1集合含义及表示方法小练
- 格式:doc
- 大小:112.50 KB
- 文档页数:1
第一章集合与函数概念1.1集合1.1.1集合的含义与表示基础过关练题组一集合的含义与元素的特征1.(2021辽宁阜新二中高一月考)下列各组对象不能构成集合的是()A.中国古代四大发明B.2020年高考数学难题C.所有有理数D.小于π的正整数2.(2021山东省实验中学高一月考)下列各组中的集合P与Q表示同一个集合的是()A.P是由元素1,√3,π构成的集合,Q是由元素π,1,|-√3|构成的集合B.P是由元素π构成的集合,Q是由元素3.141 59构成的集合C.P是由元素2,3构成的集合,Q是由有序实数对(2,3)构成的集合D.P是由满足不等式-1≤x≤1的整数构成的集合,Q是由方程x2=1的解构成的集合3.已知集合S中的三个元素a,b,c是△ABC的三边长,那么△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.设x∈R,集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2是集合A中的元素,求实数x的值.题组二元素与集合的关系5.下列所给关系中正确的个数是()①π∈R;②√3∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3D.46.已知集合A中元素x满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉AB.-11∈AC.3k2-1∈AD.-34∉A7.已知集合A中有三个元素:a-3,2a-1,a2+1,集合B中也有三个元素:0,1,x.(1)若-3∈A,求a的值;(2)是否存在实数a,x,使集合A与集合B中的元素相同?题组三集合的表示方法8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={3,2},N={(3,2)}9.(2020河南周口项城三高高一第一次月考)用描述法表示函数y=3x+1图象上的所有点为()A.{x|y=3x+1}B.{y|y=3x+1}C.{(x,y)|y=3x+1}D.{y=3x+1}∈N,m∈N,m≤10.(2021上海嘉定高一上学期期中)用列举法表示集合{m|m-2310}=.11.用适当的方法表示下列集合:(1)所有能被3整除的整数;(2)图中阴影部分的点(含边界)的坐标的集合;(3)满足方程x=|x|,x∈Z的所有x的值构成的集合B.能力提升练一、选择题 1.()实数1不是下面哪一个集合中的元素( )A.整数集ZB.{x |x =|x |}C.{x ∈N|-1<x <1}D.{x ∈R|x -1x+1≤0}2.(2020山东烟台龙口高一调研,)设集合B ={x |x 2-4x +m =0},若1∈B ,则B =( ) A.{1,3}B.{1,0}C.{1,-3}D.{1,5}3.(2019山西大同一中高一上第一次月考,)方程组{x +y =2,x -y =0的解构成的集合是( )A.{(1,1)}B.{1,1}C.(1,1)D.{1}4.(2020广西南宁三中高一上月考,)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b∈B },则M 中元素的个数为 ( )A.3B.4C.5D.65.(2020山西吕梁中学高一上期中,)设集合A ={x ∈N|3≤x <6},B ={3,4},若x ∈A 且x ∉B ,则x 等于 ( )A.3B.4C.5D.66.(2020山东潍坊一中高一上期中,)已知集合M ={x |x =k 2+14,k ∈Z},N ={x |x =k 4+12,k ∈Z},若x 0∈M ,则x 0与N 的关系是 ( )A.x 0∈NB.x 0∉NC.x 0∈N 或x 0∉ND.不能确定7.(2019四川成都实验外国语学校高一上期中,)已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 为 ( ) A.±2或4 B.2 C.-2 D.4 8.(2020上海洋泾中学高一月考,)给定集合A ,B ,定义A*B ={x |x =m -n ,m ∈A ,n ∈B },若A ={4,5,6},B ={1,2,3},则集合A*B 中的所有元素之和为( )A.15B.14C.27D.-149.(2021山东济宁鱼台第一中学高一月考,)给定集合S ={1,2,3,4,5,6,7,8},对于x ∈S ,如果x +1∉S ,x -1∉S ,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有 ( ) A.6个 B.12个 C.9个D.5个二、填空题10.(2020河北承德一中高一上月考,)已知集合A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示B = .11.(2020山东济南外国语学校第一次段考,)设a ,b ,c 为非零实数,m =a |a |+b |b |+c |c |+abc |abc |,则m 的所有值组成的集合为 .三、解答题12.(2020江西赣州赣县中学高一上月考,)已知集合M ={1,a ,b },N ={a ,a 2,ab },且集合M 与N 相等,求a ,b 的值.13.(2020上海金山中学高一期中,)设数集A 由实数构成,且满足:若x ∈A (x ≠1且x ≠0),则11-x ∈A.(1)若2∈A ,试证明A 中还有另外两个元素; (2)判断集合A 是不是双元素集合,并说明理由;(3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A 中的所有元素.答案全解全析第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示基础过关练1.B2.A3.D 5.B 6.C 8.B 9.C1.B 根据集合的概念,可知集合中的元素具有确定性,可得选项A 、C 、D 中的元素都是确定的,能构成集合,但B 选项中“难题”的标准不明确,不满足集合中元素的确定性,不能构成集合.故选B . 方法技巧判断一组对象的全体能否构成集合的重要依据是元素的确定性,若考查的对象是确定的,就能构成集合,否则不能构成集合.2.A 由于选项A 中集合P ,Q 的元素完全相同,所以P 与Q 表示同一个集合,而B ,C ,D 中P ,Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选A .3.D 因为集合中的元素必须是互异的,所以三角形的三边互不相等,故选D .4.解析(1)根据集合中元素的互异性,可知{x ≠3,x ≠x 2-2x ,x 2-2x ≠3,解得x ≠0且x ≠3且x ≠-1.(2)因为x 2-2x =(x -1)2-1≥-1,且-2是集合A 中的元素,所以x =-2.此时集合A ={3,-2,8},符合题意.5.B 由常见数集的定义知①②正确,③④错误.故选B.6.C 令3k -1=-1,解得k =0∈Z ,∴-1∈A ; 令3k -1=-11,解得k =-103∉Z ,∴-11∉A ; ∵k 2∈Z ,∴3k 2-1∈A ;令3k -1=-34,解得k =-11∈Z ,∴-34∈A. 故选C .7.解析 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1.经检验,0与-1都符合要求. ∴a =0或a =-1. (2)易知a 2+1≠0.若集合A 与集合B 中元素相同, 则a -3=0或2a -1=0.若a -3=0,则a =3,此时集合A 包含的元素为0,5,10,与集合B 包含的元素不相同.若2a -1=0,则a =12,此时集合A 包含的元素为0,-52,54,与集合B 包含的元素不相同.故不存在实数a ,x ,使集合A 与集合B 中元素相同.8.B A 中,集合M 表示点(3,2),集合N 表示点(2,3),故M 与N 不是同一集合;B 中,由于集合中的元素具有无序性,故{3,2}与{2,3}是同一集合;C 中,集合M 表示点集,集合N 表示数集,故M 与N 不是同一集合;D 中,集合M 表示数集,集合N 表示点集,故M 与N 不是同一集合.9.C 因为集合是点集,所以代表元素是(x ,y ),所以用描述法表示为{(x ,y )|y =3x +1}.故选C .10.答案 {2,5,8}解析 由m ∈N ,m ≤10得m =0,1,2, (10)经检验,可知当m =2时,2-23=0∈N ,当m =5时,5-23=1∈N ,当m =8时,8-23=2∈N ,所以{m|m -23∈N ,m ∈N ,m ≤10}={2,5,8}.11.解析 (1){x |x =3n ,n ∈Z }.(2)(x ,y )-1≤x ≤2,-12≤y ≤1,且xy ≥0. (3)B ={x |x =|x |,x ∈Z }.能力提升练1.C2.A3.A4.B5.C6.A7.C8.A9.A一、选择题1.C 1∉{x ∈N|-1<x <1},故选C.2.A ∵集合B ={x |x 2-4x +m =0},1∈B , ∴1-4+m =0,解得m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选A .3.A 解方程组{x +y =2,x -y =0得{x =1,y =1,用集合表示为{(1,1)},故选A . 4.B 由题意知x =a +b ,a ∈A ,b ∈B ,列表如下:a +b a 1 2 3 b 4 5 6 7 5 6 7 8则x 的可能取值为5,6,7,8.因此集合M 中共有4个元素,故选B . 5.C A ={x ∈N|3≤x <6}={3,4,5}, B ={3,4},由x ∈A 且x ∉B ,知x =5. 6.A M ={x|x =2k+14,k ∈Z}, N ={x |x =k+24,k ∈Z}, ∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A . 7.C 由条件2∈A 可知,a =2或|a |=2或a -2=2,解得a =±2或a =4.由集合中元素的互异性可知a <0,所以满足条件的只有a =-2,故选C . 解题模板由集合中元素的特征求解字母的值的步骤:8.A 由题可知,m =4,5,6,n =1,2,3, 当m =4,n =1,2,3时,m -n =3,2,1; 当m =5,n =1,2,3时,m -n =4,3,2; 当m =6,n =1,2,3时,m -n =5,4,3.所以A*B ={1,2,3,4,5},元素之和为15,故选A .9.A 要不含“好元素”,说明这三个数必须相连,故不含“好元素”的集合有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6种可能.故选A . 二、填空题10.答案 {4,9,16}解析 ∵集合A ={-2,2,3,4},B ={x |x =t 2,t ∈A },∴t =±2时,x =4;t =3时,x =9;t =4时,x =16,∴B ={4,9,16}. 11.答案 {-4,0,4}解析 因为a ,b ,c 为非零实数,所以当a >0,b >0,c >0时,m =a |a |+b |b |+c |c |+abc|abc |=1+1+1+1=4;当a ,b ,c 中有一个小于0(不妨设a <0,b >0,c >0)时,m =a |a |+b |b |+c |c |+abc |abc |=-1+1+1-1=0;当a ,b ,c 中有两个小于0(不妨设a <0,b <0,c >0)时,m =a |a |+b |b |+c |c |+abc |abc |=-1-1+1+1=0; 当a <0,b <0,c <0时,m =a |a |+b |b |+c |c |+abc |abc |=-1-1-1-1=-4.所以m 的所有值组成的集合为{-4,0,4}. 三、解答题12.解析 由集合M 与N 相等得{1=a 2,b =ab或{1=ab ,b =a 2,解得{a =-1,b =0或{a =1,b =1, 经检验,{a =1,b =1不满足集合中元素的互异性,故舍去. 综上,a =-1,b =0.13.解析 (1)证明:∵2∈A ,∴11-2=-1∈A. ∵-1∈A ,∴11-(-1)=12∈A. 又∵当12∈A 时,11-12=2∈A , ∴A ={2,-1,12}.∴A 中还有另外两个元素,分别为-1,12. (2)不是双元素集合.理由:由题意得,若x ∈A (x ≠1且x ≠0),则11-x∈A ,11-11-x=x -1x ∈A ,且x ≠11-x ,11-x ≠x -1x ,x ≠x -1x, 故集合A 中至少有3个元素,不是双元素集合.(3)由(2)可知若x ∈A (x ≠1且x ≠0),则11-x ,x -1x 都为A 中的元素,∵x ·11-x ·x -1x=-1,且A 中有一个元素的平方等于所有元素的积,∴A 中元素个数不为3,又∵A 中元素个数不超过8,∴A 中有6个元素,且(11-x )2=1或(x -1x)2=1,解得x =2或x =12.结合(1)可知此时A 中有2,-1,12这三个元素.设A 中其他三个元素分别为m ,11-m ,m -1m (m ≠1且m ≠0),则A =2,-1,12,m ,11-m ,m -1m .∵A 中所有元素之和为143,∴12+2-1+m +11-m +m -1m =143⇒m =-12,3,23, ∴A 中的所有元素为12,2,-1,-12,3,23.。
2019高一数学练习册答案:第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6. 10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-221 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3 ,4}.11.a=4,b=2.提示:∵A∩ 綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈ 綂 UB,满足条件A∩ 綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2}, ∴2 綂 UB,与条件A∩ 綂 UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(02.4(203.6(404.8(601.3函数的基本性质1 3 1单调性与最大(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(011.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x12.且日均销售量应为440-(x-13)·400,即x23,总利润y=(x-12)[440-(x-13)·40]-600(121 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)3,∴4(2b-1)+12b32b-32b0 0单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f1217.T(h)=19-6h(0≤h≤11),-47(h11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+ 0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(56.5x-28.6(622.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x20,只要a-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a-2,即a的取值范围是(-∞,-2).(实习编辑:邓杉)。
必修1第1章集合第一练集合概念及其表示练习目标:1.理解集合的概念,掌握元素与集合的属于关系;2.理解集合的互异性;3.熟练用列举法,描述法表示集合。
1.下列各组对象能构成一个集合的是_______.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2018年在校的所有高个子同学;(4)3的近似值的全体.【答案】(1)(2)【解析】(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合;(2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.2.用“∈”或“∈∕”填空:13____Z,3___R,0___N,-3.14_____Q,0____ ∅.【答案】∈∕,∈,∈,∈,∈∕.3.下列4个集合中,空集的个数是.(1){0};(2){x|x>8且x<5};(3){x|x2+1=0};(4){x|5<x<8}.【答案】2【解析】{0}不是⌀,故(1)不是空集;大于8且小于5的实数不存在,(2)是空集;(3)中方程x2+1=0无实数根,所以是空集;(4)中{x|5<x<8}是无限集,不是空集.故是空集的有(2)(3),共2个.4.用列举法表示{x∣x是15的正约数}:__________.【答案】{1,3,5,15}【解析】因为15的正约数有1,3,5,15,所以解集为{1,3,5,15}.5.(改编)用描述法表示正奇数的集合为___________.【答案】{}Nnnxx∈+=,126.(改编)用列举法表示{(x, y)∣3x+2y=16, x∈N, y∈N }:__________.【答案】{(0,8),(2,5),(4,2)}7.下列集合中,有限集的个数是__________.①{x ∣x 是面积小于8的正方形};②{x ∣x <12,x ∈Z };③{x ∣x 2+2x +3=0};④{x ∣3x∈N }. 【答案】1【解析】因为①②④都是无限集,只有③是有限集.8.(改编)在数集{}0,1,2x -中,实数x 不能取的值是______.【答案】2,3【解析】由集合的互异性知: {}0,1,2x -中, 201x -≠,. 实数x 不能取的值是2,3.9.已知集合A={x|-2<x<2,x ∈Z},B={y|y=x 2+1,x ∈A },则集合B 用列举法表示是_____.【答案】{1,2}【解析】由题意知A={-1,0,1},而B={y|y=x 2+1,x ∈A },所以B={1,2}.故答案为{1,2}10.已知含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则2a b +=__________.【答案】2-;【解析】由条件知:b a ,a 做分母了,所以 a 0≠ ,因为两个集合相等,所以集合中元素相同,则0b a=,b=0,此时集合为: {},0,1a {}2,,0a a 所以21a =, a 1=-.b=0.或a 1=,此时不满足集何元素的互异性.所以,2a+b=-2.二、解答题11.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求满足条件的实数x 组成的集合.解:(1)当3x 2+3x -4=2时,x =-2,或1.此时x 2+x -4=-2不合互异性,舍去.(2)当x 2+x -4=2时,x =-3或2.此时3x 2+3x -4的值都为14.所以x ∈{-3,2}.12.已知方程20x ax b ++=.(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值.解:(1) 若方程20x ax b ++=的解集只有一个元素则方程20x ax b ++=有两个相等的实数根,故0∆=即 2a -4b=0;(2) 方程的解集有两个元素分别为1,3,则20x ax b ++=的根为1,3,根据韦达定理得13{ 4,313a a b b +=-∴=-=⨯=。
专题1 集合的含义与表示题组1 集合的概念1.对于以下说法:①接近于0的数的全体构成一个集合;②长方体的全体构成一个集合;③高科技产品构成一个集合;④不大于3的所有自然数构成一个集合;⑤0,0.5,,组成的集合含有四个元素.其中正确的是()A.①②④B.②③⑤C.③④⑤D.②④【答案】D【解析】①③中的元素不能确定,⑤中的集合含有3个元素,②④中的元素是确定的,所以②④能构成集合.故选D.2.下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C.直角坐标平面内第一象限的一些点D.所有小的正数【答案】B【解析】A中“难题”的标准不确定,不能构成集合;B能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D中没有明确的标准,所以不能构成集合.3.下列说法中正确的是()A.班上爱好足球的同学,可以组成集合B.方程x(x-2)2=0的解集是{2,0,2}C.集合{1,2,3,4}是有限集D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是含有相同元素的集合【答案】C【解析】班上爱好足球的同学是不确定的,所以构不成集合,选项A不正确;方程x(x-2)2=0的所有解的集合可表示为{0,2},由集合中元素的互异性知,选项B不正确;集合{1,2,3,4}中有4个元素,所以集合{1,2,3,4}是有限集,选项C正确;集合{x2+5x+6=0}不符合集合的表示形式,既不是列举法,也不是描述法,表示形式错误,选项D不正确.故选C.4.下列各组中集合P与Q,表示同一个集合的是()A.P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合B.P是由π构成的集合,Q是由3.14159构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集【答案】A【解析】由于A中P、Q元素完全相同,所以P与Q表示同一个集合,而B、C、D中元素不相同,所以P与Q不能表示同一个集合.故选A.题组2 集合中元素的特征5.数集{x2+x,2x}中,x的取值范围是()A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,1)∪(1,+∞)D.(-∞,0)∪(0,1)∪(1,+∞)【答案】D【解析】根据题意,由集合中元素的互异性,可得集合{x2+x,2x}中,x2+x≠2x,即x≠0,x≠1,则x的取值范围是(-∞,0)∪(0,1)∪(1,+∞).故选D.6.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,}B.{-2,-}C.{±2,±}D.{2,-}【答案】C【解析】由x2-3≠1解得x≠±2.由x2-3≠2解得x≠±.∴x不能取得值的集合为{±2,±}.故选C.7.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a等于()A.4B.2C.0D.0或4【答案】A【解析】当a=0时,方程为1=0不成立,不满足条件;当a≠0时,Δ=a2-4a=0,解得a=4.故选A.8.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1B.0C.0或1D.以上答案都不对【答案】C【解析】k=0时,适合题意;k≠0,由Δ=0,可得k=1.9.由实数x,-x,|x|,,-所组成的集合,最多含()A.2个元素B.3个元素C.4个元素D.5个元素【答案】A【解析】由于|x|=±x,=|x|,-=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.10.设集合A={-1,1,2,-2},B={0,3,-3},M={x|x=ab,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【答案】C【解析】由集合中元素的互异性,可知集合M={0,-3,3,6,-6},所以集合M中共有5个元素.题组3 元素与集合的关系11.由不超过5的实数组成集合A,a=+,则()A.a∈AB.a2∈AC.∉AD.a+1∉A【答案】A【解析】a=+<+=4<5,∴a∈A.a+1<++1=5,∴a+1∈A.a2=()2+2·+()2=5+2>5.∴a2∉A.===-<5.∴∈A.故选A.12.已知集合M={x|x=3m+1,m∈Z},N={y|y=3n+2,n∈Z},若x0∈M,y0∈N,则x0y0与集合M,N的关系是()A.x0y0∈M但x0y0∉NB.x0y0∉M且x0y0∉NC.x0y0∈N但x0y0∉MD.x0y0∈M且x0y0∈N【答案】C【解析】设x0=3m+1,y0=3n+2,m,n∈Z,则x0y0=(3m+1)(3n+2)=9mn+6m+3n+2=3(3mn+2m+n)+2,∴x0y0∈N但x0y0∉M,故选C.13.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b ∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P、Q、R中的任意一个【答案】B【解析】由P={x|x=2k,k∈Z}可知P表示偶数集;由Q={x|x=2k+1,k∈Z}可知Q表示奇数集;由R={x|x=4k+1,k∈Z}可知R表示所有被4除余1的整数;当a∈P,b∈Q,则a为偶数,b为奇数,则a+b一定为奇数,故选B.14.若集合A={x|0<x<7,x∈N*},则B=中元素的个数为()A.3B.4C.1D.2【答案】B【解析】A={x|0<x<7,x∈N*}={1,2,3,4,5,6},B={1,2,3,6},∵A∩B=B,∴B=中元素的个数为4.15.定义集合A、B的一种运算:A*B={x|x=x1·x2,其中x1∈A,x2∈B},若A={1,2},B={1,2},则A*B中的所有元素数字之和为()A.7B.9C.5D.6【答案】A【解析】∵A*B={x|x=x1·x2,其中x1∈A,x2∈B},且A={1,2},B={1,2},∴A*B={1,2,4},则A*B中的所有元素数字之和为1+2+4=7,故选A.16.(1)设A表示集合{2,3,a2+2a-3),B表示集合{|a+3|,2},若5∈A,且5∉B,求实数a 的值;(2)已知集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若(2,3)∈A,且(2,3)∉B,试求m,n的取值范围.【答案】(1)∵5∈A,且5∉B,∴即解得a=-4.(2)∵(2,3)∈A,∴2×2-3+m>0,∴m>-1.∵(2,3)∉B,∴2+3-n>0,∴n<5.∴所求m,n的取值范围分别是{m|m>-1},{n|n<5}.17.已知集合S中的元素是正整数,且满足命题“如果x∈S,则(6-x)∈S”时回答下列问题:(1)试写出元素个数为2的全部集合S;(2)试写出满足条件的全部集合S.【答案】(1)∵S中有两个元素,且x∈S,6-x∈S,∴这两个元素的和为6,∴S可能为{1,5},{2,4}.(2)当6-x=x时,x=3,∴S可能为{3},{1,5},{2,4},{1,5,3},{2,4,3},{1,5,2,4},{1,5,2,4,3}.题组4 常用的数集及表示18.下列关系中正确的个数为()①∈R;②0∈N*;③{-5}⊆Z.A.0B.1C.2D.3【答案】C【解析】①③正确.19.下列四个说法中正确的个数是()①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合;⑤π∈Q;⑥0∉N;⑦-3∈Z;⑧∈R.A.0B.1C.2D.3【答案】C【解析】①错,因为N中最小数是0;②错,因为0∈N,而-0∈N;③错,当a=1,b=0时,a+b=1;④错,小的正数是不确定的;⑤错,因为π不是有理数;⑥错,因为0是自然数;⑦正确,因为-3是整数;⑧正确,因为是实数.题组5 用列举法表示集合20.用列举法表示集合{x|x-2<3,x∈N*}为()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}【答案】B【解析】∵x-2<3,∴x<5.又x∈N*,∴x=1,2,3,4,故选B.21.方程组的解构成的集合是()A.{(1,1)}B.{1,1}C.(1,1)D.{1}【答案】A【解析】由得即方程组的解构成的集合为{(1,1)},故选A.22.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}【答案】A题组6 用描述法表示集合23.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}【答案】A24.用描述法表示一元二次方程的全体,应是()A.{x|ax2+bx+c=0,a,b,c∈R}B.{x|ax2+bx+c=0,a,b,c∈R,且a≠0}C.{ax2+bx+c=0|a,b,c∈R}D.{ax2+bx+c=0|a,b,c∈R,且a≠0}【答案】D【解析】∵一元二次方程的一般形式是ax2+bx+c=0,a,b,c∈R,且a≠0.则描述法表示一元二次方程的全体构成的集合为:{ax2+bx+c=0|a,b,c∈R,且a≠0}.故选D.25.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合【答案】D【解析】集合{(x,y)|y=2x-1}中的元素为有序实数对(x,y),表示点,所以集合{(x,y)|y=2x-1}表示函数y=2x-1图象上的所有点组成的集合.故选D.26.第一象限的点组成的集合可以表示为()A.{(x,y)|xy>0}B.{(x,y)|xy≥0}C.{(x,y)|x>0且y>0}D.{(x,y)|x>0或y>0}【答案】C27.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]=,k=0,1,2,3,4,给出如下四个结论:①2 016∈[1];②-3∈[3];③若整数a,b属于同一“类”,则a-b∈[0];④若a-b∈[0],则整数a,b属于同一“类”.其中,正确结论的个数是()A.1B.2C.3D.4【答案】C【解析】由于[k]=,对于①,2 016除以5等于403余1,∴2 016∈[1],∴①正确;对于②,-3=-5+2,被5除余2,∴②错误;对于③,∵a,b是同一“类”,可设a=5n1+k,b=5n2+k,则a-b=5(n1-n2)能被5整除,∴a-b∈[0],∴③正确;对于④,若a-b∈[0],则可设a-b=5n,n∈Z,即a=5n+b,n∈Z,不妨令b=5m+k,m ∈Z,k=0,1,2,3,4,则a=5n+5m+k=5(m+n)+k,m∈Z,n∈Z,∴a,b属于同一“类”,∴④正确,则正确的有①③④,共3个.28.已知集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定【答案】A【解析】M={x|x=,k∈Z},N={x|x=,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.题组7 集合的表示综合29.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n =m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M ={(a,b)|a※b=16}中的元素个数是()A.18B.17C.16D.15【答案】B【解析】因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.30.用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5且x∈Z};(4){(x,y)|x+y=6,x,y均为正整数};(5){-3,-1,1,3,5}.【答案】(1){-2,-1,0,1,2};(2){3,6,9};(3){0,1,2,3,4};(4){(1,5),(2,4),(3,3),(4,2),(5,1)};(5){x|x=2k-1,-1≤k≤3,k∈Z}.11/ 11。
1.1.1集合的含义与表示1.用适当的方法表示下列集合:(1)由方程2(1)(2)(3)0x x x -+-=的所有实数根组成的集合;(2)大于2且小于7的整数;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)所有正偶数组成的集合;(5)直角坐标系中第三象限的点组成的集合;(6)以A 为圆心,r 为半径的圆上的所有点组成的集合;(7)所有正方形组成的集合.2.(2012(新课标)理)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .103.(1)设a b ∈R ,,集合},,0{},,1{b ab a b a =+,则b a -= ;(2)若2{2,,}{2,2,}a b a b =,求实数,a b 的值.(3)设{,,}A x xy x y =-,{0,||,}B x y =,且A B =,求,x y 的值。
4.(1)已知2{2,25,12}A a a a =-+,且3A -∈,求a 的值。
(2)已知2{0,1,}x x ∈,求实数x 的值。
5.(1)若1{}20x x ax b ∈++=,3{}20x x bx a ∈++=,则______,a =______b =.(2)由代数式,x x -,最多含有多少个元素?6.已知集合A={}2320,x ax x a R -+=∈,(1)若A 是空集,求a 的取值范围;(2)若A 是单元素集,求a 的值;(3)若A 中至多只有一个元素,求a 的取值范围.7.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A .。
专题1 集合的含义与集合的运算【预备知识】一、集合概念的理解 1、已知集合}1|{-==x y x A ,集合}1|{-==x y y B ,请说明两个集合的含义。
2、请问:已知集合}1|{x y x A ==与集合}1|),{(xy y x B ==,则=⋂B A 。
3、已知集合}12|),{(+==x y y x A 与}1|),{(2-+==x x y y x B ,则=⋂B A4、若集合A 中有n 个元素,则A 有 个子集, 个真子集, 个非空真子集。
5、已知集合}42|{<<-=x x A ,}23|{<<-=x x B ,}11|{≥-≤=x x x C 或,请在数轴上画出这三个集合,并求B A ⋂、C A ⋂、)(C B C R ⋂、C B A ⋂⋂。
6、B B A =⋂⇒ ;B B A =⋃⇒ ;【例1】已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则集合B 中所含元素的个数是 个A 、3B 、6C 、8D 、10【例2】若集合}02|{2>+-=a x x x A ,且A ∉1,则实数a 的取值范围是 。
【例3】已知实数b a ,,集合}0,,{}1,,{2b a a aba +=,则20142014b a +的值为 。
【例4】已知集合},13|{Z k k x x A ∈-==,},23|{Z n n x x B ∈+==,则集合A 与B 的关系是【例5】已知集合}4,3,2,1{=A ,若对任意B x ∈,都有A x ∈,且B ∈2,则符合条件的集合B 的个数有 个。
【例6】设集合}62|{≤≤=x x A ,}32|{+≤≤=a x a x B ,若A B ⊆,则实数a 的取值范围是 。
【例7】已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =( )A .{0}B .{-1,,0}C .{0,1}D .{-1,,0,1}【例8】已知全集U 为实数集R ,集合M={ x|1-x 3x +<0},N={x| -1≤x ≤1},则右图中阴影部分表示的集合是 。
集合的含义及其表示
班级:________ 座号:_________姓名:_________
1.下列几组对象可以构成集合的是 ( )
A.充分接近π的数
B.某校高一所有聪明的同学
C.善良的人
D.某校所有身高在1.7以上的同学 2.下面四个命题:(1)集合N 中的最小元素是1:(2)若a N -∉,则a N ∈
(3)2
44x x +=的解集为{2,2};(4)0.7Q ∈,其中不正确命题的个数为 ( ) A. 0 B. 1 C.2 D.3 3.下列各组集合中,表示同一集合的是 ( )
A.(){}(){}3,2,2,3M N =
B.{}{}3,2,2,3M N ==
C.(){},1M x y x y =+=,{}1N y x y =+=
D. {}(){}1,2, 1.2M N ==
4.下列方程的实数解的集合为12,23⎧⎫
-⎨⎬⎩⎭
的个数为 ( )
(1)24410x x -+=;(2)2620x x +-=;(3)()()2
21320x x -+=;(4)2620x x --= A.1 B.2 C.3 D.4 5. 下列关系中表述正确的是 ( )
A.{}200x ∈=
B.(){}00,0∈
C. 0∈∅
D.0N ∈ 6. 下列表述正确的是( )
A.{}0=∅
B.{}{}1,22,1=
C.{}∅=∅
D.0N ∉
7.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则实数a 可以是( ) A.-2 B.1 C. 2 D.3 8.用适当的符号填空:
1
(1)0____;(4)____;(5)2____;(6)____;(7)____.
2
N N N Q Z Q R ππ--
9.已知{}21,A x x k x Z ==+∈,则
(1)3_____;(2)2_____;(3)5_____A A A -
10.用列举法表示下列集合
(1)满足不等式1219x <<的素数组成集合为 (2)集合{}
220x x x +-=为
(3)集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭为
11.用描述法表示下列集合
(1)满足不等式342x x ≥-的整数组成集合为 (2)所有偶数的集合为为 12.已知{}{}21,,,,,A a b B a a ab ==,求实数,a b 的值.
13. 已知集合{}
2210,A x ax x x R =++=∈,a 为实数
(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值 (3)若A 中至多只有一个元素,求a 的取值范围.。