则若0q =,则1()f x p=,与lim ()0(*)n n f a n N →∞=∈矛盾因为函数()f x 的定义域为R ,所以(1)31qxp -⋅+恒不为零,而3qx 的值域为(0,)+∞,所以10p -≥,又1p =时,()1f x =,与lim ()0(*)n n f a n N →∞=∈矛盾,故1p >11()(1)31(1)(3)1n qn q nf a p p ==-⋅+-+Q 且lim ()0n n f a →∞=31q ∴>,0q ∴> 即有1p q +>。