数学建模人口预测模型
- 格式:ppt
- 大小:101.50 KB
- 文档页数:11
关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。
2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。
对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。
首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。
在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。
然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。
与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。
对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。
同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。
并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。
人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。
人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。
为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。
人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。
线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。
指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。
Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。
在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。
同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。
在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。
趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。
复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。
比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。
时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。
系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。
在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。
同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。
此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。
全国大学生数学建模比赛论文人口预测模型 The manuscript was revised on the evening of 2021中国人口预测模型摘要:人口数量的变化,关系到一个国家的未来。
认识人口数量的变化规律,建立人口模型,能够较准确的预报,是有效控制人口增长的前提。
本文对人口预测的数学模型进行了研究。
首先,建立人口指数模型、Logistic模型及灰度预测模型。
对我国2005年以后45年的人口增长进行了预测,根据1982年人口基本数据运用模型对1982年~2005年进行了预测,并用实际数据对预测结果进行了检验。
我们将预测区间分为2006~2030年、2030~2050年两个区间,以量化未来我国短中期与长期的人口变化。
关键词:人口数量的变化人口指数模型 Logistic模型灰度预测模型MATLAB Excel目录第一部分问题重述 (3)第二部分问题分析 (3)第三部分模型的假设 (3)第四部分定义与符号说明 (3)第五部分模型的建立与求解 (3)模型一 (3)模型二 (8)模型三 (12)第六部分对模型的评价 (14)第七部分参考文献 (15)第八部分附表 (15)一、问题重述人口问题始终是制约我国发展的关键因素之一。
本题要求根据已知数据,运用数学建模的思想对我国人口做出分析和预测。
具体问题如下:从中国的实际情况和人口增长的特点,例如我国老龄化进程加快、出生人口性别比持续升高、乡村人口城镇化等,利用参考附录中所提供的数据,建立中国人口增长的数学模型,由此对中国人口增长的中短期和长期趋势做出预测,并指出模型的优缺点。
二、 模型假设1、假设题目所给的数据真实可靠;2、假设不考虑我国人口大规模的朝国外迁移,也不考虑外国人大量涌入我国;3、假设不考虑战争、自然灾害、疾病对人口数目和性别比的影响;4、假设在本世纪中叶前,我国计划生育政策稳定。
5、假设中短期内生育率和死亡率保持相对稳定6、假设相同年龄段人口性别比基本稳定。
数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。
模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。
这里,我们采用两种算法进行人口总数的预测。
一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。
通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。
我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。
由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。
关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。
二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。
中国未富先老,对经济的发展产生很大的影响。
人口年龄结构模型是对一个地区或国家的人口按照年龄划分而建立的模型,它反映了该地区或国家的不同年龄段的人口数量及其比例关系。
通过对人口年龄结构进行建模和预测,可以揭示未来的人口发展趋势,提前为政府和社会进行人口政策的制定和社会发展的规划提供依据。
人口年龄结构模型建模的基本步骤包括:数据收集、年龄段划分、建模方法选择和数据拟合。
首先,需要收集该地区或国家的相关人口数据,包括人口总量、不同年龄段的人口数量等。
然后,根据实际情况,将不同年龄段按照一定的划分标准划分,常见的划分标准包括:0-14岁为儿童,15-64岁为劳动年龄人口,65岁及以上为老年人口。
接下来,根据数据的特点选择合适的建模方法,常见的方法包括:线性模型、非线性模型、时序分析等。
最后,根据建模过程中的数据和模型,进行数据拟合与估计,得到具体的人口年龄结构模型。
人口年龄结构模型预测的方法主要有人口动态模型和人口推移模型。
人口动态模型是基于人口自然增长率、迁入迁出率等因素的模型,通过对这些因素的分析和估计,预测未来的人口数量和年龄结构。
人口推移模型是基于已有的人口年龄结构模型和历史数据,通过拟合历史数据和未来预测数据,来预测未来的人口年龄结构。
人口推移模型的常用方法有人口扩散模型和人口改变模型。
人口扩散模型是通过推动人口在年龄段之间的转移,实现总体人口年龄结构的变化。
人口改变模型是通过预测各年龄段人口数量变化来预测未来的人口年龄结构。
需要特别强调的是,人口年龄结构模型的建模和预测仍然存在许多不确定性。
首先,人口发展受到多种因素的影响,如社会经济发展水平、教育水平、卫生状况等。
其次,人口的迁徙和流动也会对人口年龄结构产生重要影响,而这是难以准确预测和建模的。
最后,人口政策的制定也会对人口年龄结构产生不可忽视的影响。
尽管如此,人口年龄结构模型的建模和预测仍然是非常重要的,可以为政府和社会规划提供科学依据。
通过建立合理的人口年龄结构模型,可以更好地预测和分析人口变动对社会经济的影响,为人口政策的制定提供参考,促进经济发展和社会稳定。
中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。
模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。
该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。
又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。
结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。
模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。
各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。
根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。
结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。
可反映中国不同年龄结构的人口分布情况。
关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
因此人口预测的科学性、准确性是至关重要的。
英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。
但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。
因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。
中国人口预测模型摘要本文对人口预测的数学模型进行了研究。
首先,建立一次线性回归模型, 灰色序列预测模型和逻辑斯蒂模型。
考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)其中加权系数为:,其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,然后对人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。
在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。
而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。
而人口增长预测是对未来进行预测的各环节中的一个重要方面。
准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。
2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。
例如,中国人口预期寿命约为70 岁左右,因此,长期人口预测最好预测到70年以后,中期40—50 年,短期可以是5 年、10年或20 年。
根据2007 年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。
示范人口预测的数学模型Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】人口预测的数学模型摘要本题要求根据给出的01到05年的人口情况的数据,对我国的人口增长建立数学模型并做出预测。
我们建立递归模型,从2005年开始预测。
按照性别和市,镇,乡的区别把人口分为6类。
按照年龄进行分段,每一个年龄作为一段。
用2005年的每个年龄的人数预测06年统一年龄的人数。
把06年各年龄的预测值相加,即可得到2006年的总人数的预测值。
然后依次递归,得出其他年份的人口数据。
影响人口增长的主要因素有:出生率、死亡率、政府政策、老龄化、和乡村城镇化的影响。
我们在递归模型主题框架的基础上,逐步深入建立了四个模型:模型一,只考虑出生率和死亡率对人口增长的影响,从2001年到2005年的数据中,求出平均出生率和平均死亡率,并假定2005年以后的平均出生率和平均死亡率不变。
为了减少累计误差,用05年数据逐步迭代得到人口随时间的变化曲线。
然后,用01年的数据运用模型一迭代出01~05年人数,与修正后的数据进行比较,求得我们的模型的估计值与实际值相近,进而推出模型基本的合理性。
模型二,在模型一的基础上加上政策因素的影响,引进人口政策影响因子R,通过对结果进行分析,发现政府政策对人口的变化情况会产生较大的影响。
体现为了控制人口数量,国家可以进行较好的宏观调控。
模型三,在模型二的基础上加上老龄化对人口增长的影响,引进阻滞因子,建立人口随时间的变化曲线。
模型四,在模型三的基础上加上乡村人口城镇化的影响,通过对结果进行分析我们发现模型四与前几个模型的主要区别是在城镇人口的数量,及城镇人口在全国人口总人口的比率上,更符合实际情况。
在每个模型的基础上,进一步分别对人口总数,性别比例,老龄化程度,生育期内妇女总数,有劳动力的人数等做出了预测。
此外根据《国家人口发展战略研究报告》计划的目标,在模型四的基础上,通过对R值进行调整,得到当R=基本能够满足国家的战略计划。
浅析人口预测的常用数学模型郑爱军发布时间:2023-05-12T07:07:41.275Z 来源:《中国教师》2023年5期作者:郑爱军[导读] 人口的发展是人类社会最关心的问题之一。
预测人口规模是城市规划中重要的核心任务。
人口预测常用的数学模型分传统的预测模型和现代的预测模型兴安职业技术学院 137400摘要:人口的发展是人类社会最关心的问题之一。
预测人口规模是城市规划中重要的核心任务。
人口预测常用的数学模型分传统的预测模型和现代的预测模型,每一种都有相应的适用范围,实际应用中在具体方法的选择上必须结合所预测地区的特点,占有数据量的多少,预测时段的长短来选择最合适的方法。
关键词:人口预测数学模型计算方法人口信息是社会经济特征的基础信息,城镇人口规模对城镇的建设和发展有着重要的影响。
随着社会的发展,城镇人口也随着发生相应的变化。
影响城镇人口变化的因素包括城市的用地规模、城市布局以及城市基础设施建设等等。
采取什么样的数学模型对城镇人口进行科学合理的预测,对人口未来的趋势进行判断,进一步对城镇的发展提出科学的规划,是管理者应该直接面对的重要的基础性问题。
人口预测模型的适用性,是决定预测结果的科学性和是否符合人口发展的趋势的先决条件。
人口预测作为人口研究中的重要方面,近年来预测方法的发展很快,主要的预测方法分为用微分方程法预测的Logistic模型,用数理统计方法预测的回归分析模型,用矩阵方法预测的Leslie模型,也有基于经济分析、资源环境、设施承载力的模型,具体包括增长率法、Logistic模型、Leslie模型、一元线性回归预测、多元回归预测、自回归法、指数函数法、幂函数法、系统动力学以及适用更为广泛的灰色系统GM(1,1)模型预测等主要方法。
一、增长率模型1、综合增长率法综合增长率法根据人口综合年均增长率预测人口规模,是利用所选定的人口增长数学公式,根据基数人口总数,按照一定的人口增长速度推算未来时期人口总数的方法。
答疑解惑239以人口预测为例初试数学建模★纪秀浩本文研究“二孩”政策对我国人口发展的影响问题,对于预测未来30年人口数的问题,分别对“单独二孩”和“全部二孩”政策首先建立灰色预测模型,将近5年的人口数据做累加合成,得到近似指数规律的数据,然后建立leslie 模型,将用灰色预测模型算出来的数据代入leslie 模型中,得到leslie 矩阵,进而预测出未来30年我国的人口数;通过搜集中国统计局各个年龄段的结构比例以及老年人口占全部人口的比重,预测未来30年老龄化程度。
本课题是研究单独二胎和全面二胎对未来人口的影响,所以我们要用到最新的数据并对未来30年做一个预测,由于需要的数据很少,所以我们必须用已有的数据做一些预测,本次预测方法采用灰色模型矩阵来进行预测,灰色模型它的优点就在于根据已有的少量数据,对事物的发展规律做一个模糊性的描述,来预测后边未知的数据,当然在此之前我们还要把之前的数据进行一些累加,以弱化原始数据的影响,而且大大的减少了原始数据的随机性,从而呈现出比较明显的变化规律。
得到了一个初步的数据后,我们可以用Leslie 模型在MATLAB 的基础上编程求解,在图中呈现不开放二胎和单独二胎政策和全面二胎政策的一些发展趋势,并定量的分析两种政策下对未来国家总人口及老龄化的影响。
一、灰色GM(1,1)模型为了研究“二孩”政策对我国人口发展的影响问题,对于预测未来30年人口数的问题,通过搜集统计局近5年的数据人口[1],分别对“单独二孩”和“全部二孩”政策首先建立灰色预测模型,将近5年的人口数据做累加合成,得到近似指数规律的数据,将已知的2006年至2010年出生人口性别比数据作为已知数据向量0x ,(0)125{(0),(0),,(0)}x x x x = ,先对五年的数据进行一次累加。
以减少对后边数据的影响,并得到新的向量表达式:1(1)(0) (1,2,,30),kk jj x xk ===∑ 令x为生成的新向量,(1)1230{(1),(1),,(1)}x x x x = ,在新向量x 的基础上建立灰色方程为(t)(1)dx cx v d t+= (1)式(1)为灰色一阶微分方程,一般记做(1,1)G M,其中,c v为未知参数。
数学建模在人口规划中的应用有哪些人口问题一直是社会发展中的重要议题,而数学建模作为一种有效的工具,在人口规划中发挥着关键作用。
通过对人口数据的分析和预测,数学建模可以为政策制定者提供科学依据,帮助他们制定合理的人口规划策略。
一、人口增长模型人口增长模型是数学建模在人口规划中的基础应用之一。
常见的人口增长模型包括指数增长模型和逻辑斯蒂增长模型。
指数增长模型假设人口增长率是恒定的,即人口数量按照指数函数的形式增长。
这种模型在人口增长的初期阶段可能具有一定的合理性,但随着时间的推移,它往往会高估人口的增长速度,因为它没有考虑到资源、环境等因素对人口增长的限制。
逻辑斯蒂增长模型则考虑了环境容纳量的限制,认为人口增长会逐渐趋近于一个上限值。
该模型更加符合实际情况,能够更好地预测人口的长期增长趋势。
通过建立逻辑斯蒂增长模型,我们可以估计出一个地区或国家的人口饱和水平,为制定人口政策提供重要参考。
二、人口年龄结构模型人口年龄结构对于社会经济的发展具有重要影响。
数学建模可以帮助我们构建人口年龄结构模型,从而深入了解人口的年龄分布特征及其变化趋势。
通过将人口按照不同的年龄组进行划分,并考虑生育率、死亡率等因素的影响,我们可以建立起年龄结构的动态模型。
这些模型可以预测未来各年龄组人口的数量和比例,为教育、医疗、养老等公共服务的规划提供依据。
例如,如果预测到未来老年人口比例将大幅增加,那么就需要提前规划和建设更多的养老设施,加强医疗保障体系,以满足老年人的需求。
三、人口迁移模型在现代社会,人口迁移是一个普遍现象。
数学建模可以用于分析人口迁移的规律和趋势,为城市规划和区域发展提供支持。
人口迁移模型通常考虑了经济因素、社会因素、环境因素等对人口迁移的影响。
例如,经济发展水平的差异会导致人口从经济欠发达地区向发达地区迁移;良好的教育和医疗资源也会吸引人口的流入。
通过建立人口迁移模型,我们可以预测不同地区之间人口流动的规模和方向,为城市的基础设施建设、就业政策制定等提供决策依据。
人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。
最后提出了有关人口控制与管理的措施。
模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。
得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。
运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。
模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。
首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。
其次,对人口老龄化问题、人口抚养比进行分析。
得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。
再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。
中国人口增长预测数学模型
中国人口增长可以用人口增长率来描述。
人口增长率是指一个国家的出生率、死亡率和移民率产生的净人口变化的比率。
一般来说,一个国家的人口增长率越高,其人口增长速度越快,反之亦然。
由于中国的出生率和死亡率一直在变化,因此需要建立一个数学模型来预测中国的人口增长。
常见的模型有以下几种:
1. 指数模型
指数模型假设人口增长率是一个恒定值,因此未来的人口数量可以通过不断累乘现有人口数量和人口增长率来预测。
这种模型适用于人口增长迅速的情况,但并不适用于中国的情况,因为中国的人口增长率不是恒定的。
2. Logistic 模型
Logistic 模型假设人口增长率随着人口数量的变化而变化,即当人口数量增加到某一点时,人口增长率会逐渐降低。
这种模型适用于人口数量增长迅速的情况,适用于中国的情况。
3. 随机游走模型
随机游走模型假设人口增长率是一个随机变量,可以根据历史发展趋势来预测未来的变化。
这种模型适用于人口数量变化不规律的情况,但对于中国这样的大国而言,其复杂性较高,难以建立准确的模型。
总之,预测中国的人口增长需要考虑许多因素,例如出生率、死亡率、移民率等等,而且这些因素也会受到其它因素的干扰,例如经济、社会政治等因素。
因此,建立准确的模型需要大量的数据和正确的假设。
全国大学生数学建模比赛论文人口预测模型 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-中国人口预测模型摘要:人口数量的变化,关系到一个国家的未来。
认识人口数量的变化规律,建立人口模型,能够较准确的预报,是有效控制人口增长的前提。
本文对人口预测的数学模型进行了研究。
首先,建立人口指数模型、Logistic模型及灰度预测模型。
对我国2005年以后45年的人口增长进行了预测,根据1982年人口基本数据运用模型对1982年~2005年进行了预测,并用实际数据对预测结果进行了检验。
我们将预测区间分为2006~2030年、2030~2050年两个区间,以量化未来我国短中期与长期的人口变化。
关键词:人口数量的变化人口指数模型 Logistic模型灰度预测模型MATLAB Excel目录第一部分问题重述 (3)第二部分问题分析 (3)第三部分模型的假设 (3)第四部分定义与符号说明 (3)第五部分模型的建立与求解 (3)模型一 (3)模型二 (8)模型三 (12)第六部分对模型的评价 (14)第七部分参考文献 (15)第八部分附表 (15)一、问题重述人口问题始终是制约我国发展的关键因素之一。
本题要求根据已知数据,运用数学建模的思想对我国人口做出分析和预测。
具体问题如下:从中国的实际情况和人口增长的特点,例如我国老龄化进程加快、出生人口性别比持续升高、乡村人口城镇化等,利用参考附录中所提供的数据,建立中国人口增长的数学模型,由此对中国人口增长的中短期和长期趋势做出预测,并指出模型的优缺点。
二、 模型假设1、假设题目所给的数据真实可靠;2、假设不考虑我国人口大规模的朝国外迁移,也不考虑外国人大量涌入我国;3、假设不考虑战争、自然灾害、疾病对人口数目和性别比的影响;4、假设在本世纪中叶前,我国计划生育政策稳定。
5、假设中短期内生育率和死亡率保持相对稳定6、假设相同年龄段人口性别比基本稳定。
摘 要中国是一个人口大国,人口问题与我国的经济发展等方面息息相关。
随着我国人口数量的不断变化,人口的老龄化问题也日益突显,政策的调整不可或缺。
从当初实行计划生育政策到逐步放开生育政策再到全面实行二孩政策,我国人口发展呈现了一些新特点。
本文旨在通过多种预测方法对“全面二孩政策”下的人口数量及其结构进行预测,筛选出了经济发展的指标,并分人口结构对经济发展的影响,结论如下:针对问题一,本文参考中国国家统计局等官方资料的数据统计出各年人口总数、自然增长率等数据,建立了logistic 模型,得出人口总数的变化公式,然后建立GM(1,1)预测模型,预测2016年的人口总数,再利用SPSS 进行回归、曲线估计,得出最为符合的方程式,再利用MATLAB 函数拟合工具箱对所得数据进行拟合。
预测出2017-2030年间人口先增后减,在2021年达到峰值。
针对问题二,通过建立BP 神经网络模型,利用GM(1,1)灰色预测处理人口结构数据得到训练及测试数据集,将数据BP 神经网络算法进行多次训练,最终得到具有相当精度的稳定预测结果。
提取相当数量的经济指标并对其进行主成分分析降维处理,之后对主要经济指标及人口结构指标进行多元回归分析得到2020-2030年人口结构对经济发展的影响。
针对问题三,关键词:灰色预测 BP 神经网络 Leslie 人口结构预测模型问题假设1.将我国看做一个封闭系统,没有人口的迁入和迁出2.人口增长只与人口基数、生育率、死亡率等有关3.没有大规模战争及瘟疫等传染性疾病4.假设短期内没有外来物种对人类生存造成影响5.假设所有数据均为准确数据6.假设2050年前医疗水平和科学技术不会对人类的死亡率、出生率造成影响模型符号说明: r : 人口自然增长率 x :总人口数0x :初始年份的人口数量t :时间)()0(k x :灰色预测的原始序列 )(ˆ)0(k x:灰色预测的原始数列预测值 ij x :第i 个指标的第j 个数据i d :第i 岁的死亡率i b :第i 岁的生育率问题一 模型建立首先,我们建立了logistics 模型,具体如下)0(x x rxdtdx == 其次,建立GM(1,1)预测模型GM(1,1)是一阶微分方程模型,其形式为:u ax dtdx=+ 离散形式:u k x a k x =+++∆))1(())1(()1()1(预测公式:a u e a u x k xka ˆˆˆˆ)1()1(ˆˆ)1()1(+⎥⎦⎤⎢⎣⎡-=+- 由导数可知:tt x t t x dt dx t ∆-∆+=→∆)()(lim0 当t ∆很小并且取很小的1单位时,则近似的有:txt x t x ∆∆=-+)()1( 写成离散形式:))1(()()1()1(+∆=-+=∆∆k x k x k x tx由于tx ∆∆)1(涉及到累加列)1(x 的两个时刻的数值,因此,)()1(i x 取前后两个时刻的平均代替更为合理,即将)()(i x i 替换为)]()1([21)1().,...,3,2()],1()([21).,...,3,2()],1()([21)1()1()1()()()()()(k x k x k x n i i x i x x n i i x i x i i i i i ++=+=-+==-+))1(()()1()1(+∆=-+=∆∆k x k x k x txu k x a k x =+++∆))1(())1(()1()1()]()1([21)1()1()1()1(k x k x k x ++=+整理可得 u k x k x a k x+++-=+))]1()((21[)1()1()1()0(表示为矩阵形式:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋯-+-⋯+-+-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋯u a n x n x x x x x n x x x 111)]1()([21)]2()3([21)]1()2([21)()3()2()1()1()1()1()1()1()0()0()0( 不妨令T n x x xy ))(),3(),2(()0()0()0(,⋯=令⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋯-+-⋯+-+-=u a U n x n x x x x x B ,111)]1()([21)]2()3([21)]1()2([21)1()1()1()1()1()1( 则y B B B ua U BU Y T T 1)(ˆˆˆ-=⎥⎦⎤⎢⎣⎡==,模型求解1.对logistics 模型进行求解 得到总人口变化公式:rte x x 0= (0x 为初始年份人口数,21≥t )2.利用GM (1,1)模型,根据1996-2015年中国总人口数据,对2016年总人口数进行预测。