数据结构上机第一次 线性表-单链表
- 格式:doc
- 大小:80.50 KB
- 文档页数:6
数据结构与算法——单链表的实现及原理1. 单链表的原理 链表是线性表的链式存储⽅式,逻辑上相邻的数据在计算机内的存储位置不必须相邻,那么怎么表⽰逻辑上的相邻关系呢?可以给每个元素附加⼀个指针域,指向下⼀个元素的存储位置。
如图所⽰: 从图中可以看出,每个结点包含两个域:数据域和指针域,指针域存储下⼀个结点的地址,因此指针指向的类型也是结点类型链表的核⼼要素:Ø 每个节点由数据域和指针域组成 Ø 指针域指向下⼀个节点的内存地址。
1.1 结构体定义1 Typedef struct LinkNode2 {3 ElemType data; //节点中存放数据的类型4struct LinkNode* next; //节点中存放下⼀节点的指针5 }LinkList, LinkNode;2. 单链表初始化链表的节点均单向指向下⼀个节点,形成⼀条单向访问的数据链1//单链表的初始化2 typedef struct _LinkNode3 {4int data; //结点的数据域5struct _LinkNode* next; //结点的指针域6 }LinkNode, LinkList; //链表节点、链表78bool InitList(LinkList*& L) //构造⼀个空的单链表 L9 {10 L = new LinkNode; //⽣成新结点作为头结点,⽤头指针 L 指向头结点11if(!L)return false; //⽣成结点失败12 L->next=NULL; //头结点的指针域置空13return true;14 }3. 单链表增加元素 - 单链表前插法插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。
1//前插法2bool ListInsert_front(LinkList * &L, LinkNode * node) //参数1 链表指针参数2 要插⼊的节点元素3 {4if (!L || !node) return false; //如果列表或节点为空返回 false5 node->next = L->next; //将头节点指向节点1的地址赋值给要插⼊节点的指针域,使要插⼊的节点先与后部相连6 L->next = node; //将插⼊节点的地址赋值给头结点的指针域,使要插⼊节点与头结点相连78return true;9 }4. 单链表增加元素 - 单链表尾插法1//尾插法2bool ListInsert_back(LinkList*& L, LinkNode* node)3 {4 LinkNode* last = NULL; //创建空指针,5if (!L || !node) return false; //如果列表或节点为空返回 false67 last = L;8while (last->next) last = last->next; //使⽤ last 找到最后⼀个节点910 node->next = NULL; //要插⼊节点由于在尾部,指针域置为 NULL11 last->next = node; //将要插⼊节点的地址赋值给之前的尾部节点的指针域,将要插⼊节点放置到尾部12return true;13 }5. 单链表增加元素 - 单链表任意位置插⼊插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。
目录1 选题背景 (1)2 方案与论证 (1)2。
1 链表的概念和作用 (1)2。
3 算法的设计思想 (2)2。
4 相关图例 (3)2.4.1 单链表的结点结构 (3)2.4。
2 算法流程图 (3)3 实验结果 (4)3.1 链表的建立 (4)3.2 单链表的插入 (4)3.3 单链表的输出 (5)3.4 查找元素 (5)3。
5 单链表的删除 (5)3。
6 显示链表中的元素个数(计数) (5)4 结果分析 (6)4。
1 单链表的结构 (6)4。
2 单链表的操作特点 (6)4。
2。
1 顺链操作技术 (6)4.2。
2 指针保留技术 (6)4。
3 链表处理中的相关技术 (6)5 设计体会及今后的改进意见 (6)参考文献 (8)附录代码: (8)1 选题背景陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代-—--信息时代,形成一个新产业-—-—信息产业,产生一个新科学—---计算机科学与技术,开创一种新的科研方法-—--计算方法,开辟一种新文化---—计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。
数据结构和算法是计算机求解问题过程的两大基石。
著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”.计算机科学就是“一种关于信息结构转换的科学”.信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。
2 方案与论证2。
1 链表的概念和作用链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。
链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。
以“结点的序列”表示线性表称作线性链表(单链表)单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。
数据结构上机题目第二次:sqlist-顺序表2.11 设顺序表va中的数据元素递增有序。
试写一算法,将x插入到顺序表的适当位置上,以保持该表的有序性。
2.21 试写一算法,实现顺序表的就地逆置,即利用原表的存储空间将线性表(a1,a2,…,an)逆置为(an,an-1,…,a1)。
第三次:LinkList-单链表2.15已知指针ha和hb分别指向两个单链表的头结点,并且已知两个链表的长度分别为m和n。
试写一算法将这两个链表连接在一起(即令其中一个表的首元结点连在另一个表的最后一个结点之后),假设指针hc 指向连接后的链表的头结点,并要求算法以尽可能短的时间完成连接运算。
请分析你的算法的时间复杂度。
2.19已知线性表中的元素以值递增有序排列,并以单链表作存储结构。
试写一高效的算法,删除表中所有值大于mink且小于maxk的元素(若表中存在这样的元素),同时释放被删结点空间,并分析你的算法的时间复杂度(注意,mink和maxk是给定的两个参变量,它们的值可以和表中的元素相同,也可以不同)。
第四次:cdLinkList-循环链表2.33已知由一个线性链表表示的线性表中含有三类字符的数据元素(如:字母字符、数字字符和其他字符),试编写算法将该线性表分割为三个循环链表,其中每个循环链表表示的线性表中均只含一类字符。
2.38设有一个双向循环链表,每个结点中除有prior,data和next 三个域外,还增设了一个访问频度域freq。
在链表被起用之前,频度域freq的值均初始化为零,而每当对链表进行一次LOCATE(L,x)的操作后,被访问的结点(即元素值等于x的结点)中的频度域freq的值便增1,同时调整链表中结点之间的次序,使其按访问频度非递增的次序顺序排列,以便始终保持被频繁访问的结点总是靠近表头结点。
试编写符合上述要求的LOCATE操作的算法。
第五次:outqueue-实验1线性表实验目的熟悉线性表的基本运算在顺序存储结构和链式存储结构上的实现,其中重点熟悉链表的各种操作。
数据结构线性表一、引言数据结构是计算机存储、组织数据的方式,它决定了数据访问的效率和灵活性。
在数据结构中,线性表是一种最基本、最常用的数据结构。
线性表是由零个或多个数据元素组成的有限序列,其中数据元素之间的关系是一对一的关系。
本文将对线性表的概念、分类、基本操作及其应用进行详细阐述。
二、线性表的概念1.数据元素之间具有一对一的关系,即除了第一个和一个数据元素外,其他数据元素都是首尾相连的。
2.线性表具有唯一的第一个元素和一个元素,分别称为表头和表尾。
3.线性表的长度是指表中数据元素的个数,长度为零的线性表称为空表。
三、线性表的分类根据线性表的存储方式,可以将线性表分为顺序存储结构和链式存储结构两大类。
1.顺序存储结构:顺序存储结构是将线性表中的数据元素按照逻辑顺序依次存放在一组地质连续的存储单元中。
顺序存储结构具有随机访问的特点,可以通过下标快速访问表中的任意一个元素。
顺序存储结构的线性表又可以分为静态顺序表和动态顺序表两种。
2.链式存储结构:链式存储结构是通过指针将线性表中的数据元素连接起来,形成一个链表。
链表中的每个节点包含一个数据元素和一个或多个指针,指向下一个或前一个节点。
链式存储结构具有动态性,可以根据需要动态地分配和释放节点空间。
链式存储结构的线性表又可以分为单向链表、双向链表和循环链表等。
四、线性表的基本操作线性表作为一种数据结构,具有一系列基本操作,包括:1.初始化:创建一个空的线性表。
2.插入:在线性表的指定位置插入一个数据元素。
3.删除:删除线性表中指定位置的数据元素。
4.查找:在线性表中查找具有给定关键字的数据元素。
5.更新:更新线性表中指定位置的数据元素。
6.销毁:释放线性表所占用的空间。
7.遍历:遍历线性表中的所有数据元素,进行相应的操作。
8.排序:对线性表中的数据元素进行排序。
9.合并:将两个线性表合并为一个线性表。
五、线性表的应用1.程序语言中的数组:数组是一种典型的顺序存储结构的线性表,常用于存储具有相同类型的数据元素。
实验一线性表及其应用一、实验目的1.熟悉C语言的上机环境,进一步掌握C语言的构造特点。
2.掌握线性表的顺序存储构造的定义及C语言实现。
3.掌握线性表的链式存储构造——单链表的定义及C语言实现。
4.掌握线性表在顺序存储构造即顺序表中的各种根本操作。
5.掌握线性表在链式存储构造——单链表中的各种根本操作。
二、实验容1.顺序线性表的建立、插入及删除。
2.链式线性表的建立、插入及删除。
三、实验步骤1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。
2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。
3.建立一个带头结点的单链表,结点的值域为整型数据。
要求将用户输入的数据按尾插入法来建立相应单链表。
四、实现提示1.由于C语言的数组类型也有随机存取的特点,一维数组的机表示就是顺序构造。
因此,可用C语言的一维数组实现线性表的顺序存储。
在此,我们利用C语言的构造体类型定义顺序表:#define MAXSIZE 1024typedef int elemtype; /* 线性表中存放整型元素*/typedef struct{ elemtype vec[MAXSIZE];int len; /* 顺序表的长度*/}sequenlist;将此构造定义放在一个头文件sqlist.h里,可防止在后面的参考程序中代码重复书写,另外在该头文件里给出顺序表的建立及常量的定义。
2. 注意如何取到第i个元素,在插入过程中注意溢出情况以及数组的下标与位序〔顺序表中元素的次序〕的区别。
3.单链表的结点构造除数据域外,还含有一个指针域。
用C语言描述结点构造如下:typedef int elemtype;typedef struct node{ elemtype data; //数据域struct node *next; //指针域}linklist;注意结点的建立方法及构造新结点时指针的变化。
408计算机考试考点一、数据结构。
(一)线性表。
1. 顺序存储结构。
- 定义:用一组地址连续的存储单元依次存储线性表的数据元素。
- 特点:- 逻辑上相邻的元素在物理位置上也相邻。
- 可以随机存取表中任一元素,时间复杂度为O(1)。
- 插入和删除操作需要移动大量元素,平均时间复杂度为O(n)。
例如,在顺序表的表头插入一个元素,需要将原表头后的所有元素向后移动一位。
2. 链式存储结构。
- 单链表。
- 定义:通过一组任意的存储单元存储线性表的数据元素,每个节点包含数据域和指针域,指针域指向下一个节点。
- 特点:- 逻辑上相邻的元素在物理位置上不一定相邻。
- 插入和删除操作不需要移动元素,只需要修改指针,时间复杂度为O(1)(如果已知插入或删除位置的前驱节点)。
但是查找一个元素的平均时间复杂度为O(n)。
- 循环链表。
- 定义:是一种首尾相接的单链表,最后一个节点的指针域指向头节点。
- 优点:从表中任一节点出发都能遍历整个链表。
在某些算法中,如约瑟夫环问题的解决,使用循环链表比普通单链表更方便。
- 双向链表。
- 定义:每个节点有两个指针域,一个指向前驱节点,一个指向后继节点。
- 特点:在双向链表中,查找前驱节点的时间复杂度为O(1),而在单链表中查找前驱节点需要从表头开始遍历,时间复杂度为O(n)。
这使得双向链表在某些需要频繁操作前驱节点的算法中更具优势,例如在对线性表进行删除操作时,如果知道要删除的节点,在双向链表中可以直接修改其前驱和后继节点的指针,而不需要像单链表那样先找到前驱节点。
(二)栈和队列。
1. 栈。
- 定义:是一种只能在一端进行插入和删除操作的线性表,允许插入和删除的一端称为栈顶,另一端称为栈底。
- 操作特性:后进先出(LIFO)。
例如,在函数调用时,系统会使用栈来保存函数的调用信息,当函数返回时,按照后进先出的顺序恢复调用现场。
- 存储结构:- 顺序栈:用顺序存储结构实现的栈。
其栈顶指针top指向栈顶元素的下一个位置(初始时top = 0),入栈操作时先将元素放入top指向的位置,然后top加1;出栈操作时先将top减1,然后取出top指向的元素。
【数据结构(C语⾔)】线性表——单链表和单循环链表1.线性链表:⽤任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的也可以是不连续)2.动态链表和静态链表的区别静态链表是⽤数组实现的,是顺序的存储结构,在物理地址上是连续的,⽽且需要预先分配⼤⼩。
动态链表是⽤申请内存函数(C是malloc,C++是new)动态申请内存的,所以在链表的长度上没有限制。
动态链表因为是动态申请内存的,所以每个节点的物理地址不连续,要通过指针来顺序访问。
3.单链表基本功能实现#include <bits/stdc++.h>using namespace std;#define ElemType int#define Status int#define ERROR -1#define OK 1typedef struct LNode{ElemType data;struct LNode *next;}LNode ,*LinkList;LinkList CreateListHead_L(int n)///* 头插⼊{LinkList L = (LinkList)malloc(sizeof(LNode));L->next = NULL;while (n--){LinkList newnode = (LinkList)malloc(sizeof(LNode));scanf("%d",&newnode->data);newnode->next = L->next;L->next = newnode;}return L;}LinkList CreateListTail_L(int n)///尾插⼊{LinkList L = (LinkList)malloc(sizeof(LNode));LinkList last = (LinkList)malloc(sizeof(LNode));L->next = NULL;last = L;while (n--){ElemType e;scanf("%d",&e);LinkList newnode = (LinkList)malloc(sizeof(LNode));newnode->data = e;last->next = newnode;newnode->next = NULL;last = newnode;}return L;}Status GetElem_L(LinkList &L,int i,ElemType &e){LinkList index = L->next;int ct = 1;while (index && ct < i){index = index->next;++ct;}if (!index || ct > i) return ERROR;e = index->data;return OK;}Status ListInsert_L(LinkList &L,int i,ElemType e){LinkList index = L->next;int ct = 1;while (index && ct < (i-1)){index = index->next;++ct;}if (!index || ct > i -1) return ERROR;LinkList newnode = (LinkList)malloc(sizeof(LNode));newnode->data = e;newnode->next = index->next;index->next = newnode;return OK;}Status ListDeteleByPos_L(LinkList &L,int i,ElemType &e){LinkList index = L->next;int ct = 1;while (index && ct < i-1){index = index->next;++ct;}if (!(index->next) || ct > i-1) return ERROR;LinkList tmp = index->next;index->next = tmp->next;e = tmp->data;free(tmp);return OK;}Status ListDeteleByVal_L(LinkList &L,ElemType e){LinkList index = L->next,pri = L;while (index) /// 注意:判断的如果是 pri pri 是最后⼀个元素的时候 index 已经超出链表 {if (index->data == e){pri->next = index->next;free(index);index = pri->next;}else{pri = pri->next;index = index->next;}}return OK;}int GetLength(LinkList &L){int len = 0;LinkList index = L->next;while (index){index = index->next;len++;}return len;}LinkList ListReverse(LinkList &L){LinkList a = L->next;LinkList b = a->next;LinkList c = b->next;a->next = NULL;int len = GetLength(L);while (len--){b->next = a;c = b;b = a;if(!a){L->next=a;}else c=c->next;}return L;}void TrverseLinklist(LinkList &L)///* 注意:这⾥是带头指针的链表{LinkList index = L->next;for (;index!= NULL; index = index->next){cout<<index->data<<" ";}cout<<endl;}4.单循环链表注意:只是将单链表中的最后⼀个结点的指针是指着头结点的,形成循环#include <bits/stdc++.h>using namespace std;#define ElemType int#define Status int#define ERROR -1#define OK 1typedef struct LNode{ElemType data;struct LNode *next;}LNode ,*LinkList;LinkList CreateListHead_L(int n)///* 头插⼊{LinkList L = (LinkList)malloc(sizeof(LNode));L->next = L;/// 改:while (n--){LinkList newnode = (LinkList)malloc(sizeof(LNode));scanf("%d",&newnode->data);newnode->next = L->next;L->next = newnode;}return L;}LinkList CreateListTail_L(int n)///尾插⼊{LinkList L = (LinkList)malloc(sizeof(LNode));LinkList last = (LinkList)malloc(sizeof(LNode));L->next = L;last = L;while (n--){ElemType e;scanf("%d",&e);LinkList newnode = (LinkList)malloc(sizeof(LNode));newnode->data = e;last->next = newnode;newnode->next = L;/// 改:last = newnode;}return L;}Status GetElem_L(LinkList &L,int i,ElemType &e){LinkList index = L->next;int ct = 1;while (index && ct < i){++ct;}if (!index || ct > i) return ERROR;e = index->data;return OK;}Status ListInsert_L(LinkList &L,int i,ElemType e){LinkList index = L->next;int ct = 1;while (index && ct < (i-1)){index = index->next;++ct;}if (!index || ct > i -1) return ERROR;LinkList newnode = (LinkList)malloc(sizeof(LNode));newnode->data = e;newnode->next = index->next;index->next = newnode;return OK;}Status ListDeteleByPos_L(LinkList &L,int i,ElemType &e){LinkList index = L->next;int ct = 1;while (index && ct < i-1){index = index->next;++ct;}if (!(index->next) || ct > i-1) return ERROR;LinkList tmp = index->next;index->next = tmp->next;e = tmp->data;free(tmp);return OK;}Status ListDeteleByVal_L(LinkList &L,ElemType e){LinkList index = L->next,pri = L;while (index != L) /// 改:将循环条件改了{if (index->data == e){pri->next = index->next;free(index);index = pri->next;}else{pri = pri->next;index = index->next;}}return OK;}int GetLength(LinkList &L){int len = 0;LinkList index = L->next;while (index != L)/// 改:将循环条件改了{index = index->next;len++;}return len;}void TrverseLinklist(LinkList &L)///* 注意:这⾥是带头指针的链表{for (;index!= L; index = index->next)/// 改:将循环条件改了 {cout<<index->data<<" ";}cout<<endl;}。
2016级数据结构实验报告实验名称:实验一线性表——题目1学生姓名:李文超班级:2015661131班内序号:15学号:2015522147日期:2016年11月13日1.实验要求实验目的:根据线性表的抽象数据类型的定义,选择下面任一种链式结构实现线性表,并完成线性表的基本功能。
线性表存储结构(五选一):1、带头结点的单链表2、不带头结点的单链表3、循环链表4、双链表5、静态链表线性表的基本功能:1、构造:使用头插法、尾插法两种方法2、插入:要求建立的链表按照关键字从小到大有序3、删除4、查找5、获取链表长度6、销毁7、其他:可自行定义编写测试main()函数测试线性表的正确性。
2.程序分析2.1 存储结构单链表的存储:(1)链表用一组任意的存储单元来存放线性表的结点。
这组存储单元既可以是连续的,也可以是不连续的,甚至零散地分布在内存的某些位置。
(2)链表中结点的逻辑次序和物理次序不一定相同。
为了能正确表示结点间的逻辑关系,在存储每个元素值的同时,还要存储该元素的直接后继元素的位置信息,这个信息称为指针或链。
结点结构┌──┬──┐ data 域---存放结点值的数据域│data │next │ next 域---存放结点的直接后继的地址的指针域└──┴──┘单链表在内存中的存储示意地址 内存单元1000H头指针 1020H1080H10C0H2.2 关键算法分析1、关键算法:(1)头插法自然语言描述:a:在堆中建立新结点b:将a[i]写入到新结点的数据域c:修改新结点的指针域d:修改头结点的指针域。
将新结点加入链表中伪代码描述a:Node <T> * s=new Node <T>b:s->data=a[i]c:s->next=front->next;d:front->next=s(2)尾插法自然语言描述:a:在堆中建立新结点:b:将a[i]写入到新结点的数据域:c:将新结点加入到链表中d:修改修改尾指针伪代码描述a:Node <T> * s=new Node <T>b:s->data=a[i]c:r->next=s;d:r=s(3)遍历打印函数自然语言描述:a:判断该链表是否为空链表,如果是,报错b:如果不是空链表,新建立一个temp指针c:将temp指针指向头结点d:打印temp指针的data域e:逐个往后移动temp指针,直到temp指针的指向的指针的next域为空伪代码描述a: If front->next==NULL①Throw ”an empty list ”②Node<T>* temp=front->next;b:while(temp->next)c:cout<<temp->data<<" ";d:temp=temp->next;(4) 获取链表长度函数自然语言描述:a:判断该链表是否为空链表,如果是,输出长度0b:如果不是空链表,新建立一个temp指针,初始化整形数n为0c:将temp指针指向头结点d:判断temp指针指向的结点的next域是否为空,如果不是,n加一,否则return ne: 使temp指针逐个后移,重复d操作,直到temp指针指向的结点的next域为0,返回n伪代码描述a:if ront->next==NULLb:Node<T>* temp=front->next;c:while(temp->next)d:temp=temp->next;(5)析构/删除函数自然语言描述:a:新建立一个指针,指向头结点b:判断要释放的结点是否存在,c:暂时保存要释放的结点d:移动a中建立的指针e:释放要释放的指针伪代码描述a:Node <T> * p=frontb:while(p)c:front=pd:p=p->nexte:delete front(6)按位查找函数自然语言描述:a:初始化工作指针p和计数器j,p指向第一个结点,j=1b:循环以下操作,直到p为空或者j等于1①:p指向下一个结点②:j加1c:若p为空,说明第i个元素不存在,抛出异常d:否则,说明p指向的元素就是所查找的元素,返回元素地址伪代码描述a:Node <T> * p=front->next;j=1;b:while(p&&j!=1)①:p=p->next②:j++c:if(!p) throw ”error”d:return p(7)按位查找函数自然语言描述:a:初始化工作指针p和计数器j,p指向第一个结点,j=1b:循环以下操作,找到这个元素或者p指向最后一个结点①:判断p指向的结点是不是要查找的值,如果是,返回j,否则p指向下一个结点,并且j的值加一c:如果找到最后一个结点还没有找到要查找的元素,返回查找失败信息伪代码描述a:Node <T> * p=front->next;j=1;b:while(p)①: if(p->next==x) return jp=p->nextj++c:return “error”(8)插入函数自然语言描述:a:在堆中建立新结点b:将要插入的结点的数据写入到新结点的数据域c:修改新结点的指针域d:修改前一个指针的指针域,使其指向新插入的结点的位置伪代码描述a:Node <T> * s=new Node <T>;b:s-data=p->datac:s->next=p->nextd:p->next=se:p->data=x(9)删除函数自然语言描述:a:从第一个结点开始,查找要删除的位数i前一个位置i-1的结点b:设q指向第i个元素c:将q元素从链表中删除d:保存q元素的数据e:释放q元素伪代码描述a:q=p->nextb:p->next=q->nextc:x=q->datad:delete q2、代码详细分析(插入):(1)从第一个结点开始,查找节点,使它的数据比x大,设p指向该结点:while (x>p->data) { p=p->next;}(2)新建一个节点s,把p的数据赋给s:s->data=p->data;(3)把s加到p后面:s->next=p->next; p->next=s;(4)p节点的数据用x替换:p->data=x;示意图如图所示xp->datas3、关键算法的时间复杂度:O(1)3.程序运行结果1. 流程图:2、结果截图3.测试结论:可以正确的对链表进行插入,删除,取长度,输出操作。
1 线性表1. 实验题目与环境1.1实验题目及要求(1)顺序表的操作利用顺序存储方式实现下列功能:根据键盘输入数据建立一个线性表,并输出该线性表;对该线性表进行数据的插入、删除、查找操作,并在插入和删除数据后,再输出线性表。
(2)单链表的操作利用链式存储方式实现下列功能:根据键盘输入数据建立一个线性表,并输出该线性表;对该线性表进行数据的插入、删除、查找操作,并在插入和删除数据后,再输出线性表。
(3)线性表的应用约瑟夫环问题。
有n个人围坐一圈,现从某个人开始报数,数到M的人出列,接着从出列的下一个人开始重新报数,数到M的人又出列,如此下去,直到所有人都出列为止。
要求依次输出出列人的编码。
2.问题分析(1)顺序表的操作利用一位数组来描述顺序表,即将所有元素一词储存在数组的连续单元中,要在表头或中间插入一个新元素时,需要将其后的所有元素都向后移动一个位置来为新元素腾出空间。
同理,删除开头或中间的元素时,则将其后的所有元素向前移动一个位置以填补空位。
查找元素时,则需要利用循环语句,一一判断直到找出所要查找的元素(或元素的位置),输出相关内容即可(2)单链表的操作利用若干个结点建立一个链表,每个节点有两个域,即存放元素的数据域和存放指向下一个结点的指针域。
设定一个头指针。
在带头结点的单链表中的第i个元素之前插入一新元素,需要计数找到第i-1个结点并由一指针p指向它,再造一个由一指针s指向的结点,数据为x,并使x的指针域指向第i个结点,最后修改第i-1个结点的指针域,指向x结点。
删除第i个元素时,需要计数寻找到第i个结点,并使指针p指向其前驱结点,然后删除第i个结点并释放被删除结点的空间。
查找第i个元素,需从第一个结点开始计数找到第i个结点,然后输出该结点的数据元素。
(3)线性表的应用程序运行之后,首先要求用户指定初始报数的上限值,可以n<=30,此题中循环链表可不设头结点,而且必须注意空表和"非空表"的界限。
数据结构C语言版上机报告:单链表序在数据结构课程中,单链表是一个重要的概念,也是C语言中常用的数据结构之一。
本次报告将深入探讨单链表的基本概念、操作方法以及应用场景,帮助读者更深入地理解和掌握这一数据结构。
一、概述1.1 单链表的定义单链表是一种线性表,它由一系列节点组成,每个节点包含两部分:数据域和指针域。
数据域用于存储数据元素,指针域用于指向下一个节点,通过指针将这些节点串联在一起,形成一个链表结构。
1.2 单链表的特点单链表具有以下特点:(1)动态性:单链表的长度可以动态地增加或减少,不需要预先分配固定大小的空间。
(2)插入和删除操作高效:在单链表中进行插入和删除操作时,只需要修改指针的指向,时间复杂度为O(1)。
(3)随机访问效率低:由于单链表采用链式存储结构,无法通过下标直接访问元素,需要从头节点开始依次遍历,时间复杂度为O(n)。
1.3 单链表的基本操作单链表的基本操作包括:创建、插入、删除、查找等。
这些操作是使用单链表时常常会涉及到的,下面将逐一介绍这些操作的具体实现方法和应用场景。
二、创建2.1 头插法和尾插法在C语言中,可以通过头插法和尾插法来创建单链表。
头插法是将新节点插入到链表的头部,尾插法是将新节点插入到链表的尾部,这两种方法各有优缺点,可以根据具体应用场景来选择。
2.2 应用场景头插法适合于链表的逆序建立,尾插法适合于链表的顺序建立。
三、插入3.1 在指定位置插入节点在单链表中,插入节点需要考虑两种情况:在链表头部插入和在链表中间插入。
通过对指针的操作,可以实现在指定位置插入节点的功能。
3.2 应用场景在实际应用中,经常会有需要在指定位置插入节点的情况,比如排序操作、合并两个有序链表等。
四、删除4.1 删除指定节点在单链表中,删除节点同样需要考虑两种情况:删除头节点和删除中间节点。
通过对指针的操作,可以实现删除指定节点的功能。
4.2 应用场景在实际应用中,经常会有需要删除指定节点的情况,比如删除链表中特定数值的节点等。
数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。
(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。
(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。
l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。
408数据结构重点难点笔记一、线性表。
1. 顺序表。
- 重点。
- 顺序表的定义和存储结构,理解数组如何表示顺序表。
例如,在C语言中,可以用一个结构体来定义顺序表,结构体中包含一个数组和表示当前表长的变量。
- 顺序表的基本操作实现,如插入、删除、查找操作。
插入操作需要注意移动元素的顺序,平均时间复杂度为O(n);删除操作类似,也要移动元素;查找操作根据不同的查找算法(如顺序查找时间复杂度为O(n),如果表是有序的可以采用二分查找,时间复杂度为O(log n))。
- 难点。
- 顺序表的动态分配内存,涉及到内存管理的知识。
当顺序表空间不足时,如何重新分配更大的空间并将原数据正确地复制到新空间中。
例如,采用倍增策略重新分配内存时,要确保数据的完整性和操作的正确性。
- 顺序表操作中的边界条件处理。
例如,在插入操作时,插入位置的合法性检查(是否在有效范围内),以及表满时的处理;在删除操作时,删除位置不存在的情况处理等。
2. 链表。
- 重点。
- 单链表、双链表和循环链表的结构定义。
单链表每个节点包含数据域和指向下一个节点的指针域;双链表节点有两个指针域,分别指向前一个和后一个节点;循环链表的尾节点指向头节点(单循环链表)或尾节点的下一个节点指向头节点(双循环链表)。
- 链表的基本操作,如创建链表(头插法、尾插法)、插入节点、删除节点、查找节点等。
链表插入和删除操作的时间复杂度为O(1)(如果已知操作位置的指针),但查找操作时间复杂度为O(n)。
- 难点。
- 链表操作中的指针操作。
例如,在双链表中插入节点时,需要正确修改四个指针(前驱节点的后继指针、后继节点的前驱指针、新节点的前驱和后继指针),任何一个指针修改错误都可能导致链表结构破坏。
- 带环链表的相关问题,如判断链表是否带环(可以使用快慢指针法,快指针每次移动两步,慢指针每次移动一步,如果存在环,快慢指针最终会相遇),以及带环链表的环入口点查找等。
二、栈和队列。
二章线性表线性表是最简单、最基本、也是最常用的一种线性结构。
它有两种存储方法:顺序存储和链式存储,它的主要基本操作是插入、删除和检索等。
2.1 线性表的逻辑结构2.1.1 线性表的定义线性表是一种线性结构。
线性结构的特点是数据元素之间是一种线性关系,数据元素“一个接一个的排列”。
在一个线性表中数据元素的类型是相同的,或者说线性表是由同一类型的数据元素构成的线性结构。
在实际问题中线性表的例子是很多的,如学生情况信息表是一个线性表:表中数据元素的类型为学生类型; 一个字符串也是一个线性表:表中数据元素的类型为字符型,等等。
综上所述,线性表定义如下:线性表是具有相同数据类型的n(n>=0)个数据元素的有限序列,通常记为:(a1,a2,… a i-1,a i,a i+1,…a n)其中n为表长,n=0 时称为空表。
表中相邻元素之间存在着顺序关系。
将a i-1 称为a i 的直接前趋,a i+1 称为a i 的直接后继。
就是说:对于a i,当i=2,...,n 时,有且仅有一个直接前趋a i-1.,当i=1,2,...,n-1 时,有且仅有一个直接后继a i+1,而a1 是表中第一个元素,它没有前趋,a n 是最后一个元素无后继。
需要说明的是:a i为序号为i 的数据元素(i=1,2,…,n),通常我们将它的数据类型抽象为datatype,datatype根据具体问题而定,如在学生情况信息表中,它是用户自定义的学生类型; 在字符串中,它是字符型; 等等。
2.1.2 线性表的基本操作在第一章中提到,数据结构的运算是定义在逻辑结构层次上的,而运算的具体实现是建立在存储结构上的,因此下面定义的线性表的基本运算作为逻辑结构的一部分,每一个操作的具体实现只有在确定了线性表的存储结构之后才能完成。
线性表上的基本操作有:⑴线性表初始化:Init_List(L)初始条件:表L不存在操作结果:构造一个空的线性表⑵求线性表的长度:Length_List(L)初始条件:表L存在操作结果:返回线性表中的所含元素的个数⑶取表元:Get_List(L,i)初始条件:表L存在且1<=i<=Length_List(L)操作结果:返回线性表L中的第i个元素的值或地址⑷按值查找:Locate_List(L,x),x是给定的一个数据元素。
实验一线性表的基本操作—单链表
本课程实验中已知的预定义常量和类型如下:
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
/* #define OVERFLOW -2 因为在math.h中已定义OVERFLOW的值为3,故去掉此行 */
typedef int Status;/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean;/* Boolean是布尔类型,其值是TRUE或FALSE */
一、实验目的与基本要求
1. 掌握数据结构中的一些基本概念。
2. 掌握单链表的定义、存储结构及其基本操作。
二、实验内容
已知线性表的单链表存储结构为:
/* 线性表的单链表存储结构 */
struct LNode
{
ElemType data;
struct LNode *next;
};
typedef struct LNode *LinkList;/* 另一种定义LinkList的方法 */
编写函数
void CreateList(LinkList *L,int n)
动态生成一个单链表。
(L为单链表的头指针,它指向表中的第一个结点。
)
Status ListInsert(LinkList L , int i , int e)
实现在单链表L中第i个位置之前插入新的数据元素e。
若插入成功返回OK,否则返回ERROR。
void ListPrint(LinkList L)
实现将单链表的元素依次输出到屏幕上。
void ListDelete(LinkList L,int i,int * e)
在单链表L中删除第i个元素,并由e返回其值。
若删除成功返回OK(1),否则返回ERROR (0)。
void Merge(LinkList La,LinkList Lb,LinkList *Lc)
完成已知两个按值非递减有序排列的单链表La和Lb,归并La和Lb得到一个新的单链表Lc,Lc的元素也按值非递减有序排列。
int Menu()
输出菜单项
1:CreateList
2:ListInsert
3:ListPrint
4:ListDelete
5:Merge
6:Exit 三、源码参考。