201x版八年级数学下册 第22章 四边形回顾与反思教案 冀教版
- 格式:doc
- 大小:81.00 KB
- 文档页数:5
多边形内角与外角和【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次连接结所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3.多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:已知多边形的边数,求其内角和;已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于;【典型例题】类型一、多边形的概念1.如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35 C.40 D.44【答案】B.【解析】解:当n=10时,= =35,即凸十边形的对角线有35条.【总结升华】本题考查了多边形的边数与对角线的条数之间的关系,熟记多边形的边数与对角线的条数的关系式是解决此类问题的关键.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
四边形复习一、教学目标:通过对本章知识的回顾,进一步认识四边形、特殊四边形的基本性质和判定方法,加深对三角形中位线的理解。
通过分类揭示各种特殊四边形之间的联系,形成完整的认知体系。
二、教学重点:通过分类揭示各种特殊四边形之间的联系,形成完整的认知体系。
三、教学过程:1.引入在本章我们学习了特殊的四边形——平行四边形、矩形、菱形、正方形。
他们之间具有一般与特殊的关系。
下面我们一起来梳理一下它们之间的关系以及特殊化的演进过程。
2.学生回顾四边形与特殊四边形的关系:正方形有一个角是直角对角线相等对角线垂直一组邻边相等菱形矩形对角线相等对角线垂直有一个角是直角一组邻边相等平行四边形三四个条两组对边对角线角边分别平行互相平分是相直等四边形在整个特殊化演进过程中,从平行四边形出发,按照边、角、对角线的特殊化进行分类,演化出了菱形、矩形。
菱形、矩形的边、角、对角线特殊化演化出了正方形。
3.知识梳理:通过对四边形与特殊四边形之间关系的梳理,进一步用表格的形式让学生来总结特殊四边形的性质与判定:( 1)特殊四边形的性质:四边形对称性边角对角线项目中心对称图形平行且相等对角相等互相平分平行四边形邻角互补矩形中心对称图形平行且相等四个角都互相平分且相等轴对称图形是直角中心对称图形平行互相垂直平分,且每一条对菱形对角相等角线平分一组对角轴对称图形且四边相等邻角互补正方形中心对称图形平行四个角都互相垂直平分且相等,每一轴对称图形且四边相等是直角条对角线平分一组对角( 2)特殊四边形的判定:四边形平行四边形矩形菱形正方形1. 定义:两组对边分别平行 2. 两组对边分别相等3. 一组对边平行且相等 4. 对角线互相平分5.两组对角分别相等1.定义:有一个角是直角的平行四边形2.三个角是直角的四边形3.对角线相等的平行四边形1.定义:一组邻边相等的平行四边形2.四条边都相等的四边形3.对角线互相垂直的平行四边形1.定义:一组邻边相等且有一个角是直角的平行四边形2. 有一组邻边相等的矩形3. 对角线互相垂直的矩形4. 有一个角是直角的菱形5. 对角线相等的菱形6.对角线相等且互相垂直的平行四边形( 3)三角形中位线与中点四边形:①三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半。
《特殊四边形》复习课教学设计教学目标:1.掌握平行四边形、矩形、菱形、正方形的有关性质和常用判定方法,灵活运用这些知识进行有关的证明和计算;培养学生阅读的技能,进一步培养和发展学生的逻辑思维能力与推理论证能力。
2.在综合问题解决过程中,学会阅读综合问题的方法,获取有价值的数据的方法;经历综合问题的探索过程,学会分析问题的方法。
3.在解决问题过程中培养学生的数学素养和严谨的科学态度。
4.在解决问题的过程中,让学生获得成功体验。
教学重点:阅读,对基本图形的认识。
教学难点:审题,寻找解决问题的突破口。
教学过程:一、复习导入四边形与特殊四边形的关系二、要点回眸(一)特殊四边形的定义:(二)几种特殊四边形的性质:(三)几种特殊四边形的常用判定方法:平行四边形:1.定义:两组对边分别平行的四边形2.两组对边分别相等的四边形3.一组对边平行且相等的四边形4.对角线互相平分的四边形矩形:1.定义:有一角是直角的平行四边形2.三个角是直角的四边形3.对角线相等的平行四边形菱形:1.定义:一组邻边相等的平行四边形2.四条边都相等的四边形3.对角线互相垂直的平行四边形正方形:1.有一组邻边相等且有一个角是直角的平行四边形2.有一组邻边相等的矩形3.有一个角是直角的菱形三、考题分类1.平行四边形的性质与判定(1)如图,口ABCD与口DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为。
(2)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为()A.4cmB.5cmC.6cmD.8cm2.特殊平行四边形的性质与判定应用(1)如图1,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E ,F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm,则△AEF 的周长= cm. (2)如图2, P 是菱形 ABCD 对角线 BD 上的一点,PE ⊥AB 于点 E ,PE =4 cm ,则点 P 到 BC 的距离是______cm.3. 特殊四边形的综合应用 如图,在△ABC 中,分别以AB,AC,BC 为边在BC 的同侧作等边三角形ABD,ACE,BCF(1)求证:四边形DAEF 是平行四边形;(2)探究下列问题①当△ABC 满足什么条件时,四边形DAEF 是矩形?②当△ABC 满足什么条件时,四边形DAEF 是菱形?③当△ABC 满足什么条件时,以D,A,E,F 为顶点的四边形不存在?④当△ABC 满足什么条件时,平行四边形是正方形.4. 三角形中位线与中点四边形 EDFAB C 第1题图 第2题图A B CDF EO如图,在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,请添加一个条件即 ,使得四边形EFGH 为菱形.四、小结归纳1. 四边形与特殊四边形的关系;2. 特殊四边形的性质与判定;3. 三角形中位线与中点四边形;五、对应训练 1. 如图1,在四边形ABCD 中,点E 、F 分别是AP 、BP 的中点,当点P 在线段CD 上从点C 向点D 移动时,线段EF 的长度将 。
教学设计合作探究17分钟③OA=OC ④AD∥ BC ⑤AB=CD ⑥OB=OD ⑦∠DAB= ∠DCB⑧∠ADC= ∠ABC现在,以其中的两个为一组,能直接确定四边形ABCD为平行四边形的条件是()师问:此题考查了哪些数学知识呢?出此题的目的是什么呢?师:我们马上就要中考了,现在我们一起看看平行四边形在中考中怎样考1.(2017年福建龙岩)如图(3),在□ABCD中,E、F分别为AD、BC边上的一点,请再增加一个条件——,就可推得BE = DF,并证明你的结论.平行四边形与我们的生活有怎样的联系呢?展示例题1、(2017浙江金华)国家级历交流讨论不同答案,形成一致意见。
首先写下自己的答案,小组交流比较比较各自的答案,看我们的答案一样吗?讨论答案的正确性。
四边形的判定,学习目标1。
学生合作探究,培养学生自主学习能力和逻辑推理能力,和一题多解。
学习目标2、学习目标3课外延伸10分钟史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB//EF//DC,BC//GH//AD,那么下列说法中错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等2、田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖鱼池建养鱼苗,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由.学生讲解四个选项的正确和错误的原因学生思考,讨论交流把平行四边形应用到实际生活中去,学生体会数学来源于生活,又应用到生活中去,数学与生活紧密相连。
第二十二章四边形22.1 平行四边形的性质 (1)第1课时平行四边形的性质定理1 (1)第2课时平行四边形的性质定理2 (4)22.2 平行四边形的判定 (7)第1课时平行四边形的判定定理1 (7)第2课时平行四边形的判定定理2、3 (9)22.3 三角形的中位线 (12)22.4 矩形 (14)第1课时矩形的性质 (14)第2课时矩形的判定 (17)22.5 菱形 (20)第1课时菱形的性质 (20)第2课时菱形的判定 (24)22.6 正方形 (28)22.7 多边形的内角和与外角和 (33)复习整理 (35)22.1 平行四边形的性质第1课时平行四边形的性质定理1教学目标1.理解平行四边形的概念;(重点)2.掌握平行四边形边、角的性质;(重点)3.利用平行四边形边、角的性质解决问题.(难点)教学过程一、情境导入如图,平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四边形的定义如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形.解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可.证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.方法总结:平行四边形的定义既是平行四边形的性质,也是判断一个四边形是平行四边形的重要方法.探究点二:平行四边形的边、角特征【类型一】利用平行四边形的性质求边长如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________.解析:∵四边形ADEF为平行四边形,∴DE=AF=2,AD=EF,AD∥EF,∴∠ACB=∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF.∴AD=BF,∵AB=5,∴BF=5+2=7,∴AD=7.方法总结:本题考查了平行四边形对边平行且相等的性质及等腰三角形的性质,熟练掌握各性质是解题的关键.【类型二】利用平行四边形的性质求角如图,在平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( ) A.35°B.55°C.25°D.30°解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°.故选A.方法总结:平行四边形对角相等,邻角互补,并且已知一个角或已知两个邻角的关系,可求出其他角,所以利用该性质可以解决和角度有关的问题.【类型三】利用平行四边形的性质证明有关结论如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP .求证:FP =EP .解析:根据平行四边形的性质推出∠DGC =∠GCB ,根据等腰三角形性质求出∠DGC =∠DCG ,推出∠DCG =∠GCB ,根据“等角的补角相等”求出∠DCP =∠FCP ,根据“SAS”证出△PCF ≌△PCE 即可得出结论.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DGC =∠GCB .∵DG =DC ,∴∠DGC =∠DCG ,∴∠DCG =∠GCB .∵∠DCG +∠ECP =180°,∠GCB +∠FCP =180°,∴∠ECP =∠FCP .在△PCF 和△PCE 中,∵⎩⎪⎨⎪⎧CF =CE ,∠FCP =∠ECP ,CP =CP ,∴△PCF ≌△PCE (SAS),∴PF =PE .方法总结:平行四边形性质,等腰三角形的性质,全等三角形的性质和判定等常综合应用,利用平行四边形的性质可以解决一些相等的问题,在证明时应用较多. 【类型四】 判断直线的位置关系如图,在平行四边形ABCD 中,AB =2AD ,M 为AB 的中点,连接DM 、MC ,试问直线DM 和MC 有何位置关系?请证明.解析:由AB =2AD ,M 是AB 的中点的位置关系,可得出DM 、CM 分别是∠ADC 与∠BCD 的平分线.又由平行线的性质可得∠ADC +∠BCD =180°,进而可得出DM 与MC 的位置关系.解:DM 与MC 互相垂直.证明如下:∵M 是AB 的中点,∴AB =2AM .又∵AB =2AD ,∴AM =AD ,∴∠ADM =∠AMD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠AMD =∠MDC ,∴∠ADM=∠MDC ,则∠MDC =12∠ADC ,同理∠MCD =12∠BCD .∵AD ∥BC ,∴∠ADC +∠DCB =180°,∴∠MDC +∠MCD =12∠BCD +12∠ADC =90°.∵∠MDC +∠MCD +∠DMC =180°,∴∠DMC =90°,∴DM 与MC 互相垂直.方法总结:根据平行四边形的性质,将已知条件转化到同一个三角形中,即可判断两条直线的关系.探究点三:两平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴△EGO 的面积等于△FHO 的面积.方法总结:根据两平行线间的距离可知,夹在两条平行线间的任何平行线段都相等,而后可推出两三角形同底等高,面积相等.三、板书设计1.平行四边形的定义2.平行四边形的边、角特征3.两平行线间的距离教学反思学生通过观看多媒体课件的演示和动手操作的过程,得出并掌握平行四边形的性质,效果比较好.例题能够引导学生用不同的方法去解决问题并加以变式练习,使教师能根据学生的掌握情况及时解决学生在练习的过程中发现问题,并通过投影指出错误,规范说理过程,极大提高课堂效率.第2课时 平行四边形的性质定理2教学目标1.掌握平行四边形对角线互相平分的性质;(重点)2.利用平行四边形对角线互相平分解决有关问题.(难点)教学过程一、情境导入如图,在平行四边形ABCD 中,AC ,BD 为对角线,BC =6,BC 边上的高为4,你能算出图中阴影部分的面积吗?二、合作探究探究点一:平行四边形的对角线互相平分 【类型一】 利用平行四边形对角线互相平分求线段已知▱ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△DOA 的周长长5cm ,求这个平行四边形各边的长.解析:平行四边形周长为60cm ,即相邻两边之和为30cm.△AOB 的周长比△DOA 的周长长5cm ,而AO 为共用,OB =OD ,因而由题可知AB 比AD 长5cm ,进一步解答即可.解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC .∵△AOB 的周长比△DOA的周长长5cm ,∴AB -AD =5cm ,又∵▱ABCD 的周长为60cm ,∴AB +AD =30cm ,则AB =CD =352cm ,AD =BC =252cm. 方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【类型二】 利用平行四边形对角线互相平分证明线段或角相等如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF .解析:根据平行四边形的性质得出OD =OB ,DC ∥AB ,推出∠FDO =∠EBO ,证出△DFO ≌△BEO 即可.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,DC ∥AB ,∴∠FDO =∠EBO .在△DFO 和△BEO 中,⎩⎪⎨⎪⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO (ASA),∴OE =OF .方法总结:利用平行四边形的性质解决线段的问题时,要注意运用平行四边形的对边相等,对角线互相平分的性质.【类型三】 判断直线的位置关系如图,平行四边形ABCD 中,AC 、BD 交于O 点,点E 、F 分别是AO 、CO 的中点,试判断线段BE 、DF 的关系并证明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用△FOD ≌△EOB 可得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .理由如下:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E 、F 分别是OA 、OC 的中点,∴OE =OF ,又∵∠FOD =∠EOB ,∴△FOD ≌△EOB (SAS),∴BE =DF ,∠ODF =∠OBE ,∴BE ∥DF .方法总结:在解决平行四边形的问题时,如果有对角线的条件时,则首选对角线互相平分的方法解决问题.探究点二:平行四边形的面积在▱ABCD 中,(1)如图①,O 为对角线BD 、AC 的交点.求证:S △ABO =S △CBO ;(2)如图②,设P 为对角线BD 上任一点(点P 与点B 、D 不重合),S △ABP 与S △CBP 仍然相等吗?若相等,请证明;若不相等,请说明理由.解析:(1)根据“平行四边形的对角线互相平分”可得AO =CO ,再根据等底等高的三角形的面积相等解答;(2)根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等解答.(1)证明:在▱ABCD 中,AO =CO .设点B 到AC 的距离为h ,则S △ABO =12AO ·h ,S △CBO =12CO ·h ,∴S △ABO =S △CBO ;(2)解:S △ABP =S △CBP .理由如下:在▱ABCD 中,点A 、C 到BD 的距离相等,设为h ,则S △ABP =12BP ·h ,S △CBP =12BP ·h ,∴S △ABP =S △CBP . 方法总结:平行四边形的对角线将平行四边形分成四个面积相等的三角形.另外,等底等高的三角形的面积相等.三、板书设计1.平行四边形对角线互相平分2.平行四边形的面积教学反思通过分组讨论学习和自主探究,加强了学生在教学过程中的实践活动,也使学生之间的合作意识增强,与同学交流学习的气氛更浓厚,从而加深了同学之间的友谊和师生之间的教学和谐,使得教学过程更加流畅,教学相长.22.2 平行四边形的判定第1课时平行四边形的判定定理1教学目标1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)2.平行四边形性质定理与判定定理的综合应用.(难点)教学过程一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?二、合作探究探究点一:一组对边平行且相等的四边形是平行四边形已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一组对边平行且相等的四边形是平行四边形可证出结论.解:四边形ABCD 是平行四边形,证明:∵DF ∥BE ,∴∠AFD =∠CEB ,又∵AF =CE 、DF =BE ,∴△AFD ≌△CEB (SAS),∴AD =CB ,∠DAF =∠BCE ,∴AD ∥CB ,∴四边形ABCD 是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出三角形全等.探究点二:平行四边形的判定定理与性质的综合应用 【类型一】 利用性质与判定证明如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明. 解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF ,再利用已知得出△ADE ≌△BCF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠BAC =∠DCA .∵BE ⊥AC于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形,理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF ,∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB .∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF ,∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.【类型二】 利用性质与判定计算如图,已知六边形ABCDEF 的六个内角均为120°,且CD =2cm ,BC =8cm ,AB =8cm ,AF =5cm.试求此六边形的周长.解析:由∠A=∠B=∠C=∠D=∠E=∠F=120°,联想到它们的邻补角(即外角)均为60°,如果能够组成三角形的话,则必为等边三角形.事实上,设BC、ED的延长线交于点N,则△DCN为等边三角形.由∠E=120°,∠N=60°,可知EF∥BN.同理可知ED∥AB,于是从平行四边形入手,找出解题思路.解:延长ED、BC交于点N,延长EF、BA交于点M.∵∠EDC=∠BCD=120°,∴∠NDC =∠NCD=60°.∴∠N=60°.同理,∠M=60°.∴△DCN、△FMA均为等边三角形.∴∠E+∠N=180°.同理∠E+∠M=180°.∴EM∥BN,EN∥MB.∴四边形EMBN是平行四边形.∴BN =EM,MB=EN.∵CD=2cm,BC=8cm,AB=8cm,AF=5cm,∴CN=DN=2cm,AM=FM=5cm.∴BN=EM=8+2=10(cm),MB=EN=8+5=13(cm).∴EF+FA+AB+BC+CD+DE=EF+FM +AB+BC+DN+DE=EM+AB+BC+EN=10+8+8+13=39(cm),∴此六边形的周长为39cm.方法总结:解此题的关键是作辅助线,将“不规则”的六边形变成“规则”的平行四边形,从而利用平行四边形的知识来解决.三、板书设计一组对边平行且相等的四边形是平行四边形教学反思本节课,学习了平行四边形的两种判定方法,对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.第2课时平行四边形的判定定理2、3教学目标1.掌握平行四边形的判定定理;(重点)2.综合运用平行四边形的性质与判定解决问题.(难点)教学过程一、情境导入我们已经学习了哪些平行四边形的判定方法?平行四边形的对角线互相平分的逆命题是什么?是否是真命题.是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形如图,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD 、等边△ACE 、等边△BCF .试说明四边形DAEF 是平行四边形.解析:根据题意,利用全等可证明AD =FE ,DF =AE ,从而可判断四边形DAEF 为平行四边形.解:∵△ABD 和△FBC 都是等边三角形,∴∠DBF +∠FBA =∠ABC +∠ABF =60°,∴∠DBF =∠ABC .又∵BD =BA ,BF =BC ,∴△ABC ≌△DBF (SAS),∴AC =DF =AE .同理可证△ABC ≌△EFC ,∴AB =EF =AD ,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.探究点二:对角线相互平分的四边形是平行四边形如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.探究点三:平行四边形的判定定理的应用 【类型一】 利用平行四边形的判定定理证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理的综合运用如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明. 解析:(1)根据“AAS”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形. 方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、板书设计1.平行四边形的判定定理两组对边分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理的应用教学反思在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.22.3 三角形的中位线教学目标1.了解三角形中位线的定义;2.掌握三角形的中位线定理;(重点)3.综合运用平行四边形的判定及三角形的中位线定理解决问题.(难点)教学过程一、情境导入如图所示,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】利用三角形中位线定理求线段的长如图,在△ABC 中,D 、E 分别为AC 、BC 的中点,AF 平分∠CAB ,交DE 于点F .若DF =3,则AC 的长为( ) A.32B .3C .6D .9解析:如图,∵D 、E 分别为AC 、BC 的中点,∴DE ∥AB ,∴∠2=∠3,又∵AF 平分∠CAB ,∠1=∠3,∴∠1=∠2,∴AD =DF =3,∴AC =2AD =2DF =6.故选C.方法总结:本题考查了三角形中位线定理,等腰三角形的判定等知识.解题的关键是熟记性质并熟练应用.【类型二】 利用三角形中位线定理求角如图,C 、D 分别为EA 、EB 的中点,∠E =30°,∠1=110°,则∠2的度数为( )A .80°B .90°C .100°D .110°解析:∵C 、D 分别为EA 、EB 的中点,∴CD 是三角形EAB 的中位线,∴CD ∥AB ,∴∠2=∠ECD ,∵∠1=110°,∠E =30°,∴∠ECD =∠2=80°,故选A.方法总结:根据三角形中位线定理可得出平行关系,所以利用三角形中位线定理中的平行关系可以解决一些角度的计算问题.【类型三】 运用三角形的中位线定理进行证明如图所示,在四边形ABCD 中,AC =BD ,E 、F 分别为AB 、CD 的中点,AC 与BD 交于点O ,EF 分别交AC 、BD 于M 、N .求证:∠ONM =∠OMN .解析:图中有两个中点,但不在同一个三角形中,取AD 的中点P ,连接EP 、FP ,利用三角形的中位线定理即可证明.证明:取AD 的中点P ,连接EP 、FP ,则EP 为△ABD 的中位线.∴EP ∥BD ,EP =12BD ,∴∠PEF =∠ONM ,同理可知PF 为△ADC 的中位线,∴FP ∥AC ,FP =12AC ,∴∠PFE =∠OMN ,∵AC =BD ,∴PE =PF ,∴∠PEF =∠PFE ,∴∠ONM =∠OMN .方法总结:在三角形中,若已知一边的中点,常取其余两边的中点,以便利用三角形的中位线定理来解题.【类型四】构造三角形中位线解题如图所示,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE.解析:直接找CD与CE之间的数量关系较困难,可取AC的中点F,间接找CD与CE之间的数量关系.证明:取AC的中点F,连接BF.∵BD=AB,∴BF为△ADC的中位线,∴DC=2BF.∵E为AB的中点,AB=AC,∴BE=CF,∠ABC=∠ACB.∵BC=CB,∴△EBC≌△FCB.∴CE=BF,∴CD=2CE.方法总结:恰当地构造三角形中位线是解决线段倍分关系的关键.三、板书设计1.三角形的中位线的概念2.三角形的中位线定理教学反思本节课,通过实际生活中的例子引出三角形的中位线,又从理论上进行了验证.在学习的过程中,体会到了三角形中位线定理的应用时机.对整个课堂的学习过程进行反思,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.22.4 矩形第1课时矩形的性质教学目标1.理解并掌握矩形的性质定理及推论;(重点)2.会用矩形的性质定理及推论进行推导证明;(重点)3.会综合运用矩形的性质定理进行证明与计算.(难点)教学过程一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.二、合作探究探究点:矩形的性质【类型一】运用矩形的性质求线段或角在矩形ABCD中,O是BC的中点,∠AOD=90°,矩形ABCD的周长为24cm,则AB 长为( )A.1cm B.2cm C.2.5cm D.4cm解析:在矩形ABCD中,O是BC的中点,∠AOD=90°.根据矩形的性质得到△ABO≌△OCD,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB.由矩形ABCD的周长为24cm,得2AB+4AB=24cm,解得AB=4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.【类型二】运用矩形的性质解决有关面积问题如图,矩形ABCD 的对角线的交点为O ,EF 过点O 且分别交AB ,CD 于点E ,F ,则图中阴影部分的面积是矩形ABCD 的面积的( ) A.15 B.14 C.13 D.310解析:∵在矩形ABCD 中,AB ∥CD ,OB =OD ,∴∠ABO =∠CDO .在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠ABO =∠CDO ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA),∴S △BOE =S △DOF ,∴S 阴影=S △AOB =14S 矩形ABCD .故选B. 方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键.【类型三】 运用矩形的性质证明线段相等如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连接BE ,过C 点作CF ⊥BE 于F .求证:BF =AE .解析:利用矩形的性质得出AD ∥BC ,∠A =90°,再利用全等三角形的判定得出△BFC ≌△EAB ,进而得出答案.证明:在矩形ABCD 中,AD ∥BC ,∠A =90°,∴∠AEB =∠FBC .∵CF ⊥BE ,∴∠BFC =∠A=90°.由作图可知,BC =BE .在△BFC 和△EAB 中,⎩⎪⎨⎪⎧∠A =∠CFB ,∠AEB =∠FBC ,EB =BC ,∴△BFC ≌△EAB (AAS),∴BF =AE .方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明.【类型四】 运用矩形的性质证明角相等如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF =ED ,EF ⊥ED .求证:AE 平分∠BAD .解析:要证AE 平分∠BAD ,可转化为△ABE 为等腰直角三角形,得AB =BE .又AB =CD ,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证.证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠BAD =90°,AB =CD ,∴∠BEF +∠BFE =90°.∵EF ⊥ED ,∴∠BEF +∠CED =90°.∴∠BFE =∠CED ,∴∠BEF =∠EDC .在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE =∠CED ,EF =ED ,∠BEF =∠EDC ,∴△EBF ≌△DCE (ASA).∴BE =CD .∴BE =AB ,∴∠BAE =∠BEA=45°,∴∠EAD =45°,∴∠BAE =∠EAD ,∴AE 平分∠BAD .方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决.三、板书设计矩形的性质矩形的四个角都是直角;矩形的对角线相等.教学反思通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上.第2课时 矩形的判定教学目标1.掌握矩形的判定方法;(重点)2.能够运用矩形的性质和判定解决实际问题.(难点)教学过程一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB 交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠FAE=∠EAC.∵∠B +∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM =OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形。
2019版八年级数学下册第22章四边形回顾与反思教案(新版)冀教版教学设计思路
以小组讨论的形式在教师的指导下使学生总结出本章的知识结构及主要知识点,再通过练习巩固所学的知识点。
教学目标
知识与技能
通过对本章知识的回顾,进一步认识四边形、特殊四边形的基本性质和基本识别方法,以及三角形的中位线,多边形的内角和、外角和,平面图形的镶嵌,建立符合个体认知特点的知识结构。
过程与方法
通过思考与操作相结合的回顾与反思,在已有的说理和简单推理的基础上,进一步熟悉简单推理,通过练习加以巩固。
情感态度价值观
通过回顾与反思增进思考与交流深化自主探索与合作学习。
教学重点和难点
重点是本章的所有重点内容。
;
难点是能总结出这些知识点并能灵活应用这些知识点解题。
教学方法
小组讨论法
以小组为单位,在总结讨论的基础上,使学生掌握本章的内容。
课时安排
1课时
教具学具准备
多媒体
教学过程设计
以提问的形式引导学生总结出本章所学的知识点,写出本章的知识框图。
(一)知识结构
(二)知识点
1.四边形之间的关系:
2.矩形、菱形和正方形都是特殊的平行四边形,它们的性质都是在平行四边形的基础上扩充来的。
矩形是由平行四边形增加“一个角为90°的条件而得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件而得到的,它在边和对角线方面具有比平行四边形更多的特性,正方形是由平行四边形增加“一组邻边相等”和“一个角为90°两个条件而得到的,从而它在边、角和对角线方面都具有比平行四边形更多的特性。
3.对特殊四边形,还要注意从对称性的角度把握其特征,并领悟它们之间的内在联系与区别。
平行四边形都是中心对称图形,其中,矩形、菱形和正方形还是轴对称图形。
矩形和菱形各有两条对称轴,正方形有四条对称轴。
等腰梯形是轴对称图形,有一条对称轴。
4.矩形和菱形的判定定理,可以根据出发点不同而分成两类:一类是以四边形为出发点进行识别,另一类是以平行四边形为出发点进行识别。
正方形的判定定理可以分为四类,除上面提到的两类之外,还可分别以矩形和菱形为出发点进行判定。
5.解决四边形问题常用的方法:
(1)有些四边形问题可以转化为三角形问题来解决。
(2)有时也可以运用平移、旋转、轴对称来构造图形,解决四边形问题。
(三)注意事项
在运用特殊四边形的性质和判定定理时,要注意它们的区别与联系。
(四)例题
题型1 根据性质进行计算
例1菱形的一边与两条对角线夹角的差为15°,求菱形各内角度数。
分析:如图22—1,由题意知∠BA O与∠ABO的差为15°,而因为菱形的对角线互相垂直,因此∠BAO与∠ABO的和为90°。
根据这两个条件可求出这两个角,从而求出菱形各个内角。
解:设∠ABO的度数为x°,则∠BAO度数为(x°+15°)。
∵四边形ABCD为菱形,∴AC⊥BD。
即∠AOB=90°。
∴x+x十15=90。
x=37.5。
∴∠ABO=37.5°,∠BAO=52.5°。
因此菱形各个内角的度数分别为75°,105°,75°,105°。
特别提醒:此题类似于平行四边形中,已知两邻角之间一个等量关系,再借助于邻角互补这一性质可确定平行四边形各内角度数,而在菱形中,同学们应该注意对角线互相垂直平分在此题中的应用。
例2如图22—2,任意剪一个梯形纸片,利用对折的方法找到两腰的中点E、F,按图中所示的方法过两腰的中点分别将含∠A、∠B的部分向里折,得到两个折痕(如图22—3所示),沿折痕剪下①②,并按图中箭头所指的方向旋转180°,你能得到一个怎样的四边形?由此,你能发现关于线段EF的哪些特性?
分析:要注意从图中找信息,①②两个三角形旋转180°之后与余下部分组成一个矩形,这时EF即和矩形的长相等,且AB+CD即为矩形两条对边长的和。
解:得到一个矩形,EF与上、下底CD,AB平行,且等于AB、CD和的一半。
特别提醒:本题首先要读懂题意,然后从图形中找关键信息。
(五)练习
选作复习题中的题
(六)小结
引导学生总结出本节的知识点
(七)板书设计
小结与复习
知识结构
知识点
如有侵权请联系告知删除,感谢你们的配合!。