高考线性规划必考题型非常全
- 格式:docx
- 大小:185.07 KB
- 文档页数:5
线性规划题型总结一、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x 【类型一:已知线性约束条件,探求线性目标关系最值问题】例1.求y x z 32+=的最大值.【类型二:已知线性约束条件,探求分式目标关系最值问题】例2.求112++=y x z 的取值范围.【类型三:已知线性约束条件,探求平方和目标关系最值问题】例3.求22)2(-+=y x z 的最值,以及此时对应点的坐标.【类型四:已知线性约束条件,探求区域面积与周长问题】例4.试求所围区域的面积与周长.【类型五:已知最优解,探求目标函数参数问题】例5.已知目标函数z ax y =+(其中0<a )仅在(3,4)取得最大值,求a 的取值范围.【类型六:已知最优解,探求约束条件参数问题】 例6.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≥-≤-122y x m y x y x ,目标函数y x z 32+=在(4,6)取得最大值,求m .二、线性规划的实际应用线性规划的实际应用题型大体有两类,一类是一项任务确定后,如何统一安排,做到以最少的人力物力完成任务;另一类是在人力物力一定的条件下,如何安排使得最大化的发挥效益.两类题型是同一个问题的两面,主要依据以下步骤:1.认真分析实际问题的数学背景,将对象间的生产关系列成表格;2.根据问题设未知量,并结合表格将生产关系写出约束条件;3.结合图形求出最优解.例1.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?例2. 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?针对练习一、选择题1.下列四个命题中真命题是( )A .经过点P (x o ,y o )的直线都可以用方程y -y o =k (x -x o )表示;B .经过任意两不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示;C .不经过原点的直线都可以用方程1=+by a x 表示; D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ).A 1=+b a .B 1=-b a .C 0=+b a .D 0=-b a3.下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A.(02), B.(20)-,C.(02)-, D.(20), 4.若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为A.4B.3C.2D.15.在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+最大值的变化范围是( ) A.[6,15] B. [7,15] C. [6,8] D. [7,8]6.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()A. B.4C. D.27.某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是( )A.80B.85C. 90D.958.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( ).A ⎥⎦⎤⎢⎣⎡6,59 .B [)965⎛⎤-∞+∞ ⎥⎝⎦U ,, .C (][)36-∞+∞U ,, .D [36],二、填空题9.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 ;10.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ;11.已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
高考数学线性规划题型总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25图2x y O22 x=2y =2 x + y =2BA2x + y - 2= 0x – 2y + 4 = 0 3x – y – 3 = 0OyxA解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________. 2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
线性规划常见题型及解法(较全⾯及时上课⽤)线性规划常见题型及解法温故1.不在3x+ 2y < 6 表⽰的平⾯区域内的⼀个点是()A.(0,0)B.(1,1)C.(0,2)D.(2,0)2.已知点(3 ,1)和点(-4 ,6)在直线3x–2y + m = 0 的两侧,则()A.m<-7或m>24 B.-7<m<24C.m=-7或m=24 D.-7≤m≤243.在△ABC中,三顶点坐标为A(2 ,4),B(-1,2),C(1 ,0 ),点P(x,y)在△ABC内部及边界运动,则z= x– y 的最⼤值和最⼩值分别是()A.3,1 B.-1,-3 C.1,-3 D.3,-14.在直⾓坐标系中,满⾜不等式x2-y2≥0 的点(x,y)的集合(⽤阴影部分来表⽰)的是()5.如图所⽰,表⽰阴影部分的⼆元⼀次不等式组是()A.23260yx yx≥--+><B.23260yx yx-+≥≤C.23260yx yx>--+>≤D.23260yx yx>--+<<线性规划常见题型及解法由已知条件写出约束条件,并作出可⾏域,进⽽通过平移直线在可⾏域内求线性⽬标函数的最优解是最常见的题型,除此之例1、若x、y满⾜约束条件222xyx y≤≤+≥,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可⾏域,作直线l:x+2y=0,将l向右上⽅平移,过点A(2,0)时,有最⼩值2,过点B(2,2)时,有最⼤值6,故选 A⼆、求可⾏域的⾯积例2、不等式组260302x yx yy+-≥+-≤表⽰的平⾯区域的⾯积为()A、4B、1C、5D、⽆穷⼤解:如图,作出可⾏域,△ABC的⾯积即为所求,由梯形OMBC的⾯积减去梯形OMAC的⾯积即可,选 B三、求可⾏域中整点个数例3、满⾜|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥-≤≥-+≤≥?--≤作出可⾏域如右图,是正⽅形内部(包括边界),容易得到整点个数为13个,选 D 四、已知最优解成⽴条件,探求⽬标函数参数范围问题。
线性规划的12种题型线性规划是高考必考的知识点,学生对这个知识点认识多数停留在简单应用阶段,现将常见题型归纳如下:一、 考查不等式表示的平面区域:例1、不等式0x y ->所表示的平面区域是( ) A. B. C. D.分析:法一:代入特殊点验证;法二:看系数的符号,若x 系数为正数,则左小右大,选B练习1、不等式()20y x y +-≥在平面直角坐标系中表示的区域(用阴影部分表示)是 ( )选C2、已知点()3,1-和()4,3--在直线320x y a -+=的同侧,则a 的取值范围是__________.【答案】611a a ><-或二、 判断可行域形状例2、不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( ) A.矩形 B.三角形 C.直角梯形 D.等腰梯形分析:画图可知为等腰梯形,选D练习2、已知约束条件400x k x y x y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则实数k 的值为( )A.0B.1C.1或3D.3选B三、 最值型简单线性规划例3、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥-041y y x y x ,则目标函数y x z 42+=的最大值为( )A .2B .4C .8D .11分析:1.画可行域,2画l 0:2x+4y=0,3平移到可行域的最右侧确定最优解的位置,4联立求出最优解坐标,4代入目标函数求最大值11选D练习3、若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x y z +=的最小值为.答案:1四、最优解问题例4、如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无数个,则a 为( )A.-2B.2C.-6D.6分析:因为x 的系数为正,所以目标函数与BC 重合时,取最大值,最优解有无数个 代入B 、C 的坐标两式相等,求出a=-2选A五、斜率型线性规划例5、若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 . 分析:1y x -相当于P (x,y )与Q (0,1)连线的斜率,直线最陡时,斜率最大,P 取(1,3)答案:2练习:5、设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,且231x y z x ++=+,则z 的取值范围是( ) A.[3,11] B.[2,10] C.[2,6] D.[1,5]选A六、距离型例6、设实数,x y 满足约束条件250403100x y x y x y --≤⎧⎪+-≤⎨⎪+-≥⎩,则22z x y =+的最小值为 ( )10 C.8 D.5分析:所求式子相当于原点与可行域内点距离的平方,利用点到直线距离公式可求 选B练习6、设x ,y 满足0,10,3220,y ax y x y ≥⎧⎪+-≤⎨⎪--≤⎩若210z x x y =-+2的最小值为12-,则实数a的取值范围是( )A .32a <B .32a <-C .12a ≥D .12a ≤- 选D七、含绝对值型例7、实数y x ,满足⎪⎩⎪⎨⎧≤≥-++≤20222x y x x y ,则||y x z -=的最大值是( )A .2B .4C .6D .8分析:先求出z=x-y 的最值,再取绝对值选B八、向量型例8、已知()21A ,,()00O ,,点()M x y ,满足12222x y x y ≤≤⎧⎪≤⎨⎪-≤⎩,则z OA AM =的最大值为( )A .1B .0 C.1- D .5-分析:先将向量化简,再求最值选A九、变换型例9、已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是( )A .1B .2C .4D .8分析:设x=a+b,y=a-b,求出x,y 满足的关系式,再求解选C练习9设变量x ,y 满足1,0,0,x y x y +≤⎧⎪≥⎨⎪≥⎩则点(,)P x y x y +-所在区域的面积为( )A .2B .1C .12D .14 选B十、隐含型例10、已知关于x 的方程2(1)210x a x a b +++++=的两个实根分别为1x ,2x ,且101x <<,21x >,则b a的取值范围是( ) A .1(1,)4-- B .1(1,]4-- C .(1,)-+∞ D .1(,)4-∞- 分析:根据条件,利用根的分布列出关系式,提供约束条件,再求解选A练习10、若关于的方程22222(6)2410x a b b x a b a b -+-+++-+=的两个实数根1x ,2x 满足1201x x ≤≤≤,则224a b a ++的最大值和最小值分别为( ) A.12和5+ B.72-和5+ C.72-和12 D.12-和15-选B十一、含参型例11、设1m >,变量x ,y 在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值为2,则m =_________.分析:画大致图像,确定最优解位置,解方程组,代入求解1m =+练习1、当x ,y 满足不等式组22,4,72x y y x x y +≤⎧⎪-≤⎨⎪-≤⎩时,22kx y -≤-≤恒成立,则实数k 的取值范围是( )A .[]1,1-B .[]2,0-C .13,55⎡⎤-⎢⎥⎣⎦D .1,05⎡⎤-⎢⎥⎣⎦练习2、已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-≤-≤+1236x y x y x ,则目标函数(0,0)z ax by a b =+>>的最小值为2,则b a 11+的最小值为( )A .2B .4C .53+D .223+十二、曲线型例12已知实数,x y 满足401010x y y x +-≤⎧⎪-≥⎨⎪-≥⎩,则2y z x =的最大值是 A .13B .9C .2D .11 分析:所求函数变形后为抛物线,代最高点取最大值【答案】B练习12已知P (x,y)的坐标满足021,x y x y x ≤⎧⎪>⎨⎪<+⎩________ 分析:可转化为向量夹角余弦,再画图求解答案:((注:可编辑下载,若有不当之处,请指正,谢谢!)。
高考数学线性规划选择题1. 已知线性规划问题:max 2x + 3y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。
2. 已知线性规划问题:min -x + 2y,s.t. 2x + y ≤ 4,x + y ≥ 1,x, y ≥ 0,求最优解。
3. 已知线性规划问题:max x + y,s.t. x - y ≤ 2,x + y ≤ 3,x, y ≥ 0,求最优解。
4. 已知线性规划问题:min -x + 3y,s.t. 2x + y ≤ 4,x + y ≥ 1,x, y ≥ 0,求最优解。
5. 已知线性规划问题:max 2x + y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。
6. 已知线性规划问题:min -x + 2y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。
7. 已知线性规划问题:max x + y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。
8. 已知线性规划问题:min -x + 3y,s.t. x + y ≤ 3,x + y ≥ 0,x, y ≥ 0,求最优解。
9. 已知线性规划问题:max 2x + y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。
10. 已知线性规划问题:min -x + 2y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。
11. 已知线性规划问题:max x + y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。
12. 已知线性规划问题:min -x + 3y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。
13. 已知线性规划问题:max 2x + y,s.t. x + y ≤ 3,x + y ≥ 0,x, y ≥ 0,求最优解。
高中简单线性规划基础题型总结熊明军简单线性规划属于操作性知识,是高考必考知识点,历年不变,必有一选择或填空题。
下面结合例题,总结高中简单线性规划问题的基础题型,方便同学们快速掌握相关内容。
线性规划问题的基础题型,可根据目标函数的特点,将其分为三类: 类型一(直线):by ax z +=【理论】点到直线的距离。
【步骤】①作出可行域;②作出直线by ax +=0;③判断可行域顶点到直线by ax +=0的距离:()max max ,z y x P d ⇒⇒和()min min ,'z y x P d ⇒⇒【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求y x z 2-=的最值。
【解析】分三步走:①作出可行域:②作出直线y x 20-=:③判断直线y x 20-=到可行域顶点C B A 、、间的距离:平移、目测或代点都能判断,得()()11231,3,max max =⨯-=⇒⇒=z B l B d d ;()()119279,7,min min -=⨯-=⇒⇒=z C l C d d 。
类型二(圆):()()22b y a x z -+-= 【理论】两点之间的距离。
【步骤】①作出可行域;②作出圆()()222b y a x d -+-=;③判断可行域上的点到圆心()b a ,的距离(即半径r ):()max max max ,z y x P d r ⇒⇒=和()min min min ,'z y x P d r ⇒⇒=【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求()()2211-+-=y x z 的最值。
【解析】分三步走:①作出可行域:②作出圆()()22211-+-=y x d :r d =且半径r 由小到大逐渐作圆。
③判断圆心()1,1到可行域上点间的距离,也就是与可行域有交点的圆中半径r 的大小:目测或用圆规作圆都能判断,得()()()()10019179,7,22max max max =-+-=⇒⇒==z C D C d d r ;()()211411,2222min min min min =⎪⎪⎭⎫ ⎝⎛+-+==⇒==d z l D d d r AB . 类型三(斜率):m n x a b y m a m n x m a b y a n mx b ay z --⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--= 【理论】两点确定的直线的斜率。
线性规划题型总结1.“截距”型考题在线性约束条件下, 求形如z =ax • by (a,b ・R )的线性目标函数的最值问题, 通常转化为求 直线在y 轴上的截距 的取值.结合图形易知,目标函数的最值一般在可行域的顶点处取得 掌握此规律可以有效避免因画图太草而造成的视觉误差最大值为()A — B1 C- D 3答案:D目标函数z=x+y 结果可行域的A 点时,目标函数取得最 大值,由{厂;可得A (0,3),目标函数z=x+y 的最大值为:3.2. (2017?新课标川)若x,y 满足约束条件x4y-2<0 , [y>0则z=3x - 4y 的最小值为答案:-1.解:由z=3x - 4y ,得y=:x -丰,作出不等式对应的可 行域(阴影部分),平移直线y=^x -手,由平移可知当直线y^x -手,4 4 4 4 经过点B ( 1, 1)时,直线y=^x -号的截距最大,此 时z 取得最小值,将B 的坐标代入z=3x - 4y=3 - 4=- 1, 即目标函数z=3x - 4y 的最小值为-1.:1X..乂1. (2017?天津)设变量x , y 满足约束条件v+2y-2^0,则目标函数z=x+y 的解:变量x ,y 满足约束条件 x+2y-2^0KO的可行域如图: -3 -4 -543.(2017?浙江)若x 、y 满足约束条件x+y-3>0 ,则z=x+2y 的取值范围是(A. [0 , 6]B. [0 , 4]C. [6 , +x)D. [4 , +^ 答案:D. 解:x 、y 满足约束条件《 ,表示的可行域如图: 目标函数z=x+2y 经过C 点时,函数取得最小值, :打解得C (2,1), 目标函数的最小值为:4 1 7目标函数的范围是[4 , +x 4. ( 2016?河南二模)已知x , y € R,且满足 A. 10 B. 8 C. 6 D. 3 答案:C. 解:作出不等式组 由 z=|x+2y| , 平移直线y=- 十, 1 x -2由图象可知当直线 y=- ,则z=|x+2y|的最大值为( ,对应的平面区域如图:(阴影部分) 许经过点A 时, 值, 此时z 最大. 即 A (- 2,- 2), 代入目标函数z=|x+2y|得z=2X 2+2=6。
精编高考数学30题根据线性规划求最值或范围专题集训含答案例题详解若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤-+≥-0020y y x y x 则z=3x-4y 的最小值为________。
解:由题,画出可行域如图目标函数为z=3x-4y ,则直线443z x y -=纵截距越大,值越小 由图可知:在A(1,1)处取最小值,故z min =3×4-4×1=-1巩固练习1、(2023全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则z=2x-y 的最大值为______。
答案:82、(2023全国甲卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≤+-≥+3233321y x y x y x ,设z=3x+2y 的最大值为_________。
答案:153、(2022全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤+≥+0422y y x y x ,则z=2x-y 的最大值是______。
答案:84、(2022浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-+≥-0207202y x y x x ,则z=3x+4y 的最大值是_____。
答案:185、(2021浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-≥+0132001y x y x x ,则z=x-21y 的最小值是______。
答案:23-6、(2020全国Ⅰ卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥--≤-+0101022y y x y x ,则z=x+7y 的最大值为________。
答案:17、(2020新课标Ⅱ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥--≥+1211y x y x y x ,则z=x+2y 的最大值是______。
答案:88、(2020新课标Ⅲ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥-≥+1020x y x y x ,则z=3x+2y 的最大值为________。
积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
图2习题2、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1 B、13,2C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0即为45,选C练习2、已知x,y满足⎪⎩⎪⎨⎧≥-+≥≥≤-+32,152yxyxyx,则xy的最大值为___________,最小值为____________.2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组2020x yx yy+-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A) (D)2解析:如图6,作出可行域,易知不等式组2020x yx yy+-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离图2xy O2 2 x=2y =2 x + y =2BA 2x + y - 2= 0 = 5x – 2y + 4 = 03x – y – 3OyxA的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则xy 的最大值为___________,最小值为____________.2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,例2、已知10,220x y x y ⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是图2为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最例3、在平面直角坐标系中,不等式组2020x yx yy+-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
容易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为:11||||42 4.22S BC AO =⋅=⨯⨯=从而选B。
点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围成一个三角形区域(如图4所示)时有0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩。
点评:本题考查双曲线的渐近线方程以及线性规划问题。
验证法或排除法是最效的方法。
习题4、如图所示,表示阴影部分的二元一次不等式组是( )A .232600y x y x ≥-⎧⎪-+>⎨⎪<⎩B .232600y x y x >-⎧⎪-+≥⎨⎪≤⎩C .232600y x y x >-⎧⎪-+>⎨⎪≤⎩D .232600y x y x >-⎧⎪-+<⎨⎪<⎩C五、约束条件设计参数形式,考查目标函数最值范围问题。
高考必拿分之线性规划问题一.选择题(共19小题)1.设x,y满足约束条件,则z=x+2y的最大值为()A.8 B.7 C.2 D.12.设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.23.设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.234.设变量x,y满足约束条件,则目标函数z=5x+y的最大值为()A.2 B.3 C.4 D.55.设变量x,y满足约束条件,则目标函数z=4x+y的最大值为()A.4 B.11 C.12 D.146.设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7 B.﹣6 C.﹣5 D.﹣37.设x,y满足,则z=x+y()A.有最小值2,最大值3 B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值8.设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.179.设变量x,y满足,则x+2y的最大值和最小值分别为()A.1,﹣1 B.2,﹣2 C.1,﹣2 D.2,﹣110.若变量x,y满足约束条件,则x+2y的最大值是()A.B.0 C.D.11.设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.5512.满足线性约束条件,的目标函数z=x+y的最大值是()A.1 B.C.2 D.313.若变量x,y满足则z=3x+2y的最大值是()A.90 B.80 C.70 D.4014.实数x,y满足,那么z=3x+y的最大值为()A.12 B.13 C.14 D.1515.若x,y满足则x+y的最大值为()A.5 B.4 C.3 D.216.若实数x,y满足约束条件,则z=x﹣2y的最大值是()A.1 B.2 C.3 D.417.已知x、y满足约束条件,那么u=5x+4y的最小值为()A.9 B.20 C.D.18.设x,y满足约束条件,则z=2x﹣y的最小值与最大值分别为()A.﹣3与7 B.2与3 C.2与7 D.3与719.已知实数x,y满足不等式组,若z=﹣2x﹣y,则z的最小值为()A.﹣3 B.3 C.﹣4 D.﹣6二.填空题(共1小题)20.若x,y满足,则x﹣2y的最大值为.高考必拿分之线性规划问题参考答案一.选择题(共19小题)1.B;2.B;3.B;4.D;5.B;6.B;7.B;8.B;9.B;10.C;11.D;12.C;13.C;14.D;15.B;16.D;17.A;18.A;19.D;二.填空题(共1小题)20.-2;。
线性规划高考试题精选(一)一•选择题(共15小题)r2^3y-3< 01•设x , y 满足约束条件2x-3y+3>0,则z=2x+y 的最小值是(A . - 15B .- 9 C. 1 D . 9r2 .若x , y 满足卜+丫》2,则x+2y 的最大值为( )A . 1 B. 3 C. 5 D . 93 .设x , y 满足约束条件,则z=x+y 的最大值为( )t y>0A . 0 B. 1 C. 2 D . 3A .- 3 B.- 1 C. 1 D . 35.若x 、y 满足约束条件"计y-3,0,则z=x+2y 的取值范围是(I 工-A . [0, 6]B . [0, 4] C. [6, +x ) D . [4, +^)「3 當42y-6/ 06 .设x , y 满足约束条件,瓷》0 则z=x- y 的取值范围是( A . [ - 3, 0] B. [ - 3, 2]C. [0, 2] D . [0, 3][it-y+3^03x+y45< 0 工十A . 0B . 2C. 5 D . 68.设变量x , y 满足约束条件4.已知x , y 满足约束条件 <则z=x+2y 的最大值是(y<2 ,则z=x+2y 的最大值是(K+2y-2^0L y<3,则目标函数z=x+y的最大值为()9 .已知变量x , y 满足约束条件,则4x+2y 的取值范围是( )A . [0,10] B. [0, 12] C. [2,10] D. [2, 12] 10.不等式组x+y>0 ,表示的平面区域的面积为()I. K C2A . 48 B. 24 C. 16 D . 1211.变量x 、y 满足条件y<l ,则(x - 2) 2+y 2的最小值为( )12. 若变量x ,y 满足约束条件x+y<l 且z=2x+y 的最大值和最小值分别为 m 和n ,贝U m - n 等于( ) A . 8 B. 7 C. 6D . 5 x-y^O,当且仅当x=y=4时,z=ax- y 取得最小值,则实数a 的取值范围是()A . [ - 1,1] B. (-X ,1) C. (0,1) D. (-X ,1)u ( 1,+x )14 .实数x, y 满足"直严壬口 ,若z=2x+y 的最大值为9,则实数m 的值为()LA . 1B . 2 C. 3 D . 415 .平面区域y>~^ 的面积是()L/十2A.B .D . 3[A -D.A ..选择题(共25小题)16 •设x , y 满足约束条件违計,则z=3x- 2y 的最小值为 ______________z^y+l^O18 .已知x , y 满足约束条件z+y-9<0,则z=5x+3y 的最大值为 ___________y 满足约束条件『黑若z=2利的最小值为[y>atx-3)a=计却>021. _______________________________________________________________ 设z=x+y 其中x,y 满足乂〒Z0,若z 的最大值为6,则z 的最小值为 ______________ .22. 已知点x , y 满足不等式组* ,若ax+y w 3恒成立,则实数a 的取值b 2s+y^2 范围是 _______ .的最大值为10,则a 2+b 2的最小值为 _________ .,贝U _的最小值为 _______x-3「好25.若变量x , y 满足■ 2x-3yC^ ,则x 2+y 2的最大值是 __________ .〔x>017 •若x , y 满足约束条件 x-Fy-2<0 , 则z=3x- 4y 的最小值为19.若实数x , y^Ly 满足* y<2x-l ,如果目标函数z=x- y 的最小值为-2,则实数m= ______ . 20.已知 a >0,x , 23.设实数x , y 满足约束条件 K^yH-2^0L y>0,若目标函数 z=ax^by (a >0, b >0)1,则0 24.已知实数x , y 满足,0<K<227. 在平面直角坐标系xOy上的区域D由不等式组応3 给定,若M (x, y)I s<2y为D上的动点,点A的坐标为(2, 1),则丽的最大值为_______________f2x+y<428. 已知动点P (x, y)满足:”_ ,则x2+y2- 6x的最[(7K2+1-1) (Jy,十l+y) A1小值为平230.设实数x, y满足x1-y>l,则2y- x的最大值为____________31 .设x、y满足约束条件K-y+2i>0 ,则目标函数z=f+y2的最大值为 _________C x-y^O32. ______________________________________________________________ 已知x, y满足约束条件”+応殳,若z=ax+y的最大值为4,则a ________________fy<233. 若x, y满足约束条件-:"lx-y+2>0i\-2y+l>035. 已知实数x, y满足:工<2 ______________ , z=2x- 2y- 1,则z的取值范围是k x+y-L^Of«>029.已知实数x, y满足jt+yC?,则里2y 的最小值是26.设变量x, y满足约束条件i-2y+2>0s+y-l^C”召的取值范围是贝U j - ■的最小值是 ________ ,则’卡的范围是—34.若x, y满足约束条件K+y- 036. 若实数x, y满足不等式组^2x-Sy-8<0, 目标函数z=kx- y的最大值为12,Qit40.已知变量x , y 满足的约束条件"工亍恳1 ,若x+2y >- 5恒成立, 的取值范围为 _______ .最小值为0,则实数k=r2i+y+2>037•若实数x 、y 满足不等式组x+y4rr<0 , 4 且z=y- 2x 的最小值等于2,则实数m 的值等于x+y-6^Q38 •设x , y 满足不等式组i 2X -5T -1<0,若z=ax+y 的最大值为2a+4,最小值为a+1,则实数a 的取值范围为 _______39 •已知不等式组 2x-y^0 z-y^O表示的平面区域的面积为4则实数k=则实数a线性规划高考试题精选(一)参考答案与试题解析一.选择题(共15小题)i r 2x+3y-3<01. (2017?新课标U )设x , y 满足约束条件2x-3y+3>0,则z=2x+y 的最小值是y+疥。
线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。
例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。
它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值 例4 求函数4yx x=+[]()1,5x ∈的最大值和最小值。
三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。
它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例5已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。
例6实数,x y 满足不等式组00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,求11y x -+的最小值四、非线性约束条件下非线性函数的最值问题在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例7已知,x y满足y 2yx +的最大值和最小值 1. “截距”型考题方法:求交点求最值在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1.【广东卷 理5】已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )2. (辽宁卷 理8)设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .553.(全国大纲卷 理) 若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为 。
4.【陕西卷 理14】 设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2zx y =-在D 上的最大值为 .5.【江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,506. (四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元 2 . “距离”型考题方法:求交点求最值10.【福建卷 理8】 设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( )A.285 B.4 C. 125D.2 11.( 北京卷 理2) 设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A4π B 22π- C 6πD44π-3. “斜率”型考题方法:现求交点,再画图 (包括90取两边,不包括90取中间)当目标函数形如y azx b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
12.【高考·福建卷 理8】 若实数x 、y 满足10,0x y x -+≤⎧⎨>⎩则yx 的取值范围是 ( )A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞13.(江苏卷 14)已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 . 4.求可行域的面积题14.【重庆卷 理10】设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B I 所表示的平面图形的面积为A 34πB 35πC 47πD 2π15.(江苏卷 理10)在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2B .1C .12 D .1416.(·安徽卷 理15) 若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 .17.(安徽卷 理7) 若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是(A )73 (B ) 37 (C )43 (D ) 3418.(浙江卷 理17)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于__________. 5.求目标函数中参数取值范围题 一、必考知识点讲解规律方法:目标函数中含有参数时,要根据问题的意义,转化成“直线的斜率”、“点到直线的距离”等模型进行讨论与研究. 二、经典例题分析21.(高考·山东卷 )设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10]C .[2,9]D .[10,9]22.(北京卷 理7)设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=xa 的图像上存在区域D 上的点,则a 的取值范围是A (1,3]B [2,3]C (1,2]D [ 3, +∞]25.(·陕西卷 理11)若x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是 ( )A .(1-,2)B .(4-,2)C .(4,0]-D .(2,4)-26.(湖南卷 理7)设m >1,在约束条件下,⎪⎩⎪⎨⎧≤+≤≥1y x mx y x y 目标函数z=x+my 的最大值小于2,则m 的取值范围为 A .)21,1(+B .),21(+∞+C .(1,3)D .),3(+∞6.求约束条件中参数取值范围题一、必考知识点讲解规律方法:当参数在线性规划问题的约束条件中时,作可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.二、经典例题分析19.(福建卷 )在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A. -5B. 1C. 2D. 320.【福建卷 理9】若直线xy 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )A .21 B .1 C .23D .2 23.(浙江卷 理17)设m 为实数,若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩}22{(,)|25}x y x y ⊆+≤,则m 的取值范围是___________.24.(浙江卷 理7) 若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =A2- B 1- C 1 D 27. 其它型考题27. (山东卷 理12) 设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数(0,0)z ax by a b =+>> 的值是最大值为12,则23a b+的最小值为( ) A. 625 B. 38 C. 311 D. 428. (·安徽卷 理13)设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>> 的最大值为8,则a b +的最小值为________. 6、 利用线性规划解答应用题. (2012年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A 原料1千克、B原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元。