(含答案)2020-2021学年贵阳市初一上学期数学期末试题
- 格式:pdf
- 大小:788.91 KB
- 文档页数:8
人教版2020-2021学年度上学期期末考试数学试卷(全册)一、选择题(本大题共10小题,共30.0分)1.下列关于事件发生可能性的表述,正确的是( )A. 事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B. 体育彩票的中奖率为10%,则买100张彩票必有10张中奖C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 132.下列四个银行标志中,既是轴对称图形又是中心对称图形的是( ). A. B. C. D.3.关于 x 的一元二次方程 x 2−5x +2p =0 的一个根为 1 ,则另一根为( ).A. -6B. 2C. 4D. 14.下列关于二次函数 y =2x 2+3 ,下列说法正确的是( ).A. 它的开口方向向下B. 它的顶点坐标是 (2,3)C. 当 x <−1 时, y 随 x 的增大而增大D. 当 x =0 时, y 有最小值是35.如图,AB 为⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙OO 于点F ,若AC = 12,AE = 3,则⊙O 的直径长为( )A. 10B. 13C. 15D. 166.某校食堂每天中午为学生提供A 、 B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A. 12B. 13C. 14D. 237.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A. 2.5米B. 3米C. 3.5米D. 4米8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。
而立之年督东吴,早逝英年两位数。
贵阳市普通中学2021-2022学年度第一学期期末监测考试试题高一数学一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确地选项填写在答题卷地相应位置上.)1 已知集合{}3782A x x x =-<-,{}2340B x x x =--<,则A B = ( )A. {}4x x < B. {}34x x << C. {}13x x -<< D. {}43x x -<<【结果】C 【思路】【思路】求出集合A ,B ,再由交集定义求出A B .【详解】∵集合{}{}37823A x x x x x =-<-=<,{}{}234014B x x x x x =--<=-<<,∴{}13A B x x ⋂=-<<.故选:C .2. 已知命题2:,10p n N n n ∀∈++>,则p 地否定为( )A. 2,10n N n n ∀∈++< B. 2,10n N n n ∀∈++≤C. 2,10n N n n ∃∈++< D. 2,10n N n n ∃∈++≤【结果】D 【思路】【思路】全称命题地否定为存在命题,利用相关定义进行判断即可【详解】全称命题地否定为存在命题,命题2:,10p n N n n ∀∈++>,则p ⌝为2,10n N n n ∃∈++≤.故选:D3. 函数12xy =地定义域为( )A. R B. (,0)(0,)-∞+∞ C. (,0)-∞ D. (0,)+∞【结果】B.【思路】【思路】要使函数12xy =有意义,则需要满足0x ≠即可.【详解】要使函数12x y =有意义,则需要满足0x ≠所以12x y =地定义域为(0)(0)∞∞-⋃+,,,故选:B4. 在平面直角坐标系xoy 中,角α与角β项点都在坐标原点,始边都与x 轴地非负半轴重合,它们地终边有关y 轴对称,若1cos 2α=-,则cos β=( )A.12B. 12-C.D. 【结果】A 【思路】【思路】利用终边相同地角和诱导公式求解.【详解】因为 角α与角β地终边有关y 轴对称,所以2,k k Z βπαπ=-+∈,所以 ()1cos cos 2cos 2k βπαπα=-+=-=,故选:A5. 借助信息技术画出函数ln y x =和||y x x a =-(a 为实数)地图象,当 1.5a =时图象如图所示,则函数| 1.5|ln y x x x =--地零点个数为( )A. 3B. 2C. 1D. 0【结果】B 【思路】的【思路】由| 1.5|ln 0y x x x =--=转化为 1.5y x x =-与ln y x =地图象交点个数来确定正确选项.【详解】令| 1.5|ln 0y x x x =--=, 1.5ln x x x -=,所以函数| 1.5|ln y x x x =--地零点个数即 1.5y x x =-与ln y x =地图象交点个数,结合图象可知 1.5y x x =-与ln y x =地图象有2个交点,所以函数| 1.5|ln y x x x =--有2个零点.故选:B6. 设 1.53cos2,0.3,log 2a b c -===,则a ,b ,c 地大小关系是( )A. a b c <<B. c a b<< C. a c b<< D. b c a<<【结果】C 【思路】【思路】比较a ,b ,c 与0和1地大小即可判断它们之间地大小.【详解】cos20a =<,1.500.30.31b -=>=,()333log 1log 2log 3,0,1c c <=<∈,故a c b <<故选:C.7. 已知1(0,),sin cos 5απαα∈+=-,则下面结论正确地是( )A. 4cos 5α= B. 7sin cos 5αα-=C.sin cos 4tan 15ααα+=-D.sin cos 73sin 2cos αααα-=-+【结果】B 【思路】【思路】先求出34sin cos 55αα==-,再对四个选项一一验证即可.【详解】因为1(0,),sin cos 5απαα∈+=-,又22sin cos 1αα+=,.解得:34sin cos 55αα==-.故A 错误。
贵州省贵阳市2020中考试卷数学试题一、选择题:以下每小题均有A 、B 、C 、四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是( ) A. 6- B. 1- C. 1 D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( ) A.B. C. D. 3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A. 直接观察B. 实验C. 调查D. 测量 4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A. 150︒B. 120︒C. 60︒D. 30 5.当1x =时,下列分式没有意义的是( ) A. 1x x + B. 1x x - C. 1x x - D. 1x x + 6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B. C.D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A. 5B. 20C. 24D. 328.已知a b <,下列式子不一定成立的是( )A. 11a b -<-B. 22a b ->-C. 111122a b +<+D. ma mb >9.如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A. 无法确定B. 12C. 1D. 210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20ax bx c m +++=(0)m >有两个根,其中一个根是3.则关于x 的方程20ax bx c n +++=(0)n m <<有两个整数根,这两个整数根是( )A. 2-或0B. 4-或2C. 5-或3D. 6-或4二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是_____.12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是_____.14.如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是____度.15.如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为_____.三、解答题:本大题10小题,共100分. 16.如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数; (2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数. 17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题: 部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54 人数/人 26 6 10 m4 部分初三学生每天听空中黔课时间的人数统计图(1)本次共调查的学生人数为_____,在表格中,m =___;(2)统计的这组数据中,每天听空中黔课时间的中位数是____,众数是_____;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =.(1)求证:四边形AEFD 是平行四边形; (2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积. 19.如图,一次函数1y x =+的图象与反比例函数k y x =的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式; (2)将一次函数1y x =+图象向下平移2个单位,求平移后的图象与反比例函数k y x =图象的交点坐标;。
贵阳市实验二中新初一分班数学试卷含答案一、选择题1.甲乙两地相距170千米,在地图上量得的距离是3.4厘米,这幅地图的比例尺是()。
A.1:500 B.1:5000000 C.1:500002.小亮在教室里的位置用数对表示是(3,5),小红是小亮的同桌,小红的位置用数对表示可能是()。
A.(3,6)B.(4,5)C.(4,6)D.(2,4)3.某人从甲地到乙地需要14小时,他走了15小时,一共走了300米,他还有多少米没有走?正确的算式是().A.300÷15-300 B.300×15×14+300C.300÷15×14-300 D.300÷(14-15)4.若一个三角形三个内角度数的比是1∶1∶a(a>0),则这个三角形一定是()。
A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形5.已知六年级女生有135人,比男生少10%。
求“六年级男生有多少人"的方程正确的是( )。
(设男生有x人)A.10%x=135 B.(1+10%)x=135 C.(1-10%)x=1356.如图是正方体纸盒展开后的平面图,在正方体纸盒上与1号面相对的面是()。
A.3 B.4 C.5 D.67.下列有关圆的说法错误的是()。
A.周长相等的两个圆形,面积也一定相等B.在一个圆中画两条互相垂直的半径,可以得到一个圆心角是90°的扇形C.圆形是轴对称图形,一个圆有4条对称轴D.在同一个圆中,周长是直径的π倍8.亮亮拿了等底等高的圆柱和圆锥各一个,他将圆柱形容器装满水后倒入圆锥形容器内。
当水全部倒完后,发现从圆锥形容器内溢出48mL的水。
这时圆锥形容器内有水()mL。
A.48 B.96 C.24 D.1929.一件商品提价10%以后又降价10%,现在这件商品的价格是原来价格的百分之几?正确的解答是()A.110%B.90%C.100%D.99%10.已知22222233445522,33,44,55338815152424+=⨯+=⨯+=⨯+=⨯,若21010b b a a+=⨯,则+a b =( )。
2022-2023学年贵州省贵阳市普通中学高二上学期期末监测考试数学试题一、单选题1.已知两个空间向量(),4,2a m =-,()1,2,1b =-,且a b ,则实数m 的值为( )A .2B .12C .12-D .2-【答案】D【分析】根据空间向量平行的坐标运算得出答案. 【详解】a b ∥,(),4,2a m =-,()1,2,1b =-, 42121m -∴==-,解得2m =-, 故选:D.2.在等比数列{}n a 中,24a =,42a =,则6a =( )A .1-B .1C .1或1-D 【答案】B【分析】根据等比数列基本量的计算即可求解.【详解】设公比为,q 则由24a =,42a =得222421422a a q q q ===⇒=,故226421a a q q ===, 故选:B3.已知直线l :0Ax By C ++=,如果0AC <,0BC <,那么直线l 不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】根据题意,求出直线在坐标轴上的截距,即可求解. 【详解】当0x =时,Cy B =-,由0BC <得0C B->, 即点(0,)CB -在y 轴的正半轴;当0y =时,Cx A =-,由0AC <得0C A->, 即点(,0)CA-在x 轴的正半轴, 又直线l 过点(0,)C B -和点(,0)CA -,所以直线l 不经过第三象限.4.以下四个命题,正确的是( )A .若直线l 的斜率为1,则其倾斜角为45°或135°B .经过()()101,3A B -,,两点的直线的倾斜角为锐角 C .若直线的倾斜角存在,则必有斜率与之对应 D .若直线的斜率存在,则必有倾斜角与之对应 【答案】D【分析】根据直线的倾斜角和斜率的概念依次判断选项即可. 【详解】A :直线的斜率为1,则直线的倾斜角为45︒,故A 错误; B :过点A 、B 的直线的斜率为3030112k -==-<--, 即3tan 02α=-<(α为直线的倾斜角),则α为钝角,故B 错误;C :当直线的倾斜角为90︒时,该直线的斜率不存在,故C 错误;D :若直线的斜率存在,则必存在对应的倾斜角,故D 正确. 故选:D.5.如图,在三棱柱111ABC A B C 中,M ,N 分别是1BB 和11A C 的中点,且1MN xAB y AC z AA =++,则实数x ,y ,z 的值分别为( )A .111,,22-B .111,,22--C .111,,22---D .111,,22-【答案】A【分析】根据题意用空间基底向量表示向量,结合空间向量的线性运算求解. 【详解】由题意可得:()11111111112222MN MB B C C N AA AC AB AC AB AC AA =++=+--=-++, 故111,,22x y z =-==.故选:A.6.等差数列{}n a 的前n 项和记为n S ,且510S =,1050S =,则15S =( ) A .70B .90C .100D .120【分析】根据等差数列前n 项和的性质可得51051510,,S S S S S --成等差数列,即可求得15S 的值. 【详解】在等差数列{}n a 中,51051510,,S S S S S --成等差数列,所以()051051512S S S S S -=-+,则()152********S ⨯-=+-,即15120S =. 故选:D.7.设1F ,2F 分别是双曲线C :2212y x -=的左、右焦点,P 为C 上一点且在第一象限若122PF PF =,则点P 的纵坐标为( ) A .1 B .3C .2D .23【答案】C【分析】根据双曲线的定义可得124,2PF PF ==,进而根据长度关系判断212PF F F ⊥,代入3x =即可求解.【详解】根据题意可知:1,2,3a b c === ,由122PF PF =以及1222PF PF a -==可得124,2PF PF ==,又12223F F c ==,由于2221212PF PF F F =+,故212PF F F ⊥,即三角形12PF F 为直角三角形,将3x =代入2212y x -=得2y =,由于P 为C 在第一象限,故点P 的纵坐标为2, 故选:C8.已知直线l :210x y --=是圆C :22610()x y x ay a +-++=∈R 的对称轴,过点()4,P a -作圆的一条切线,切点为A ,则PA =( ) A .10 B .7 C .3D .2【答案】B【分析】根据题意分析可得直线l 过圆心C ,可求得2a =-,再根据圆的切线长公式运算求解. 【详解】由题意可知:直线l :210x y --=过圆心3,2a C ⎛⎫- ⎪⎝⎭,则32102a ⎛⎫-⨯--= ⎪⎝⎭,解得2a =-,故圆C :226210x y x y +--+=的圆心为()3,1C ,半径3r =,且点()4,2P --, ∵()()22432158PC =--+--=,∴227PA PC r =-=.故选:B.二、多选题9.斐波那刻螺旋线被骨为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵,鹦鹉螺等.如图,小正方形的边长分别为斐波那契数1,1,2,3,5,8....,从内到外依次连接通过小正方形的14圆弧,就得到了一条被称为“斐波那契螺旋”的弧线,现将每一段“斐波那契螺旋”弧线所在的正方形边长设为(N )n a n *∈,数列{}n a 满足11a =,21a =,21(N )n n n a a a n *++=+∈,每一段“斐波那契螺旋”弧线与其所在的正方形围成的扇形面积设为(N )n b n *∈,则下列说法正确的有( )A .13578a a a a α+++=B .62984a a a a a +++=C .()54364πb b a a -=D .()67544b b b +=【答案】AC【分析】由题意可得{}n a 的前9项分别为1,1,2,3,5,8,13,21,34,根据运算即可判断AB,根据2π4n n b a =,利用平方差公式以及12n n n a a a --=+即可判断选项C,代入计算即可判断D.【详解】根据11a =,21a =,21(N )n n n a a a n *++=+∈得数列的前9项分别为1,1,2,3,5,8,13,21,34,所以135781251321a a a a α=+++=+++=,629841382133a a a a a =+++=+++≠,故A 正确,B 错误,由题意可得2π4n n b a =,即24πn n b a =,所以2254545454364()π()π()()πb b a a a a a a a a -=-=-+=,故C 正确, ()222256564()π()π5889πb b a a =+=+=+,22774ππ13169πb a ==⨯=,所以()67544b b b +≠,故D 错误, 故选:AC.10.如图,在正方线ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,K ,L 分别是AB ,BB 1,B 1C 1,C 1D 1,D 1D 1,DA 各棱的中点,则下列选项正确的有( )A .向量EA ,EK ,EF 共面B .A 1C ⊥平面EFGHKL C .BC 与平面EFGHKL 3D .∠KEF =90°【答案】BCD【分析】建系,利用空间向量判断向量共面和线、面关系以及求线面夹角. 【详解】如图,以D 为坐标原点建立空间直角坐标系,设2AD =, 则()()()()()()()()12,0,0,2,2,0,0,2,0,2,0,2,2,1,0,2,2,1,0,0,1,0,2,1A B C A E F K H ,可得()()()()()()10,1,0,2,1,1,0,1,1,2,2,2,2,0,0,0,1,1EA EK EF A C BC KH =-=--==--=-=, 对A :若向量EA ,EK ,EF 共面,则存在实数,λμ,使得EA EK EF λμ=+成立,∵()()0,1,0,2,,EA EK EF λμλλμλμ=-+=+-+,可得2010λλμλμ=⎧⎪+=-⎨⎪-+=⎩,无解,∴不存在实数,λμ,使得EA EK EF λμ=+成立, 故向量EA ,EK ,EF 不共面,A 错误; 对B :由题意可得:EF KH =,则EF KH ,同理可得:ELGH ,KL GF ,故,,,,,E F G H K L 六点共面,∵()()()1122212102021210AC EK ACEF ⎧⋅=-⨯+⨯+-⨯-=⎪⎨⋅=-⨯+⨯+-⨯=⎪⎩,则11,A C EK A C EF ⊥⊥, EKEF E =,,EK EF ⊂平面EFGHKL ,∴1A C ⊥平面EFGHKL ,B 正确;对C :由B 可得()12,2,2AC =--是平面EFGHKL 的法向量, ∵11143cos ,3223BC A C BC A C BC A C⋅===⨯,∴BC 与平面EFGHKL 所成角的正弦值为33,C 正确; 对D :∵()2011110EK EF ⋅=⨯+⨯+-⨯=,则EK EF ⊥, ∴90KEF ∠=︒,D 正确. 故选:BCD.【点睛】方法点睛:利用空间向量处理立体几何问题的一般步骤:(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标; (3)结合公式进行论证、计算; (4)转化为几何结论.三、填空题11.直线l 1:10x y +-=与直线l 2:30x y ++=间的距离是___________. 【答案】2【分析】根据两平行线间距离公式运算求解.【详解】由题意可得:直线l 1:10x y +-=与直线l 2:30x y ++=间的距离22132211d --=+.故答案为:22.12.已知空间向量(1,2,2)a =-,()1,0,1b =,则2a ab -⋅=___________. 【答案】6【分析】利用空间向量数量积运算法则计算即可.【详解】()()()21441,2,21,0,19126a a b -⋅=++--⋅=-+=. 故答案为:613.已知a ,b ,c 成等比数列,则二次函数22y ax bx c =++的图像与x 轴的交点个数是___________. 【答案】1【分析】根据题意有2b ac =,再借助二次函数的判别式判断交点个数 【详解】a ,b ,c 成等比数列,则2b ac =, ()224440b ac ac ac ∆=-=-=,则二次函数的图像与x 轴有1个交点, 故答案为:1.14.已知抛物线2:4C y x =的准线是直线l ,M 为C 上一点,MN l ⊥,垂足为N ,点P 的坐标是()0,2,则PM MN +的最小值为___________. 【答案】5【分析】由抛物线的定义可得出MN MF =,当M 为线段PF 与抛物线C 的交点时,PM MN +取最小值可得结果.【详解】抛物线C 的焦点为()1,0F ,准线为:1l x =-,如图所示:由抛物线的定义可得MN MF =,所以,()()2201205PM MN PM MF PF +=+≥=-+-= 当且仅当M 为线段PF 与抛物线C 的交点时,等号成立,因此,PM MN +的最小值为5. 故答案为:5.15.若直线y x b =+与曲线214x y y =+-有公共点,则b 的取值范围是___________.【答案】122,3⎡⎤-⎣⎦【分析】由题意可得:该曲线为以()1,2为圆心,半径2r =的右半圆,根据图象结合直线与圆的位置关系运算求解.【详解】∵2141x y y =+-≥,整理得()()()221241x y x -+-=≥, ∴该曲线为以()1,2为圆心,半径2r =的右半圆, 直线y x b =+的斜率1k =,如图所示: 当直线0x y b -+=与圆相切时,则()2212211b -+=+-,解得122b =-或122b =+(舍去);当直线y x b =+过点()1,4A 时,则41b =+,解得3b =; 综上所述:b 的取值范围是122,3⎡⎤-⎣⎦. 故答案为:122,3⎡⎤-⎣⎦.【点睛】方法点睛:直线与圆位置关系问题的求解思路:研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,结合图象分析相应的性质与关系,列式求解.四、解答题16.如图,四棱柱1111ABCD A B C D -的底面是菱形,1AA ⊥底面ABCD ,AB =BD =2,13AA =,E ,F 分别是棱BB 1,DD 1上的动点(不含端点),且1BE D F =.(1)求四棱锥A BEFD -的体积;(2)当BE =1时,求平面AEF 与平面11BB D D 夹角的余弦值. 【答案】(1)3 (2)64【分析】(1)作出辅助线,得到AO 是四棱锥A BEFD -的高,求出各边的长,利用锥体体积公式求出答案;(2)建立空间直角坐标系,利用空间向量求解两平面的夹角的余弦值.【详解】(1)如图,连接AC 交BD 于点O ,因为底面ABCD 是菱形,所以AO BD ⊥,因为点E ,F 分别在1BB ,1DD 上, 所以1AA //BE //DF , 又1AA ⊥底面ABCD ,AO ⊂底面ABCD ,BD ⊂底面ABCD ,所以BE ⊥BD ,BE ⊥AO ,所以四边形BEFD 是直角梯形, 且因为13AA =,1BE D F =,所以3BE DF +=, 又因为BD BE B ⋂=,,BD BE ⊂平面BEFD ,所以AO ⊥平面BEFD ,即AO 是四棱锥A BEFD -的高, 因为AB =BD =2,底面ABCD 是菱形,所以ABD △是等边三角形,故1OB =,33AO OB ==, 所以()1332A BEFD BE DF BDV AO -+⋅=⋅=,所以四棱锥A BEFD -的体积为3(2)以O 为原点,分别以OA ,OB 所在直线为x 轴,y 轴,建立如图所示的空间直角坐标系, 则()3,0,0A,()0,1,1E ,()0,1,2F -,所以()3,1,1AE =-,()3,1,2AF =--. 设(),,n x y z =是平面AEF 的法向量,则()()()(),,3,1,130,,3,1,2320n AE x y z x y z n AF x y z x y z ⎧⋅=⋅=++=⎪⎨⋅=⋅--=--+=⎪⎩, 取1y =,则3x =2z =. 所以,()3,1,2n =是平面AEF 的一个法向量,由(1)可知,OA ⊥平面BEFD ,即OA ⊥平面11BB D D , 所以()3,0,0OA =是平面11BB D D 的一个法向量,而(3,1,23,0,06cos ,3143n OA n OA n OA⋅⋅<>===++⨯ 所以平面AEF 与平面11BB D D 617.设直线()2R x my m =+∈与抛物线22(0)y px p =>相交于,A B 两点,且OA OB ⊥. (1)求抛物线方程;(2)求AOB 面积的最小值. 【答案】(1)22y x = (2)4【分析】(1)联立直线与抛物线方程,消元得出韦达定理,将OA OB ⊥表示为坐标形式,列方程化简计算,可得抛物线方程;(2)利用三角形的面积公式,结合韦达定理,根据m 的取值,得出面积的最小值. 【详解】(1)设直线与抛物线交于点()()1122,,,A x y B x y ,联立222(0)x my y px p =+⎧⎨=>⎩得2240y pmy p --=,显然0∆>,所以121224y y pm y y p +=⎧⎨=-⎩,因为OA OB ⊥,所以12120x x y y +=,即()()1212220my my y y +++=,化简得()()212121240m y y m y y ++++=,代入得()2241440p m pm -+++=解得1p =,所以抛物线方程为22y x =(2)因为直线2x my =+过定点()2,0, 所以12121242AOBSy y y y =⨯⨯-=-==,当且仅当0m =时,AOB 的面积取得最小值为418.已知圆O :224x y +=,过定点()1,1A 作两条互相垂直的直线1l ,2l ,且1l 交圆O 于()()111333,,,P x y P x y 两点,2l 交圆O 于()()222444,,,P x y P x y 两点. (1)若13PP =1l 的方程;(2)求证:1234x x x x +++为定值. 【答案】(1)20x y +-= (2)证明见解析【分析】(1)根据题意分析可得()0,0O 到直线1l 的距离为d =点到直线的距离运算求解;(2)讨论直线是否与坐标轴垂直,结合韦达定理证明结论. 【详解】(1)由题设可知圆O 的圆心为()0,0O ,半径为2r =,由13PP =()0,0O 到直线1l 的距离为d == 因为直线1l 经过点()1,1A ,则有:当直线1l 的斜率不存在时,则1:1l x =,此时()0,0O 到直线1l 的距离为1d =,不合题意; 当直线1l 的斜率存在时,设直线1l 的方程为()11y k x -=-,即10kx y k --+=,=1k =-,所以直线1l 的方程为()11y x -=--,即20x y +-=.(2)∵2OA r ==<,即定点()1,1A 在圆O 内, ∴直线12,l l 与圆O 均相交,当直线1l 与x 轴垂直时,直线2l 与x 轴平行,此时132x x +=,240x x +=, 所以12342x x x x +++=;当直线2l 与x 轴垂直时,直线1l 与x 轴平行,此时130x x +=,242x x +=, 所以12342x x x x +++=;当直线1l 与不坐标轴垂直时,设直线1l 的方程为()()110y k x k =-+≠, 则直线2l 的方程为()()1110y x k k=--+≠, 联立方程()22114y k x x y ⎧=-+⎨+=⎩,消去y 得()()2222122230k x k k x k k ++-+--=, 所以2132221k kx x k-+=+, 同理可得242221kx x k ++=+, 所以12342x x x x +++=,综上所述:1234x x x x +++为定值2. 19.设数列{}n a 满足()123212n a a n a n +++-=.(1)求1a ,2a ,3a ,试猜想{}n a 的通项公式,并证明;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)12a =,223a =,325a =,221n a n =-,证明见解析 (2)()3223nn +-【分析】(1)根据已知求出1a ,2a ,3a ,猜想数列{}n a 的通项公式为221n a n =-,当2n ≥时,()()12132321n a a n a n -+++-=-,结合已知式子两式相减即可得出当2n ≥时,221n a n =-,再验证1n =成立即可;(2)结合第一问结论得出数列2n n a ⎧⎫⎨⎬⎩⎭的通项,利用错位相减法得出答案.【详解】(1)因为()123212n a a n a n+++-=①,当1n =时,12a =当2n =时,1234a a +=,可得223a =, 当3n =时,123356a a a ++=,可得325a =, 所以猜想数列{}n a 的通项公式为221n a n =-,证明如下: 由题意,当2n ≥时,()()12132321n a a n a n -+++-=-②,-①②,得()212n n a -=,所以221n a n =-, 当1n =时,上式为12a =,这就是说,当1n =时,上式也成立. 因此,数列{}n a 的通项公式为221n a n =-; (2)由(1)知()12221n n n n a -=-,记2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则()0112123221n n S n -=⨯+⨯++-③,故()()12122123223221n n n S n n -=⨯+⨯++-+-④,-④③,得()()12122222211n n n S n -=-++++--,()()()121222211322312n nnn n --=-⨯+--=+--,所以数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为()3223nn +-.20.阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系. (二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线); ③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹. 结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0)C 的方程并写出与点P对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.【答案】(1)221164x y +=,40x -= (2)存在,240x y +-=【分析】(1)根据题意和离心率求出a 、b ,即可求解;(2)利用代数法证明点Q 在椭圆C 外,则点Q 和直线MN 是椭圆C 的一对极点和极线.根据题意中的概念求出点Q 对应的极线MN 方程,可得该直线恒过定点T (2,1),利用点差法求出直线的斜率,即可求解.【详解】(1)因为椭圆22221(0)x y a b a b +=>>过点P (4,0),则2222140a b +=,得4a =,又c e a ==,所以c =,所以2224b a c =-=, 所以椭圆C 的方程为221164x y +=. 根据阅读材料,与点P 对应的极线方程为401164x y ⨯+=,即40x -=; (2)由题意,设点Q 的坐标为(0x ,0y ),因为点Q 在直线142y x =-+上运动,所以00142y x =-+,联立221164142x y y x ⎧+=⎪⎪⎨⎪=-+⎪⎩,得28240x x -+=,Δ64424320=-⨯=-<,该方程无实数根,所以直线142y x =-+与椭圆C 相离,即点Q 在椭圆C 外,又QM ,QN 都与椭圆C 相切,所以点Q 和直线MN 是椭圆C 的一对极点和极线.对于椭圆221164x y +=,与点Q (0x ,0y )对应的极线方程为001164x x y y +=, 将00142y x =-+代入001164x x y y +=,整理得()0216160x x y y -+-=,又因为定点T 的坐标与0x 的取值无关,所以2016160x y y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以存在定点T (2,1)恒在直线MN 上. 当MT TN =时,T 是线段MN 的中点,设()()1122,,M x y N x y ,,直线MN 的斜率为k ,则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,整理得21122112442211616212y y x x x x y y -+⨯=-⋅=-⋅=--+⨯,即12k =-, 所以当MT TN =时,直线MN 的方程为()1122y x -=--,即240x y +-=.。
2021-2022学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)在平面直角坐标系中,点P(﹣2020,2021)在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵P(﹣2020,2021)的横坐标小于0,纵坐标大于0,∴点P(﹣2020,2021)在第二象限,故选:B.2.(2分)下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调査B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命解:A、对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;B、对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C、旅客上飞机前的安全检查,适合普查,故C正确;D、了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误;故选:C.3.(2分)如图是某电商今年1﹣5月份销售额统计图,根据图中信息,可以判断相邻两个月销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月解:1月至2月,30﹣23=7(万元),2月至3月,30﹣25=5(万元),3月至4月,25﹣15=10(万元),4月至5月,19﹣15=4(万元),则相邻两个月销售额变化最大的是3月至4月. 故选:C .4.(2分)下列说法正确的是( ) A .1的平方根是1 B .25的算术平方根是±5C .(﹣6)2没有平方根D .立方根等于本身的数是0和±1解:A .1的平方根是±1,故本选项不合题意; B .25的算术平方根是5,故本选项不合题意; C .(﹣6)2的平方根是±6,故本选项不合题意; D .立方根等于本身的数是0和±1,故本选项符合题意. 故选:D .5.(2分)如图,直线a ,b 被直线c 所截,a ∥b ,若∠2=45°,则∠1等于( )A .125°B .130°C .135°D .145°解:如图,∵a ∥b ,∠2=45°, ∴∠3=∠2=45°, ∴∠1=180°﹣∠3=135°, 故选:C .6.(2分)若a <b ,则下列不等式正确的是( ) A .3a >3bB .﹣2a >﹣2bC .a2>b2D .3﹣a <3﹣b解:A .不等式两边都乘以一个正数,不等号方向不改变,则A 错误; B .不等式两边都乘以一个负数,不等号方向改变,则B 正确;C.不等式两边都除以一个正数,不等号方向不改变,则C错误;D.因a<b,则﹣a>﹣b,于是3﹣a>3﹣b,则D错误.故选:B.7.(2分)√13的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间解:∵√9<√13<√16,∴3<√13<4,故选:C.8.(2分)已知点A(2,2√2),B(5,√2),若线段CD是由线段AB沿y轴方向向下平移2√2个单位得到的,则线段CD两端点的坐标分别为()A.(2−2√2,2√2),(5−2√2,√2)B.(2,4√2),(5,3√2)C.(2,0),(5,−√2)D.(2,0),(5,﹣2)解:点A(2,2√2),B(5,√2),线段AB沿y轴方向向下平移2√2个单位,即把各点的纵坐标都减2√2,即可得到线段CD两端点的坐标.则C(2,0),D(5,−√2).故选:C.9.(2分)下列命题为假命题的是()A.对顶角相等B.如果AB⊥CD,垂足为O,那么∠AOC=90°C.经过一点,有且只有一条直线与这条直线平行D.两直线平行,同位角相等解:A、对顶角相等,是真命题;B、如果AB⊥CD,垂足为O,那么∠AOC=90°,是真命题;C、∵经过直线外一点,有且只有一条直线与这条直线平行,∴本选项说法是假命题;D、两直线平行,同位角相等,是真命题;故选:C.10.(2分)为了奖励学习进步的同学,某班准备购买甲、乙、丙三种不同的笔记本作为奖品,其单价分别为2元、3元、4元,购买这些笔记本需要花60元;经过协商,每种笔记本单价下降0.5元,只花了49元,那么以下哪个结论是正确的()A .乙种笔记本比甲种笔记本少4本B .甲种笔记本比丙种笔记本多6本C .乙种笔记本比丙种笔记本多8本D .甲种笔记本与乙种笔记本共12本解:设分别甲、乙、丙三种不同的笔记本x 、y 、z , 根据题意得:{2x +3y +4z =60①1.5x +2.5y +3.5z =49②,①﹣②得:x +y +z =22 ③, ③×3﹣①得,x ﹣z =6,故甲种笔记本比丙种笔记本多6本, 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某品牌电脑的成本为2200元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,请依据题意列出关于x 的不等式: 2800×x10−2200≥2200×5% . 解:由题意得:2800×x10−2200≥2200×5%, 故答案为:2800×x10−2200≥2200×5%. 12.(2分)不等式组{x >a x >2的解集为x >2,则a 的取值范围是 a ≤2 .解:由不等式组{x >a x >2的解集为x >2,可得a ≤2.故答案为:a ≤213.(2分)如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠AOD =118°,则∠EOC 的度数为 28° .解:∵∠AOD =118°,∴∠BOC=∠AOD=118°,∵EO⊥AB,∴∠BOE=90°,∴∠EOC=∠BOC﹣∠BOE=28°,故答案为:28°.14.(2分)某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有300人.解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200×(1﹣40%﹣35%)=1200×25%=300(人),故答案为:300.15.(2分)如果|a﹣2|=2﹣a,那么(a﹣3,a﹣4)在第三象限.解:∵|a﹣2|=2﹣a,∴a﹣2≤0,解得a≤2,∴a﹣3<0,a﹣4<0,∴(a﹣3,a﹣4)在第三象限.故答案为:三.16.(2分)已知,a,b是正整数.若√7a+√10b是整数,则满足条件的有序数对(a,b)为(7,10)或(28,40).解:∵a,b是正整数.√7a+√10b是整数,∴a=7,b=10或a=4×7,b=4×10,即满足条件的有序数对(a,b)为(7,10)或(28,40).故答案为(7,10)或(28,40). 三.解答题(共8小题,满分68分) 17.(8分)计算:(1)√25+√−273+√214; (2)2√2−|√2−1|. 解:(1)√25+√−273+√214 =5+(﹣3)+32=2+32 =72.(2)2√2−|√2−1| =2√2−√2+1 =√2+1.18.(8分)解方程组:{5(x −9)=6(y −2)x 4−y+13=2.解:方程组整理得:{5x −6y =33①3x −4y =28②,①×2﹣②×3得:10x ﹣12y ﹣3(3x ﹣4y )=66﹣84, 解得:x =﹣18,把x =﹣18代入①得:y =﹣20.5, 则方程组的解为{x =−18y =−20.5.19.(8分)(1)解不等式4x ﹣3<2x +1,并把解集表示在数轴上. (2)解不等式组{3x +2>x2−4(x −4)≥2x,并写出它的整数解.解:(1)移项得,4x ﹣2x <1+3, 合并同类项得,2x <4, 系数化为1得,x <2. 在数轴上表示为:.(2){3x+2>x①2−4(x−4)≥2x②,解①得:x>﹣1,解②得:x≤3,故不等式的解集为:﹣1<x≤3,其的整数解为0,1,2,3.20.(8分)南开中学为了培养学生的地理实践能力,举办了“自制地球仪”比赛.我校地理老师在全校学生的参赛作品中随机抽取了部分作品进行质量评估,成绩如下:61,62,62,63,64,64,64,65,65,65,65,65,66,67,69,71,71,72,72,72,73,73,73,74,74,75,75,75,75,75,75,76,78,78,78,82,82,83,85,85,85,87,87,88,88,291,92,95,97,98,并将成绩统计后绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:分数x频数(人)频率60≤x<70150.370≤x<80a80≤x<90b90≤x≤1005合计c1(1)频数分布表中,a=0.4,b=10,c=50;(2)补全频数分布直方图;(3)本次比赛学校共收到参赛作品900件,若80分以上(含80分)的作品将被展出,试估计全校将展出的作品数量.解:(1)分别统计各组的频数可得,70≤x<80的频数为20,80≤x<90的频数为10,因此a=20÷50=0.4,b=10,c=15+20+10+5=50,故答案为:0.4,10,50,(2)补全频数分布直方图如图所示:(3)900×10+550=270(人),答:全校将展出的作品数量为270件.21.(8分)完成下面的证明:如图,AB和CD相交于点O,AC∥BD,∠A=∠AOC.求证∠B=∠BOD.证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).证明:∵AC∥BD(已知)∴∠A=∠B(两直线平行,内错角相等).∵∠A=∠AOC(已知)∴∠B=∠AOC(等量代换).∵∠AOC=∠BOD(对顶角相等).∴∠B=∠BOD(等量代换).故答案为:两直线平行,内错角相等;等量代换;∠BOD,对顶角相等.22.(8分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(﹣2,﹣1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,﹣3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.解:(1)建立平面直角坐标系如图所示;(2)体育馆C (1,﹣3),食堂D (2,0)如图所示;(3)四边形ABCD 的面积=4×5−12×3×3−12×2×3−12×1×3−12×1×2, =20﹣4.5﹣3﹣1.5﹣1, =20﹣10, =10.23.(10分)某景点的门票价格如下表:购票人数(人) 1~50 51~99 100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?解:(1)设七年级1有x 名学生,2班有y 名学生, 由题意得:{x +y =10248x +45y =4737,解得:{x =49y =53, 答:七年级1有49名学生,2班有53名学生;(2)设八年级报名x 人,九年级报名y 人,分两种情况:①若x +y <100,由题意得:{48x +45y =491445(x +y)=4452, 解得:{x =154y ≈−55,(不合题意舍去); ②若x +y ≥100,由题意得:,{48x +45y =491442(x +y)=4452, 解得:{x =48y =58,符合题意; 答:八年级报名48人,九年级报名58人.24.(10分)如图,A 、B 、C 和D 、E 、F 分别在同一条直线上,且∠1=∠2,∠C =∠D ,试完成下面证明∠A =∠F 的过程.证明:∵∠1=∠2(已知),∠2=∠3( 对顶角相等 ),∴ ∠1=∠3 (等量代换)∴BD ∥CE ( 同位角相等,两直线平行 )∴∠D +∠DEC =180°( 两直线平行,同旁内角互补 ),又∵∠C =∠D ( 已知 ),∴∠C +∠DEC =180°( 等量代换 ),∴ DF ∥AC ( 同旁内角互补,两直线平行 ),∴∠A =∠F ( 两直线平行,内错角相等 ).证明:∵∠1=∠2(已知),∠2=∠3(对顶角相等),∴∠1=∠3(等量代换),∴BD ∥CE (同位角相等,两直线平行),∴∠D +∠DEC =180°(两直线平行,同旁内角互补),又∵∠C=∠D(已知),∴∠C+∠DEC=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;∠1=∠3;同位角相等,两直线平行;两直线平行,同旁内角互补;已知;等量代换;DF∥AC;同旁内角互补,两直线平行;两直线平行,内错角相等.。
贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U ={0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N = {3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为()u`C.{3}A.{l,2,3,4,5}B.{4,5}D.02命题“3xE R, x2 + x+1 � 0”的否定是()2A.3x e R, x2 + x +l之0B.3x E R, x2 + x+l< 0D.Vx茫R,x·+x+l< 0C.VxER,x2 +x+ l < 0 23对任意角a和fJ."sina = sin/J“是“a=fJ”的()A充分不必要条件B必要不充分条件C.充要条件D既不充分也不必要条件24已知函数f(x)= �+log。
,(2-x),则f(x)的定义域为()4x-3A (扣) B.(扣]C.(-oo,2) D (三)u(扣)5设函数f(x)=2·'+x的零点为X o'则X o所在的区间是()A.(-1,0) C.(1,2)B.(-2,-1) D.(0,1)6设a=(½/,b= 2(c = log2¾,则a,b,c的大小关系为(A. c<a<bB. c < b < aC. a<b<cD.a<c<bII冗7下列选项中,与sin(-飞-)的值不相等的是()A.2sin l5°sin 75°B.cosl8° cos42° -sinl8° sin42°C.2cos2l5°-lD.tan22.5° l-tan2 22.5°8.某池塘野生水葫芦的援盖面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,其中说法错误的是(y/m2l 6t---------------- ,,,81----------t'一气, ,, ,, ,A此指数函数的底数为2B在第5个月时,野生水葫芦的稷盖面积会超过30m2C野生水葫芦从4m2荽延到12m2只需1.5个月D设野生水葫芦蔓延至2m2,3m2,6m2所需的时间分别为x1,x2,x3,则有X1+x2 = X3二、多项选择题(本题共2小题,每小题4分,共8分.在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得2分,有选错得0分.)9已知a,b,c eR,则下列命题正确的是()I IA若->一,则a<ba bB若ac2> bc2,则(1>bC.若a<b,c <d,则a-c<b-dD若a>b > O,c > 0,则a a+c一>b b+cIO下列说法中,正确的是()IA函数y=-在定义域上是减函数e x -1B.函数y=——一是奇函数e x +lC函数y= f(x+a)-b为奇函数,则函数y=f(x)的图象关于点P(a,b)成中心对称图形D函数f(x)为定义在(-x,,O)U(O冲心)上的奇函数,且f(3) = I.对千任意x,,x2E (0,长't:)),x1:;cx2,汀(x,)-x2f(x2) 3都有1>0成立,则.f(x)三一的解集为(-OCJ,-3] u(0,3]X1 -x2''X三、填空题(本大题共5小题,每小题4分,共20分.请将你认为正确的答案填在答题卷的相应位置上.)11若幕函数f(x)=(11i2-2m-2)义”在(0,+~)上单调递增,则实数m=12函数y= sinx+ cosx的最大值是s13 已知圆和四边形(四个角均为直角)的周长相等,而积分别为S I'鸟,则_]_的最小值为s214已知函数f(x) = 2sin(cv x+(p)(co> O,I例<:)的部分图像如图所示,则f行)=X-2.一一一一-壹15已知函数f(X) = 2kx2 -kx -i (0 ::; X ::;; 2, k E R),若k=I,则该函数的零占为若对沁XE[0,2],不等式f(x) < -2k恒成立,则实数K的取值范围为四、解答题(本大题共4小题,每小题8分,共32分.解答应写出文字说明,证明过程或演算步骤.)16已知角0的终边过点(-3,4),求角0的三个三角函数值.17.(I)已知芦+a令=3,求a+矿的值:(2)已知log2[ l og3 (log4X)] =0'求X的值18 已知函数f(x)=x-�IX(I)判断函数f(x)的奇偶性:1(2)根据定义证明函数f(x)=x--在区间(0,+幻)上单调递增X冗19将函数f(x) =c o s(x+ �)的图象上所有点的横坐标缩短到原来的上,纵坐标不变,得到函数g(x的() 图象(I)求函数g(x)的单调递增区间和对称中心:(2)若关于X的方程2sin2x-m c o s x-4= 0在XE(吟)上有实数解,求实数m的取值范围五、阅读与探究(本大题1个小题,共8分解答应写出文字说明,条理清晰.)20. 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的瓜要途径,是思想阀门发现新问题、新结论的篮要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(I)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等l l例如,ab=I,求证:一+-=l.I+a I+b证明:原式ab I b I+—=—+—=I. ab+a I+b b+I l+b阅读材料二:解决多元变掀问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究a+b例如,正实数a,b满足ab=L求(l+a)b解:由ab=I,得b=一,的最小值1 a+b a+--;; _ a 2+1_ (a+l }2-2(a+l)+2= = = ..(I+a)b I a+la+I (l+a )� a 2 2 =(a+l)+二-2�2✓(a+l)二-2=2✓2-2,当且仅当a+I =✓2,即a=✓2-1,b = ✓2 +1时,等号成立a+b.. (l+a)b的最小值为2J5-2波利亚在《怎样解题》中指出:“当你找到第一个腮菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征结合阅读材料解答下列问题:(I)已知ab=I,求+——了的值;l+a 2. l +bI I(2)若正实数a,b 满足ab=I,求M =--=--+ 的最小值I+a I+3b贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U = {0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N={3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为(u`A.{l,2,3,4,5}【答案】B【解析】B.{4,5}【分析】求出M n N,得到阴影部分表示的渠合C.{3}[详解】图中阴影部分表示的渠合为N中元素去掉M n N的元素后的梊合,MnN = {0,1,2,3们{3,4,5}={习,故图中阴影部分表示的集合为{4,5}故选:B2.命题“3xER,x2+x+l2:0”的否定是()A.3x ie R, x2 + x+l ;;:: 0B.3x E R, x2 + x+I <0C.VxER,x2+x+l<0 2D.Vx茫R,X4+x+l< 0【答案】C【解析】【分析】根据命题的否定即可求解D.0【详解】命题“:3x E R, x 2+ x + 1 2:: 0”的否定是“"ix E R,x 2+x+ 1< 0",故选:C3对任意角a 和/3,"sin a = s in/3“是“a=/3”的()A 充分不必要条件B必要不充分条件C.充要条件D 既不充分也不必要条件【答案)B 【解析】【分析】根据三角函数的性质,结合必要不充分的定义即可求解【详解】由sina=s in/3可得a=/J+2朊或者a+/3=冗+2幻,kEZ,故sina=s in/3不能得到a=/3,但a=/3,则sina= s in/3,故“sina=sin/3“是“a=/3”的必要不充分条件,故选:B2 4已知函数f(x) =�+log 。
2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cmB .18cmC .9cmD .36cm2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.如图,在四边形ABCD 中,3AB =,5BC =,130A ∠=︒,100D ∠=︒,AD CD =.若点E ,F 分别是边AD ,CD 的中点,则EF 的长是( )A 2B 3C .2D 54.下列命题是真命题的是( ) A .如果a 2=b 2,那么a=bB .如果两个角是同位角,那么这两个角相等C .相等的两个角是对项角D .在同一平面内,垂直于同一条直线的两条直线平行 5.以下列各组数为边长能构成直角三角形的是( )A .6,12,13B .3,4,7C .8,15,16D .5,12,136.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A .B .C .D .7.下列图形是中心对称图形的是( )A .B .C .D .8.点()0,3P 向右平移m 个单位后落在直线21y x =-上,则m 的值为( ) A .2B .3C .4D .59.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .10.函数y =k(x +1)和y =kx(k≠0)在同一坐标系中的图象可能是( ) A . B .C .D .二、填空题(每小题3分,共24分)11.已知整数x 、y 满足x +3y =72,则x y +的值是______.12.约分:236a bab=_______.13.计算2(3)- +(3 )2=________.14.如图,在一次测绘活动中,某同学站在点A 处观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向160米处,船C 在点A 南偏东15°方向120米处,则船B 与船C 之间的距离为________米.15.如图,在△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠B ′AB 等于_____.16.己知关于x 的分式方程1233x k x x +-=--有一个增根,则k =_____________. 17.写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____. 18.如图,在y 轴的正半轴上,自O 点开始依次间隔相等的距离取点1A ,2A ,3A ,4A ,,n A ,分别过这些点作y 轴的垂线,与反比例函数2y x=-()0x <的图象交于点1P ,2P ,3P ,4P ,,n P ,作2111P B A P ⊥,3222P B A P ⊥,4333P B A P ⊥,,111n n n n P B A P ---⊥,垂足分别为1B ,2B ,3B ,4B ,,1n B -,连结12PP ,23PP ,34P P ,,1n n P P -,得到一组112Rt PB P ∆,223Rt P B P ∆,334 Rt P B P ∆,,11n n n Rt P B P --∆,它们的面积分别记为1S ,2S ,3S ,,1n S -,则12S S +=_________,1231n S S S S -++++=_________.三、解答题(共66分)19.(10分)如图,矩形ABCD 中,点E ,F 分别在边AB ,CD 上,点G ,H 在对角线AC 上,EF 与AC 相交于点O ,AG=CH ,BE=DF .(1)求证:四边形EGFH 是平行四边形; (2)当EG=EH 时,连接AF ①求证:AF=FC ;②若DC=8,AD=4,求AE 的长.20.(6分)对于实数a ,b ,定义运算“⊗”:a ⊗b =22()()ab b a b a ab a b ⎧-≥⎨-<⎩,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x 1,x 2是一元二次方程x 2﹣3x +2=0的两个根,则x 1⊗x 2等于( ) A .﹣1B .±2C .1D .±121.(6分)直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,. ①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.22.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?23.(8分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:BC=BD;(2)若BC=15,AD= 20,求AB和CD的长.24.(8分)某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下班级最高分平均分中位数众数方差八(1)班100 a93 93 12八(2)班99 95 b c8.4(1)求表中a,b,c的值;(2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.25.(10分)如图,双曲线y=kx经过Rt△BOC斜边上的点A,且满足23AOAB,与BC交于点D,S△BOD=21,求:(1)S△BOC(2)k的值.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.x(元)15 20 25 ……y(件)25 20 15 ……参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据三角形的中位线定理即可得到结果.由题意得,原三角形的周长为,故选B.考点:本题考查的是三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.2、B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF 中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3、C【解析】【分析】,根据勾股定理求出AC,根据三角形中位线定理连接AC,根据等腰三角形的性质、三角形内角和定理求出DAC计算即可.【详解】解:连接AC,100D ∠=︒,AD CD =, 40DAC DCA ∴∠=∠=︒, 90BAC BAD DAC ∴∠=∠-∠=︒,224AC BC AB ∴=-=,点E ,F 分别是边AD ,CD 的中点, 122EF AC ∴==, 故选:C . 【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4、D 【解析】 【分析】利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项. 【详解】A 、如果a 2=b 2,那么a=±b ,故错误,是假命题;B 、两直线平行,同位角才相等,故错误,是假命题;C 、相等的两个角不一定是对项角,故错误,是假命题;D 、平面内,垂直于同一条直线的两条直线平行,正确,是真命题, 故选D . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大. 5、D 【解析】解:A .62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.6、C【解析】观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.7、C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】【分析】根据向右平移横坐标相加,纵坐标不变得出点P平移后的坐标,再将点P平移后的坐标代入y=1x-1,即可求出m的值.【详解】解:∵将点P(0,3)向右平移m个单位,∴点P平移后的坐标为(m,3),∵点(m,3)在直线y=1x-1上,∴1m-1=3,解得m=1.故选A.【点睛】本题考查了点的平移和一次函数图象上点的坐标特征,求出点P平移后的坐标是解题的关键.9、A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.10、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象. 解题关键点:理解两种函数的性质.二、填空题(每小题3分,共24分)11、2或52【解析】【分析】x y722,且x、y x72,y x2,y2x,,分别求出x 、y【详解】,又x 、y 均为整数,,=0,,∴x=72,y=0或x=18,y=2或x=0,y=8,或.故答案为:或.【点睛】本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.12、2a 【解析】【分析】根据分式的基本性质,分子分母同时除以公因式3ab 即可。
2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。
2022-2023学年贵州省贵阳市高一下学期期末监测数学试题一、单选题1.设i 为虚数单位,则3i =()A .1B .iC .-1D .i-【答案】D【分析】利用复数的乘法运算即可求得结果.【详解】32i i i 1i i =⋅=-⋅=-,故选:D.【点睛】本题主要考查复数的乘法运算,属基础题.2.平面直角坐标系中,已知()1,1A ,()1,0B -,()0,1C ,则AB AC +=()A .()1,1-B .()3,1--C .()3,1-D .()0,2【答案】B【分析】根据平面向量的坐标表示,以及坐标运算的法则,即可求解.【详解】由()1,1A ,()1,0B -,()0,1C ,可得,((2,11)),0AB AC ---==,所以(3,1)AB AC +=--.故选:B.3.已知事件A ,B 互斥,若()15P A =,()815P A B = .则()P B =()A .13B .23C .715D .815【答案】A【分析】由互斥事件并事件概率的加法公式求解.【详解】由于事件A ,B 互斥,则()()()()18515P A B P A P B P B =+=+= ,所以()13P B =,选项A 正确.故选:A4.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .若m n ⊥,n ∥α,则m α⊥B .若m ∥n ,n α⊥,则m α⊥C .若m α⊥,m n ⊥,则n ∥αD .若m α⊥,αβ⊥,则m β⊥【答案】B【分析】对于ACD ,举例判断,对于B ,根据线面垂直的判定定理分析判断.【详解】对于A ,如下图,m n ⊥,n ∥α,而m ∥α,所以A 错误,对于B ,设,k l α⊂,且k l O = ,因为n α⊥,所以,n k n l ⊥⊥,因为m ∥n ,所以,m k m l ⊥⊥,因为,k l α⊂,且k l O = ,所以m α⊥,所以B 正确,对于C ,如下图,m α⊥,m n ⊥,此时n ⊂α,所以C 错误,对于D ,如下图,m α⊥,αβ⊥,此时m ∥β,所以D 错误,故选:B5.已知直角三角形三边长分别为3,4,5,以其中一条边所在直线为轴旋转一周后得到一个几何体,则该几何体的最大体积为()A .48π5B .12πC .16πD .32π【答案】C【分析】分别计算以直角边和斜边为轴旋转得到的几何体体积,然后比较大小;【详解】当以斜边为轴旋转时,所得的几何体是由两个同底的圆锥拼接而成,如图所示,在直角三角形ABC 中,43,5,AB BC AC ===,所以11,22ABC S AB BC AC BO =⋅=⋅ 解得:12,5BO =故圆锥底面面积为:()2144ππ,25S BO ==所以几何体的体积为()11144π48π5,33255V V V S AO OC =+=⋅+=⨯⨯=下上以4AB =为轴旋转时,21π3412π,3V =⨯⨯⨯=当以3BC =为轴旋转时,21π4316π,3V =⨯⨯⨯=综上所述,当以3BC =为轴旋转时,体积最大,故选: C.6.从正五边形的5个顶点中任取3个构成三角形,则所得三角形是锐角三角形的概率为()A .15B .13C .12D .25【答案】C【分析】首先根据组合求解基本事件总数,然后分析所得三角形是锐角三角形的情形,即可得到答案;【详解】从正五边形的五个顶点中,随机选择三个顶点连成三角形,基本事件总数为;35C 10,n ==因为正五边形的顶角为钝角,所以以它们作为顶点的三角形是锐角三角形(如图所示)的个数为5,所以51102P ==.故选:C.7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3a =,3b =,2B A =,则c =()A .32B .3C .3D .23【答案】D【分析】先利用正弦定理结合已知条件可求出A ,则可求出角,B C ,从而可求出c 【详解】在ABC 中,3a =,3b =,2B A =,由正弦定理得sin sin a b A B =,33sin sin 2A A=,得23sin cos 3sin A A A =,因为sin 0A ≠,所以23cos 3A =,得3cos 2A =,因为()0,πA ∈,所以π6A =,所以π3B =,则π2C =,所以223c a ==,故选:D8.利用向量方法研究函数()sin cos f x a x b x =+(x ∈R ,a ,b 不同时为0),过程如下:设(),m b a =,(),cos sin x n x = ,则()22cos ,cos ,f x m n m n m n a b m n =⋅==+ .所以当m 与n 方向相同时,()f x 取到最大值22a b +,当m与n方向相反时,()f x 取到最小值22a b -+;根据以上研究,下列关于函数()3sin 4cos g x x x =+的结论正确的是()A .最大值为5,取到最大值时3tan 4x =B .最大值为5,取到最大值时4tan 3x =C .最大值为5,取到最大值时3tan 4x =D .最大值为5,取到最大值时4tan 3x =【答案】A【分析】根据所给定义及向量模的坐标表示计算可得.【详解】因为()3sin 4cos g x x x =+,设()4,3m = ,(),cos sin x n x = ,则22435m =+= ,22cos sin 1n x x =+= ,则()cos ,5cos ,g x m n m n m n m n =⋅==,所以()max 5g x =,当m与n方向相同,即4sin 3cos x x =,即3tan 4x =时取最大值.故选:A二、多选题9.已知复数z 的共轭复数为z ,则下列说法正确的是()A .z z +一定是实数B .z z ⋅一定是实数C .z z -一定是纯虚数D .22z z=【答案】AB【分析】设i,(,R)z a b a b =+∈,得到i z a b =-,结合选项,逐项判定,即可求解.【详解】设i,(,R)z a b a b =+∈,则i z a b =-,对于A 中,由2R z z a +=∈,所以A 正确;对于B 中,由()()22i i R z z a b a b a b ⋅=+-=+∈,所以B 正确;对于C 中,由2i z z b -=,只有当0b ≠时,z z -是纯虚数,所以C 不正确;对于D 中,由2222222i,z a b ab z a b =-+=+,所以22z z ≠,所以D 不正确.故选:AB.10.底面为平行四边形的四棱柱称为平行六面体,连接平行六面体不在同一面上两个顶点的线段称为平行六面体的体对角线.以下关于平行六面体的命题,正确的是()A .平行六面体的4条体对角线交于一点且互相平分B .平行六面体的8个顶点在同一球面上C .平行六面体的4条体对角线长的平方和等于所有棱长的平方和D .各棱长均为1的平行六面体1111ABCD A B C D -中,1160A AB A AD BAD ∠=∠=∠=︒,则体对角线1AC 的长为6【答案】ACD【分析】由平行四边形对角线互相平分可证选项A;由圆内接四边形对角互补,可判断选项B 错误;由平行四边形11ABC D 对角线的平方和等于四条边的平方和性质,可得选项C 正确;由三棱锥1A ABD -为棱长为1正三棱锥,可求出1cos A AS Ð,从而在1ACC △中利用余弦定理求解,可判断选项D 正确.【详解】如图,连结111,,AC BD AC 依题意,111//,//,,AB CD CD C D AB CD CD C D ==,所以111//,AB C D AB C D =,即11ABC D 为平行四边形,则11,AC BD 相交且互相平分,同理11,BD AC 相交且互相平分,则1111,,,AC BD AC B D 相交于中点O ,所以平行六面体的4条体对角线交于一点且互相平分,选项A 正确;若平行六面体的8个顶点在同一球面上,则平行四边形ABCD 四个定点在一个圆周上,而圆的内接四边形对角互补,而平行四边形ABCD 对角不一定互补,选项B 错误;11AC AB BB BC =++ ,11BD BB BC BA =++ ,2222211111()222AC AB BB BC AB BB BC AB BB AB BC BB BC =++=+++⋅+⋅+⋅ ,2222211111()222BD BB BC BA BB BC BA BB BC BB AB BC AB =++=+++⋅-⋅-⋅,则2222211112224AC BD BB BC BA BB BC +=+++⋅,2222211111()222AC AB BC B B AB BC B B AB B B AB BC B B BC =++=+++⋅+⋅+⋅ ,2222211111()222DB CB AB BB CB AB BB BC AB CB BB AB B B =++=++-⋅+⋅-⋅ ,则2222211112224AC DB AB CB B B BC B B +=+++⋅ 所以222222211111444AC BD AC DB AB CB B B +++=++ ,即平行六面体的4条体对角线长的平方和等于所有棱长的平方和,选项C 正确;根据题意,三棱锥1A ABD -为棱长为1正三棱锥,所以1A 在平面ABD 上的投影为正ABD △的中心,则323233AS =´=,113cos 3AS A AS AA Ð==,所以13cos 3ACC Ð=-,由余弦定理2222111132cos 312363AC AC CC AC CC ACC =+-⋅∠=++⨯⨯=,所以1AC 的长为6,选项D 正确.故选:ACD三、填空题11.已知平面向量a ,b 满足2a = ,3b = ,a 与b的夹角为60°,则a b ⋅=.【答案】3【分析】根据平面向量数量积定义求解即可.【详解】1cos 602332a b a b ⋅=⋅=⨯⨯=.故答案为:312.甲、乙两名学生通过某种听力测试的概率分别为12,23,若两人同时参加测试,则有且只有一人能通过的概率是.【答案】12/0.5【分析】根据相互独立事件的概率乘法公式,以及互斥事件的概率加法,结合题意,即可求解.【详解】设事件A 表示“甲同学通过测试”,事件B 表示“乙同学通过测试”,可得12(),()23P A P B ==,则有且只有一人能通过的概率为12121()()()()(1)(1)23232P P A P B P A P B =+=⨯-+-⨯=.故答案为:12.13.一个圆台的上、下底面圆周在同一球面上,已知圆台上、下底面的半径分别为3cm 和4cm ,球100πcm,则该圆台的高为cm.的表面积为2【答案】7或1/1或7、,球心为O,分圆台的上、下底面不在同一半球上【分析】设圆台的上、下底面的圆心分别为E F和圆台的上、下底面在同一半球上两种情况,再利用勾股定理可得答案.、,球心为O,【详解】设圆台的上、下底面的圆心分别为E F如图,当圆台的上、下底面不在同一半球上时,222594cmEO AO AE,=-=-=+=;2225163cmFO CO CF,所以则该圆台的高为437cm=-=-=如图,当圆台的上、下底面在同一半球上时,222594cmEO AO AE,=-=-=-=;2225163cmFO CO CF,所以则该圆台的高为431cm=-=-=综上,该圆台的高为7cm或1cm.故答案为:7或1.四、双空题14.某校采用比例分配分层随机抽样采集了高一年级学生的身高情况,部分统计数据如下:性别样本量样本平均数样本方差男10017022女10016038则估计该校高一年级的全体学生的身高平均数为,方差为.(注:由人教版高中数学必修第二册习题9.2拓广探索可知以下结论:已知总体划分为两层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x ,21s ;n ,y ,22s .记总的样本平均数为ω,样本方差为2s ,则()(){}22222121s m s n x m n y s ωω⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+)【答案】16555【分析】根据题意,由公式代入计算,即可得到结果.【详解】由题意可得,该校高一年级的全体学生的身高平均数为()1100170100160165200⨯+⨯=由结论可得,方差为()(){}22222121s m s n x m n y s ωω⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+()(){}22221100221701651003816016555100100⎡⎤⎡⎤=⨯+-++-=⎣⎦⎣⎦+.故答案为:165;5515.魏晋时期的刘徽在其所撰《海岛算经》中,运用二次测望法解决实际测量问题,是世界测量学上取得的伟大成就.某数学学习小组受《海岛算经》中“望山松”一题的启发,进行了如下测量实践活动:如图,为测量山顶松树的高AB ,在山底C 所在水平面内,选择D 、E 两点,使C 、D 、E 三点在同一直线上,在D 点测得A 点和B 点的仰角分别为60°、45°,在E 点测得A 点的仰角为30°,测得基线DE 的长为100米.由以上测量数据可得出:①松树的高AB =米(精确到0.1);②ADB ∠和AEB ∠分别是人在D 点和E 点观测松树的视角,其大小关系为:ADB ∠AEB∠(填“>”,“<”或“=”).(参考数据:2 1.414≈,3 1.732≈)【答案】36.6>【分析】由题意可得30DEA DAE ∠==︒,则可得100AD DE ==,然后求出,AC BC 可求得AB 的值,由图可知ABE 的外接圆大于ABD △,然后分别在两个三角形中利用正弦定理比较即可【详解】由题意得45,60,30,100BDC ADC AEC DE ∠=︒∠=︒∠=︒=,所以120ADE ∠=︒,所以30DEA DAE ∠==︒,所以100AD DE ==,在Rt ADC 中,3sin 1005032AC AD ADC =∠=⨯=,1cos 100502CD AD ADC =∠=⨯=,在Rt BDC 中,tan 50BC CD BDC CD =∠==,所以5035050 1.7325036.6AB AC BC =-=-≈⨯-≈,设ABE 的外接圆半径为1r ,ABD △的外接半径为2r ,由图可知12r r >,由正弦定理得122,2sin sin AB ABr r AEB ADB==∠∠,所以sin sin AB AB AEB ADB>∠∠,所以sin sin ADB AEB ∠>∠,因为,ADB AEB ∠∠都为锐角,所以ADB AEB >∠∠,故答案为:36.6,>五、解答题16.如图,在平行四边形ABCD 中,E ,F ,G 满足2AB AE = ,2AD AF = ,2BC BG = ,设AB a=,AD b =.(1)用a ,b 表示EF ,EG ;(2)若EF EG ⊥,求a b.【答案】(1)1122EF a b =-+ ,1122EG a b=+(2)1【分析】(1)根据题意,由平面向量基本定理即可得到结果;(2)根据题意,由EF EG ⊥可得22a b = ,即可得到结果.【详解】(1)1122EF EA AF a b =+=-+ ,1122EG EB BG a b =+=+ ;(2)若EF EG ⊥ ,则0EF EG ⋅= 所以221111*********a b a b b a ⎛⎫⎛⎫-+⋅+=-= ⎪ ⎪⎝⎭⎝⎭ 所以22a b = ,所以1a b= .17.某企业生产口罩、防护服、消毒水等物品,在加大生产的同时,该公司狠抓质量管理,不定时抽查口罩,该企业质检人员从所生产的口罩中随机抽取了100个,将其质量指标值分成以下六组:[)40,50,[)50,60,[)60,70,…,[]90,100,得到如下频率分布直方图.(1)求出直方图中m 的值;(2)利用样本估计总体的思想,估计该企业所生产的口罩的质量指标值的中位数(精确到0.01);(3)规定:质量指标值小于70的口罩为二等品,质量指标不小于70的口罩为一等品.采用样本量比例分配的分层随机抽样,从该企业所抽取的100个口罩中抽出5个口罩,其中一等品和二等品分别有多少个?【答案】(1)0.030m =(2)73.33(3)一等品有3个和二等品有2个【分析】(1)根据频率之和为1,列出方程,即可得到结果;(2)根据中位数的计算公式,代入计算,即可得到结果;(3)根据分层抽样的计算公式,代入计算,即可得到结果.【详解】(1)由()100.0100.0150.0150.0250.0051m ⨯+++++=,得0.030m =.(2)因为0.10.150.150.40.5++=<,0.10.150.150.30.70.5+++=>所以中位数在第4组,设中位数为n ,则()0.10.150.150.03700.5n +++-=,解得22073.333n =≈.所以可以估计该企业所生产的口罩的质量指标值的中位数为73.33.(3)由频率分布直方图可知:100个口罩中一等品有60个,二等品有40个,由分层抽样可知,所抽取的5个口罩中一等品有6053100⨯=个,二等品有532-=个,所以抽取的5个口罩中一等品有3个和二等品有2个.18.ABC 的内角,,A B C 的对边分别为,,a b c ,且满足()cos 2cos b A c a B =-.(1)求B 的大小;(2)若ABC 为钝角三角形,且4a =,3b =,求ABC 的面积.【答案】(1)π4(2)42-【分析】(1)根据题意,由正弦定理和三角形的性质化简得到sin 2sin cos C C B =,进而得到cos B 的值,即可求解.(2)由正弦定理求得22sin 3A =,结合题设条件,得到1cos 3A =-,求得sin C ,利用三角形的面积公式,即可求解.【详解】(1)解:因为()cos 2cos b A c a B =-,所以cos cos 2cos b A a B c B +=,由正弦定理可得sin cos sin cos 2sin cos B A A B C B +=,即()sin 2sin cos A B C B +=,因为πA B C ++=,可得()sin sin A B C +=,所以sin 2sin cos C C B =,又因为(0,π)C ∈,可得sin 0C ≠,所以2cos 2B =,因为(0,π)B ∈,π4B =.(2)解:由正弦定理有43sin 22A =,可得22sin 3A =,则1cos 3A =或13-若1cos 3A =,则()21222cos cos 02323C A B ⎛⎫=-+=-⨯-⨯> ⎪ ⎪⎝⎭,此时ABC 为锐角三角形,不满足条件.若1cos 3A =-,此时ABC 为钝角三角形.则()2122242sin sin 23236C AB ⎛⎫-⎛⎫=+=⨯-+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以1sin 422ABC S ab C ==-△.19.如图,四面体A BCD -中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,点F 在BD 上,E 为AC 的中点.(1)证明:平面FAC ⊥平面BDE ;(2)若DE BE ⊥,1DE =,四面体A BCD -的体积为33,若AFC ∠恰为二面角A BD C --的平面角,求AFC △的面积.【答案】(1)证明见解析(2)32【分析】(1)依题意,可证ABD CBD ≌△△,由等腰三角形性质得AC BE ⊥,AC DE⊥从而AC ⊥平面BDE ,由面面垂直的判定定理得证;(2)连接EF ,由AFC ∠是二面角A DB C --的平面角,可得BD ⊥平面AFC ,从而BD EF ⊥,求得2AC =,再由四面体A BCD -的体积为33,解得3BE =,由等面积法得32EF =,最后12AFC S AC EF =⋅△,解决问题.【详解】(1)证明:因为AD CD =,E 为AC 的中点,所以AC DE ⊥,在ABD △和CBD △中AD CD =,ADB CDB ∠=∠,DB DB =,所以ABD CBD ≌△△,所以AB CB =,又E 为AC 的中点,所以AC BE ⊥,又DE ,BE ⊂平面BDE ,DE BE E ⋂=,所以AC ⊥平面BDE .又AC ⊂平面FAC ,所以平面FAC ⊥平面BDE(2)如图,连接EF ,因为AFC ∠是二面角A DB C --的平面角,所以AF BD ⊥,CF BD ⊥,又AF ,CF ⊂平面AFC ,AF CF F ⋂=,所以BD ⊥平面AFC .因为EF ⊂平面AFC ,所以BD EF ⊥.因为AD CD ⊥,AD CD =,1DE =,所以2AC =,又由(1),AC ⊥平面BDE所以四面体A BCD -的体积13A BCD DBE V S AC -=⨯⨯△,即31112332BE ⎛⎫=⨯⨯⨯⨯ ⎪⎝⎭,解得3BE =.因为1122BDE S DE BE BD EF =⋅=⋅△,即DE BE BD EF ⋅=⋅,()221313EF ⨯=+,则32EF =.又AC ⊥平面BED ,所以AC EF ⊥,所以113322222AFC S AC EF =⋅=⨯⨯=△.20.阅读材料:材料一:我国南宋的数学家秦九韶在《数书九章》中提出了“三斜求积术”:若把三角形的三条边分别称为小斜、中斜和大斜,记小斜为a ,中斜为b ,大斜为c ,则三角形的面积为222222142c a b S a c ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.这个公式称之为秦九韶公式;材料二:古希腊数学家海伦在其所著的《度量论》或称《测地术》;中给出了用三角形的三条边长表示三角形的面积的公式,即已知三角形的三条边长分别为,,a b c ,则它的面积为()()()S p p a p b p c =---,其中()12p a b c =++,这个公式称之为海伦公式;材料三:秦九韶公式和海伦公式都解决了由三角形的三边直接求三角形面积的问题.海伦公式形式优美,容易记忆,体现了数学的对称美,秦九韶公式虽然与海伦公式形式不一样,但与海伦公式完全等价,且由秦九韶在不借助余弦定理的情况下独立推出,充分说明了我国古代学者具有很高的数学水平;材料四:印度数学家婆罗摩笈多将海伦公式推广到凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧)中,即设凸四边形的四条边长分别为a b c d ,,,,()12p a b c d =+++,凸四边形的一对对角和的半为θ,则凸四边形的面积为()()()()2cos S p a p b p c p d abcd θ=-----.这个公式称之为婆罗摩笈多公式.请你结合阅读材料解答下面的问题:(1)在下面两个问题中选择一个作答:(如果多做,按所做的第一个问题给分)①证明秦九韶公式与海伦公式的等价性;②已知圆内接四边形MNPQ 中,2MN =,4NP =,5PQ =,3QM =,求MNPQ 的面积;(2)ABC 中,,,A B C 的对边分别为,,a b c ,已知ABC 的面积为6,其内切圆半径为1,4,a b c =<,求b ,c .【答案】(1)答案见解析(2)3,5b c ==【分析】(1)若选择①:由秦九韶公式证明海伦公式化简得到()()()ABC S p p a p b p c =--- ,即可求解;若选择②:根据题意得到7p =,得到四边形的面积为2120cos S abcd θ=-,结合四边形MNPQ 是圆内接四边形对角和为180︒,代入即可求解;(2)设内切圆半径为r ,根据()12ABC S a b c r =++⋅△,求得8+=b c ,再由海伦公式化简得到15bc =,联立方程组,即可求解.【详解】(1)解:若选择①:由秦九韶公式证明海伦公式:2222222222221142422ABC c a b c a b c a b S a c ac ac ⎡⎤⎛⎫⎛⎫⎛⎫+-+-+-=-=+-⎢⎥ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()222214222222a c b b a c a b c a c b b a c b c a ⎡⎤⎡⎤+---+++-+-+-==⋅⋅⋅⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设()12p a b c =++,所以2222ABC a b c a b c a b c a b c S b c a ++++++++⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭△()()()p p a p b p c =---上述每一步均为等价变形,所以秦九韶公式与海伦公式是等价的.若选择②:因为()12p a b c d =+++,且2MN =,4NP =,5PQ =,3QM =,代入可得()1245327p =⨯++=+,所以()()()()22cos 120cos S p a p b p c p d abcd abcd θθ=-----=-,因为四边形MNPQ 是圆内接四边形,对角和为180︒,所以90θ=︒,可得21202453cos 90230S =-⨯⨯⨯︒=.(2)解:设内切圆半径为r ,因为()12ABC S a b c r =++⋅△,代入6ABC S = ,4a =,1r =,可得8+=b c ,①又由()162ABC S p a b c r=++==△,由海伦公式()()()ABC S p p a p b p c =--- ,可得()()()666466b c =---,化简得()()663b c --=,即()6363bc b c -++=,代入①,可得15bc =,②联立方程组815b c bc +=⎧⎨=⎩,且b c <,解得3,5b c ==.。
2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。
2020-2021学年七年级上学期期末考试数学试题一.选择题1.2020的相反数是()A.2020B.﹣2020C.D.﹣2.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 4.单项式﹣32xy2z3的次数和系数分别为()A.6,﹣3B.6,﹣9C.5,9D.7,﹣95.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0 6.按如图所示的运算程序,能使输出的结果为10的是()A.x=3,y=﹣2B.x=﹣3,y=2C.x=2,y=3D.x=3,y=﹣3 7.关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,则m的值为()A.0B.2C.﹣D.﹣28.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm9.已知代数式a+2b的值是5,则代数式2a+4b+1的值是()A.5B.10C.11D.不能确定10.仔细观察,探索规律:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…则22020+22019+22018+…+2+1的个位数字是()A.1B.3C.5D.7二.填空题11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2019=.12.已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.13.已知A,B,C三点在同一条直线上,AB=8,BC=6,M,N分别是AB、BC的中点,则线段MN的长是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.15.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).16.如果m﹣n=5,那么﹣3m+3n﹣7的值是.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2020n+c2021的值为.18.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是元.三.解答题(共19小题)19.计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.20.先化简,再求值:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)的值,其中x=1,y=﹣2.21.解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).22.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x是最大的负整数,将x代入(1)问的结果求值.25.我校九年级163班所有学生参加体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级163班参加体育测试的学生共有多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求出等级C对应的圆心角的度数;(4)若规定达到A、B级为优秀,我校九年级共有学生850人,估计参加体育测试达到优秀标准的学生有多少人?26.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.27.观察下表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣24﹣8a﹣3264…第2行06﹣618﹣3066…第3行﹣12﹣48﹣16b…(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.28.如图在数轴上有A,B两点,点A表示的数为﹣10,点O表示的数为0,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O 向右运动(点M,点N同时出发).(1)数轴上点B表示的数是.(2)经过几秒,点M,N到原点的距离相等?(3)点N在点B左侧运动的情况下,当点M运动到什么位置时恰好使AM=2BN?参考答案一.选择题1.【解答】解:2020的相反数是:﹣2020.故选:B.2.【解答】解:A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选:B.3.【解答】解:47.24亿=4724 000 000=4.724×109.故选:B.4.【解答】解:该单项式的次数为6,系数为﹣9,故选:B.5.【解答】解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.6.【解答】解:由题意得:x2+|2y|=10,当x=2,y=3满足x2+|2y|=10,故选:C.7.【解答】解:由3y﹣3=2y﹣1,得y=2.由关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,得2m+2=m,解得m=﹣2.故选:D.8.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN =BM﹣BN=5﹣2=3cm.故选:C.9.【解答】解:给a+2b=5两边同时乘以2,可得2a+4b=10,则2a+4b+1=10+1=11.故选:C.10.【解答】解:利用题中的式子得(x﹣1)(x2020+x2019+x2018+…+x+1)=x2021﹣1;当x=2时,22020+22019+22018+…+2+1=22021﹣1;∵21=2,22=4,23=8,24=16,25=32,而2021=505×4+1,∴22021的个位数字为2,∴22021﹣1的个位数字为1,即22020+22019+22018+…+2+1的个位数字是1.故选:A.二.填空题11.【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,故(a﹣b)2019=(3﹣2)2019=1.故答案为:1.12.【解答】解:|a+1|+|2013﹣b|=0,∴a+1=0,2013﹣b=0,a=﹣1,b=2013,∴a b=(﹣1)2013=﹣1,故答案为:﹣1.13.【解答】解:由AB=8,BC=6,M、N分别为AB、BC中点,得MB=AB=4,NB=BC=3.①C在线段AB的延长线上,MN=MB+NB=4+3=7;②C在线段AB上,MN=MB﹣NB=4﹣3=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长7或1.故答案为7或1.14.【解答】解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.15.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣816.【解答】解:当m﹣n=5时,﹣3m+3n﹣7=﹣3(m﹣n)﹣7=﹣3×5﹣7=﹣15﹣7=﹣22.故答案为:﹣22.17.【解答】解:∵m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,∴m=﹣1,n=0,c=1,∴m2019+2020n+c2021的=(﹣1)2019+2020×0+12021=﹣1+0+1=0故答案为:0.18.【解答】解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.三.解答题19.【解答】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=720.【解答】解:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)=5y2﹣x2+6x2﹣9xy﹣5x2﹣5y2=(5y2﹣5y2)+(﹣x2+6x2﹣5x2)﹣9xy=0+0﹣9xy=﹣9xy,∵x=1,y=﹣2,∴原式=﹣9×1×(﹣2)=18.21.【解答】解:(1)4﹣4x+12=18﹣2x,﹣4x+2x=18﹣4﹣12,﹣2x=2,x=﹣1.(2)2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1﹣x=3,x=﹣3.22.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.23.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD =∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC =2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.24.【解答】解:(1)根据题意知B=2x2﹣3x﹣2﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3,则A﹣B=(3x2﹣x+1)﹣(﹣x2﹣2x﹣3)=3x2﹣x+1+x2+2x+3=4x2+x+4;(2)∵x是最大的负整数,∴x=﹣1,则原式=4×(﹣1)2﹣1+4=4﹣1+4=7.25.【解答】解:(1)九年级163班参加体育测试的学生共有15÷30%=50(人);(2)D等级的人数为:50×10%=5(人),C等级人数为:50﹣15﹣20﹣5=10(人);补全统计图如下:(3)等级C对应的圆心角的度数为:×360°=72°;(4)估计达到A级和B级的学生共有:×850=595(人).26.【解答】解:设每人加工x个零件,﹣=1解得:x=100答:甲加工了100个,乙加工了100个.27.【解答】解:(1)第1行的第四个数a是﹣8×(﹣2)=16;第3行的第六个数b是64÷2=32;故答案为:16;32.(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2.故答案为:c+2.(3)解:根据题意,这三个数依次为x,x+2,x得,x+x+2+x=2562,解得:x=1024.28.【解答】解:(1)故答案为:30;(2)设经过x秒,点M,N到原点的距离相等,分两种情况:①当点M,N在原点两侧时,根据题意列方程:得:10﹣3x=2x,解得:x=2②当点M,N重合时,根据题意列方程,得:3x﹣10=2x,解得:x=10所以,经过2秒或10秒,点M,N到原点的距离相等;(3)设经过y秒,恰好使AM=2BN根据题意得:3y=2(30﹣2y)解得:.又所以当点M运动到数轴上表示的点的位置时,AM=2BN。
贵阳市普通中学2020-2021学年度第一学期期末监测考试试卷高二通用技术2021.1一、选择题(本大题包括20小题,每小题3分,共60分。
每小题只有一个选项符合题意,请将正确选项的序号填入答题卡相应的位置)1. 蜡染是我国古老的少数民族民间传统纺织印染手工艺,也是我省苗族同胞世代相传的传统技艺。
蜡染技术源于()A. 人们对美好事物的需求B. 人们对认识世界的需求C. 人们对遮风挡雨的需求D. 人们对居住的需求【答案】A2. 以下是2020年获得诺贝尔奖的项目,其中属于技术活动的是()A. 哈维·阿尔特、迈克尔·霍顿、查尔斯·赖斯发现丙型肝炎病毒B. 罗杰·彭罗斯发现黑洞的形成是对广义相对论的有力预测C. 赖因哈德·根策尔、安德烈娅·盖兹在银河系中心发现了一个超大质量的致密天体D. 埃玛纽埃勒·沙尔庞捷、珍妮弗·道德纳开发出一种基因组编辑方法【答案】D3. 早在2015年2月,探月工程三期,中国国防科技工业局宣布,探月工程三期再入返回飞行器服务舱为嫦娥五号任务开展在轨验证,已完成调相试验,模拟嫦娥五号着陆器月面采样期间,轨道器的飞行控制过程,验证轨道设计、飞控时序、轨道精度等相关技术项目,为月球轨道交会对接创造良好条件。
下列说法中不.恰当..的是()A. 再入返回飞行器服务舱为嫦娥五号任务月球轨道交会对接创造良好条件体现了技术的目的性B. 再入返回飞行器服务舱为嫦娥五号任务开展在轨验证属于模拟实验C. 为实现嫦娥五号任务而验证、完善相关技术体现了技术是实现设计的基础前提D. 再入返回飞行器服务舱一次完成多项技术验证体现了技术的专利性【答案】D4. 为进一步加强塑料污染治理,建立健全塑料制品长效管理机制。
8月6日,贵州省发展改革委、贵州省生态环境厅联合印发《关于进一步加强塑料污染治理的实施方案》,在方案中规定到2020年底,全省范围餐饮行业禁止使用不可降解的一次性塑料吸管;地级以上城市建成区、景区景点的餐饮堂食服务,禁止使用不可降解的一次性塑料餐具。
2020-2021学年华东师大新版七年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣3的相反数为()A.﹣3B.﹣C.D.32.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A.13.75×106B.13.75×105C.1.375×108D.1.375×109 3.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣4.某大楼地上共有12层,地下共有4层.某人乘电梯从地下2层升至地上9层,电梯一共升了()A.7层B.8层C.9层D.10层5.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥6.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a57.下列5个数中:2,1.0010001,,0,﹣π,有理数的个数是()A.2B.3C.4D.58.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°9.若x=3n+1,y=3×9n﹣2,则用x的代数式表示y是()A.y=3(x﹣1)2﹣2B.y=3x2﹣2C.y=x3﹣2D.y=(x﹣1)2﹣210.已知a+2b=5,则代数式3(2a﹣3b)﹣4(a﹣3b+1)+b的值为()A.14B.10C.6D.不能确定二.填空题(共5小题,满分15分,每小题3分)11.比较大小:﹣﹣(填“<”或“>”).12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.13.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有个.14.已知a表示一个一位数,b表示一个两位数,把a放到b的左边组成一个三位数,则这个三位数可以表示为.15.如图,用围棋子按某种规律摆成的一行“七”字,按照这种规律,第n个“七”字中的围棋子有个.三.解答题(共8小题,满分75分)16.计算题:(1)﹣23﹣[﹣0.2÷×(﹣2)2﹣|﹣5|];(2)(﹣+﹣)÷(﹣).17.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.18.阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?19.育杰中学七年级一班3名教师决定带领本班a名学生利用假期去某地旅游.甲旅行社的收费标准为:教师全价,学生半价;乙旅行社的收费标准为:不管老师还是学生一律八折优惠,这两家旅行社的全价都是每人500元.(1)请分别用含a的式子表示三名教师和a名学生选择这两家旅行社所需的费用;(2)当a=55时,选择哪一家旅行社更合算?20.如图,点C是AB上一点,点D是AC的中点,若AB=12,BD=7,求CB的长.21.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.22.如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM()∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF()由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.23.阅读并填空问题:在一条直线上有A,B,C,D四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A为端点的线段有AB,AC,AD3条,同样以B为端点,以C为端点,以D为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有条线段.那么,如果在一条直线上有5个点,则这条直线上共有条线段.如果在一条直线上有n 个点,那么这条直线上共有条线段.知识迁移:如果在一个锐角∠AOB内部画2条射线OC,OD,那么这个图形中总共有个角,若在∠AOB内画n条射线,则总共有个角.学以致用:一段铁路上共有5个火车端,若一列客车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备种不同的车票.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣3的相反数是3.故选:D.2.解:13.75亿这个数字用科学记数法表示为1.375×109.故选:D.3.解:单项式﹣的系数和次数是:﹣,5.故选:B.4.解:根据题意得:9﹣(﹣2)﹣1=10,则某人乘电梯从地下2层升至地上9层,电梯一共升了10层,故选:D.5.解:观察图形可知,这个几何体是三棱柱.故选:A.6.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.7.解:有理数有2,1.0010001,,0,共4个.故选:C.8.解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.9.解:∵x=3n+1,y=3×9n﹣2=3×32n﹣2,∴y=3(x﹣1)2﹣2.故选:A.10.解:∵a+2b=5,∴原式=6a﹣9b﹣4a+12b﹣4+b=2a+4b﹣4=2(a+2b)﹣4=10﹣4=6,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:|﹣|=,|﹣|=,﹣,故答案为:>.12.解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.13.解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1,左视图有两列,每列的方块数分别是:1,2,俯视图有三列,每列的方块数分别是:2,1,2,∴总个数为1+2+1+1+1=6个.故答案为6.14.解:这个三位数可以表示为100a+b.故答案是:100a+b.15.解:∵第1个图形有1+4×1+2=7个棋子,第2个图形有1+4×2+3=12个棋子,第3个图形有1+4×3+4=17个棋子,…∴第n个“七”字中的棋子个数是:1+4n+(n+1)=5n+2.故答案为:5n+2.三.解答题(共8小题,满分75分)16.解:(1)=﹣8﹣(﹣××4﹣5)=﹣8﹣(﹣1﹣5)=﹣8+6=﹣2;(2)===9﹣8+6=7.17.解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.18.解:(1)﹣3+6﹣2+1﹣5﹣2+9﹣6=﹣2km,答:将最后一位乘客送到目的地时,小李在迎泽公园门口西边2km处.(2)|﹣3|=3,|﹣3+6|=3,|﹣3+6﹣2|=1,|﹣3+6﹣2+1|=2,|﹣3+6﹣2+1﹣5|=3,|﹣3+6﹣2+1﹣5﹣2|=5,|﹣3+6﹣2+1﹣5﹣2+9|=4,|﹣3+6﹣2+1﹣5﹣2+9﹣6|=2.∵5>4>3=3=3>2=2>1,∴将第6位乘客送到目的地时,小李离迎泽公园门口最远.(3)(|﹣3|+|6|+|﹣2|+|1|+|﹣5|+|﹣2|+|9|+|﹣6|)×0.2=6.8m3答:这天上午小李接送乘客,出租车共消耗天然气6.8立方米.(4)[(6+5+9+6)﹣3×4]×1.2+8×5=56.8元,答:小李这天上午共得车费56.8元.19.解:(1)根据题意得:甲旅行社费用:(250a+1500)元;乙旅行社费用:(400a+1200)元;(2)当a=55时,250a+1500=15250,400a+1200=23200,∵15250<23200,∴选择甲旅行社更合算.20.解:∵AB=12,BD=7,∴AD=AB﹣BD=12﹣7=5.∵点D是AC的中点,∴AC=2AD=2×5=10.∴CB=AB﹣AC=12﹣10=2.21.解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.22.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,故答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.23.解:问题:如果在一条直线上有5个点,则这条直线上共有=10条线段.如果在一条直线上有n个点,那么这条直线上共有条线段.;知识迁移:在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角;学以致用:5个火车站共有线段条数×5×4=10,需要车票的种数:10×2=20(种).故答案为:10,,6,,20.。
贵州省贵阳市2020-2021学年七年级上学期期末测试卷(01)学校:姓名:准考证号:一、积累与运用(30分)1.下列词语中加点的字读音全都正确的一项是(3分)A.瘫痪.(huàn)憔.悴(jiāo)尴尬..(ɡānɡà)高邈.(miǎo)B.匿.笑(nì)菡萏.(dàn)静谧.(mì)酝酿.(liànɡ)C.攲.斜(qī)感慨.(kǎi)黄晕.(yùn)水藻.(zǎo)D.刹.那(shà)卖弄.(nòng)干涸.(hé)沐.浴(mù)【答案】C【解析】A.“憔悴”中的“憔”读作qiáo;B.“酝酿”中的“酿”读作niànɡ;D.“刹那”中的“刹”读作chà,“卖弄”中的“弄”读作nong;故选C。
2.下列字形完全正确的一项是(3分)A.朗润绝别祷告翻来复去B.绅士分岐心绪油然而升C.怂恿蜷伏惩诫惊荒失措D.匍匐头衔蓬勃杞人忧天【答案】D【解析】A.“绝”写作“诀”,“复”写作“覆”;B.“岐”写作“歧”,“升”写作“生”;C.“诫”写作“戒”,“荒”写作“慌”;故选D。
3.下列句子中加点词语使用不恰当的一项是(3分)A.大家都知道,鲁迅先生的杂文言辞犀利,具有极强烈的战斗性,气势咄咄逼人....。
B.大型纪录片《大国工匠》呈现了工人师傅对技术一丝不苟、精益求精....的执着追求。
C.如果不想迷失在纷繁复杂的世界里,我们就必须择善而从....,在真理的引领下前行。
D.为打赢脱贫攻坚仗,扶贫干部进深山、走村寨、入农户,忙得不亦乐乎....。
【答案】A【解析】A.咄咄逼人:形容气势汹汹,盛气凌人,使人难堪,也指形势发展迅速,给人压力。
含贬义。
贬义褒用,不符合语境,使用有误;B.精益求精:意思是好了还求更好。
使用恰当;C.择善而从:指采纳正确的意见或选择好的方法加以实行。
2020-2021学年七年级上学期期末考试数学试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.-2的绝对值是( )A .2B .-2 C.12 D .-122.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27 500亿立方米,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500亿用科学记数法表示为( )A .275×104B .2.75×104C .2.75×1012D .27.5×10113.以下问题,不适合用普查的是( )A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解一批手机的使用寿命 4.数轴上表示-1.2的点在( )A .-2和-1之间B .-1和0之间C .0和1之间D .1和2之间 5.用五块大小相同的小正方体搭成如图所示的几何体,从左面看到该几何体的形状图是( )6.下列说法错误的是( )A .倒数等于本身的数只有±1B .-2x 3y 3的系数是-23,次数是4C .经过两点可以画无数条直线D .两点之间线段最短 7.下面是小虎同学做的整式加减的题,其中正确的是( )A .2a +3b =6abB .ab -ba =0C .5a 3-4a 3=1 D .-a -a =0 8.下列方程中解为x =0的是( )A .2x +3=2x +1B .5x =3x C.x +12+4=5x D.14x +1=09.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( ) A .240元 B .250元 C .280元 D .300元10.一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6 cm 处,另一端(B 点)正好对着直尺刻度约为20.6 cm 处,则水笔的中点位置的刻度约为( )A .15 cmB .7.5 cmC .13.1 cmD .12.1 cm 二、填空题(每小题3分,共18分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款______元. 12.若-7xm +2y 与-3x 3y n是同类项,则m =______,n =______.13.已知m ,n 互为相反数,则3+5m +5n =______.14.把两块三角板按如图所示那样拼在一起,则∠ABC =______度.15.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6 min 到7 min 表示大于或等于6 min 而小于7 min ,其他类同).这个时间段内顾客等待时间不少于4 min 的人数有______人.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是______天.三、解答题(共72分) 17.(8分)计算:(1)(29-14+118)÷(-136); (2)-14-(-6)+2-3×(-13).18.(6分)先化简,再求值:2x 3-(7x 2-9x)-2(x 3-3x 2+4x),其中x =-1.19.(8分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折”.小明测算了一下,如果买100支,比按原价购买可以便宜10元,求每支铅笔的原价是多少?20.(8分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长为13.5 cm ,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC 的长是2 cm.经测量,铅笔盒的中点E 到点A 的距离为10 cm ,请求出小刀的长度.21.(10分)某校想了解学生每周的课外阅读时间的情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数.22.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见下表:今年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=0.8,b=1;(2)若该市某居民8月份交的电费的平均电价为0.9元/度,则该居民8月份用电多少度?23.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)图中有多少个小于平角的角?(2)求出∠BOD的度数;(3)请通过计算说明OE平分∠BOC.24.(12分)如图是一计算程序,回答下列问题:(1)当输入某数后,第1次得到的结果为5,则输入的数值x是多少?(2)小华发现若输入的x的值为16时,第1次得到的结果为8,第2次得到的结果为4,…①请你帮小华完成下列表格:②你能求出第2 019次得到的结果是多少吗?请说明理由.参考答案一、选择题(每小题3分,共30分) 1.-2的绝对值是(A)A .2B .-2 C.12 D .-122.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27 500亿立方米,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500亿用科学记数法表示为(C)A .275×104B .2.75×104C .2.75×1012D .27.5×10113.以下问题,不适合用普查的是(D)A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解一批手机的使用寿命 4.数轴上表示-1.2的点在(A)A .-2和-1之间B .-1和0之间C .0和1之间D .1和2之间5.用五块大小相同的小正方体搭成如图所示的几何体,从左面看到该几何体的形状图是(D)6.下列说法错误的是(C)A .倒数等于本身的数只有±1B .-2x 3y 3的系数是-23,次数是4C .经过两点可以画无数条直线D .两点之间线段最短 7.下面是小虎同学做的整式加减的题,其中正确的是(B)A .2a +3b =6abB .ab -ba =0C .5a 3-4a 3=1 D .-a -a =0 8.下列方程中解为x =0的是(B)A .2x +3=2x +1B .5x =3x C.x +12+4=5x D.14x +1=09.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为(A) A .240元 B .250元 C .280元 D .300元10.一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6 cm 处,另一端(B 点)正好对着直尺刻度约为20.6 cm 处,则水笔的中点位置的刻度约为(C)A .15 cmB .7.5 cmC .13.1 cmD .12.1 cm 二、填空题(每小题3分,共18分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款(3a +5b)元. 12.若-7xm +2y 与-3x 3y n是同类项,则m =1,n =1.13.已知m ,n 互为相反数,则3+5m +5n =3.14.把两块三角板按如图所示那样拼在一起,则∠ABC =120度.15.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6 min 到7 min 表示大于或等于6 min 而小于7 min ,其他类同).这个时间段内顾客等待时间不少于4 min 的人数有32人.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是167天.三、解答题(共72分) 17.(8分)计算:(1)(29-14+118)÷(-136); (2)-14-(-6)+2-3×(-13).解:原式=(29-14+118)×(-36)=-8+9-2=-1. 解:原式=-1+6+2+1 =8.18.(6分)先化简,再求值:2x 3-(7x 2-9x)-2(x 3-3x 2+4x),其中x =-1. 解:原式=2x 3-7x 2+9x -2x 3+6x 2-8x =-x 2+x. 当x =-1时,原式=-(-1)2+(-1)=-2.19.(8分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折”.小明测算了一下,如果买100支,比按原价购买可以便宜10元,求每支铅笔的原价是多少? 解:设每支铅笔的原价是x 元,由题意,得 100×0.8x =100x -10.解得x =0.5. 答:每支铅笔的原价是0.5元.20.(8分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长为13.5 cm ,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC的长是2 cm.经测量,铅笔盒的中点E到点A的距离为10 cm,请求出小刀的长度.解:AC=AB-BC=13.5-2=11.5(cm).因为E是AD的中点,所以AD=2AE=2×10=20(cm).所以CD=AD-AC=20-11.5=8.5(cm).答:小刀的长度为8.5 cm.21.(10分)某校想了解学生每周的课外阅读时间的情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数.解:(1)总人数为21÷21%=100(人).D组人数为100-10-21-40-4=25(人).频数直方图补充如图.(2)m=40÷100×100=40.E组对应的圆心角度数为360°×4100=14.4°.22.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见下表:今年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=0.8,b=1;(2)若该市某居民8月份交的电费的平均电价为0.9元/度,则该居民8月份用电多少度?解:设该居民8月份用电x度.根据题意,得150×0.8+1×(x-150)=0.9x.解得x=300.答:该居民8月份用电300度.23.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)图中有多少个小于平角的角?(2)求出∠BOD的度数;(3)请通过计算说明OE平分∠BOC.解:(1)图中有9个小于平角的角.(2)因为OD平分∠AOC,∠AOC=50°,所以∠AOD =∠COD =12∠AOC =25°. 所以∠BOD =180°-25°=155°.(3)因为∠BOE =180°-∠DOE -∠AOD =180°-90°-25°=65°,∠COE =∠DOE -∠COD =90°-25°=65°,所以∠BOE =∠COE ,即OE 平分∠BOC.24.(12分)如图是一计算程序,回答下列问题:(1)当输入某数后,第1次得到的结果为5,则输入的数值x 是多少?(2)小华发现若输入的x 的值为16时,第1次得到的结果为8,第2次得到的结果为4,… ①请你帮小华完成下列表格:②你能求出第2 019次得到的结果是多少吗?请说明理由.解:(1)因为第1次得到的结果为5,而输入值可能是奇数,也可能是偶数,当输入值是奇数时,则x +3=5,解得x =2,不符合前提,舍去;当输入值是偶数时,则12x =5,解得x =10,符合前提. 故输入的数值x 是10.(2)①如表所示.②第2 019次得到的结果是2.理由:因为从第2次开始,每3次是一个循环,且(2 019-1)÷3=672……2,又因为672×3+1=2 017,所以第2 017次与第4次的结果相同,即为1. 所以第2 019次与第3次结果相同,即为2.。
2020-2021学年四年级下学期期末考试数学试卷一、填空.(每空1分,共21分)1.(2分)任何数与0相乘都得,0除以的数还得0.2.(2分)一个数是由8个千分之一,6个十分之一和2个十组成的,这个数是,读作.3.(3分)用3、2、6和小数点组成的最大一位小数是,组成的最小两位小数是,它们的差是.4.(2分)一个两位小数精确到个位后是8,这个数最大可能是,最小可能是.5.(2分)把6改写成两位小数是;把20.20化简后是.6.(2分)比3.67多的数是7.6,比少5.28的数是2.69.7.(2分)在一个三角形中,已知∠1=38°,∠2=52°,∠3=,这是一个三角形.8.(2分)一个等腰三角形的一条边长4厘米,另一条边长10厘米,第三条边长应是厘米,这个三角形的周长是厘米.9.(2分)三角形有三条对称轴,三角形有一条对称轴.10.(2分)一个等腰三角形的周长是20厘米,已知其中的一条边长4厘米,另外两条边分别长厘米和厘米.二、判断.(10分)11.(1分)长方形、正方形、圆和三角形都是轴对称图形.(判断对错)12.(1分)如果三角形中只有两个锐角,就可以确定这个三角形不是锐角三角形.(判断对错)13.(1分)钝角三角形的两个锐角的和小于90°..(判断对错)14.(1分)任何一个三角形都有三条高..(判断对错)15.(1分)四年级学生平均身高155厘米,每个学生身高都会在150厘米以上.(判断对错)16.(1分)等腰三角形底角一定是锐角(判断对错)17.(1分)小数的加减法和整数的加减法相同,都是末位对齐..(判断对错)18.(1分)计算76×99没有简便方法,只能笔算.(判断对错)19.(1分)小数的位数越多,小数就越大..(判断对错)20.(1分)50个0.01和5个15一样大. (判断对错)三、选择.(10分)21.(2分)两个一样的直角三角形不能拼成( )A .长方形B .三角形C .梯形22.(2分)下面图形中不是轴对称图形的是( )A .等腰三角形B .等腰梯形C .平行四边形23.(2分)已知等腰三角形的顶角是80°,那么它的底角是( )A .50°B .80°C .100°24.(2分)已知三角形其中两边分别长5厘米和8厘米,那么这个三角形周长最大是()厘米.(三条边都是整数)A .25B .26C .无法确定25.(2分)观察从( )看到的形状相同.A .上面和前面B .左面和前面C .左面和上面四、填一填,算一算.(27分)26.(6分)在横线上里填上合适的数.+2.5=3.08 ﹣0.17=5.9 7.2﹣ =1.27×100=5.8 ÷100=4.3 8.3÷ =0.08327.(6分)单位换算.0.7米= 厘米 5.08千克= 克 7060米= 千米80平方分米= 平方米0.3公顷= 平方米 50.8厘米= 米28.(3分)把下面各数改写成用“万”作单位的数,并精确到十分位.76300≈ ;199620≈ ;8900≈ .29.(12分)用简便方法计算下面各题.3.6+5.73+7.4+4.27 12.35﹣7.56﹣2.44 58×99+5873×37﹣27×73125×647000÷8÷125五、看图解决问题.(8分)30.(4分)画出如图三角形指定底边上的高.31.(4分)先把下面的轴对称补充完整,再将它向右平移6格.六、解决问题.(24分)32.(5分)笔记本每本3.8元,练习本每本1.5元.王老师两种本子各购买10本,一共要花多少钱?33.(5分)一辆汽车从甲地开往乙地送货,去时以40千米/时的速度行驶,3小时正好到达,原路返回时只用了2小时,你知道这辆汽车往返的平均速度是多少吗?34.(5分)四年级有40名同学参加植树活动.男生每人种3棵,女生每人种2棵,他们一共种了98棵树.这个班男生、女生各有多少人?35.(4分)10千克小麦可磨出7.2千克面粉,1吨小麦可以磨出多少千克面粉?36.(5分)某旅行社组织72人外出旅游,怎样租车最省钱?2020-2021学年四年级下学期期末考试数学试卷参考答案与试题解析一、填空.(每空1分,共21分)1.(2分)任何数与0相乘都得0,0除以非0的数还得0.【解答】解:任何数与0相乘都得0,0除以非0的数还得0.故答案为:0,非0.2.(2分)一个数是由8个千分之一,6个十分之一和2个十组成的,这个数是20.608,读作二十点六零八.【解答】解:这个数是20.608,读作二十点六零八。
B
6 *
O A
10.3
8%
9%
13%
11.6%
20102009200820072006***
***D *
*C **B **A *2020-2021学年贵阳市七年级上学期数学
期末试题及答案
班别: 学号: 姓名: 评分:
一、选择题:(每题3分,共30分)
1.如果“盈利10%”记为+10%,那么“亏损6%”记为 ( )(A ) %16 (B ) %6 (C ) %6 (D ) %
4 2.2020-2021学年9月第九届全国少数民族传统体育运动会将在贵阳举行,为营造一个清洁、优美、舒适的美好贵阳,2020-2021学年3月贵阳市启动了“自己动手,美化贵阳”活动,在活动过程中,自愿者陆续发放了50000份倡议书,50000这个数用科学记数法被视为 ( )
(A ) 5
105 (B ) 4
105 (C ) 5
105.0 (D ) 4
104.0 3.下列事件是必然事件的是 ( )
(A )小婷上学一定坐公交车 (B )买一张电影票,座位号正好是偶数(C )小红期末考试数学一定得满分 (D )将菜油滴入水中,菜油会浮在水面上4.在0,1,2 ,5.3 这四个数中,是负整数的是 ( )(A ) 0 (B ) 1 (C ) 2 (D ) 5.3 5.下列计算结果正确的是 ( )(A )b a b a b a 2
2
2
2 (B )5
3
2
a a a (C )1
342
2
a (D )ab
b a 752 6.如图,下面语句中不正确的是 ( )
(A )直线OA 和直线AB 是同一条直线 (B )射线OA 和射线OB 是同一条射线(C )线段AB 和线段BA 是同一条线段 (D )射线OA 和射线AB 是同一条射线7.近年来我国国内生产总值增长率的变化情况如下: ( )
若想根据表中数据制成统计图,以别清楚看出这几年来国内生产总值增长率变化情况,应选取 ( )
(A )折线统计图 (B )扇形统计图 (C )条形统计图 (D )以上均不能选8.将图中的三角形绕虚线旋转一周,所得的几何体是 ( )
*D*
*C*
*B*
*A *
-1
-65
4
B
15 *
E D
C
A
9.如图,∠AOC和∠BOD都是直角,如果∠AOB = 150°,那么∠COD等于()(A) 40° (B) 30° (C) 50° (D) 60°
10.小新准备用如图的纸片做一个礼品盒,为了美观,他想在纸片的六个正方形内分别画上图案,使做成礼品盒后,对面的图案都相同,那么他画的图案正确的是()
二、填空题:(每题4分,共20分)
11.已知1
x是方程3
4
mx的解,则____
m;
12.某校5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款
元(用代数式表示);
13.一个装有6个白球,3个红球,1个黑球的布袋中,摸到黑球的可能性摸到白球的可能性.(填“大于”或“小于”或“等于”);
14.如图,小明写作业时不慎将墨水滴在
数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是;
15.如图,点C在线段AB上,点E是线段AC的中点,点D是线段BC的中点,若ED = 6,则线段AB的长是;
三、解答题:(写出必要过程)
16.(8分)计算:
(1)
3
7
)2
(2
(2)
)
12
11
6
5
4
5
(
)
36
(
52
17.(6分)先化简,后求值
)
3
3(
)
2
(2
3
42
2
2
2xy
xy
y
x
xy
xy
y
x
,其中4
3
x
,
1
y
1
2
3119
*
2
1
*
*
**
**/**
********
**
1600
140012001000800600400200
****
14.4
**10.6%
**30.0%**24.0%
O 18.(10分)解下列方程:
(1)x x 512 (2)22
15
13
x x 19.(6分)如图是由几个小立方体所堆成几何体俯视图,小正方形里的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图;
20.(6分)我省某地区结合本地自然条件,大力发展茶叶、蔗糖、水果、药材等产业,取得良好经济效益,茶叶、蔗糖、水果、药材成了该地区四大产业,图①、图②是根据该地区2020-2021学年各项产业统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答下列问题:
(1)该地区2020-2021学年各项产业总值共 万元;(2)图①中蔗糖所占的百分数是 ,
2020-2021学年该地区蔗糖业的产值有 万元;(3)将图②中“蔗糖”部分。