备战2014年数学中考————中考数学第一轮复习精品讲解专题突破(2)(5个专题)(共222张PPT)
- 格式:ppt
- 大小:16.13 MB
- 文档页数:140
慈恩至慧教育--2014年中考数学经典专题讲座-方法论与解题技巧- 1 - 寄语2014年中考芸芸学子——放下执着,战胜心中的不安和恐惧等焦躁情绪,把握机会,勇敢前行!祝中考成功!学有所成!服务社会!服务众生!阿弥陀佛2014年中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1 (2012•白银)方程的解是()A.x=±1 B.x=1 C.x=﹣1 D.x=0思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x+1),得x2﹣1=0,即(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解;把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.故选B.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.对应训练1.(2012•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
2014-2015学年中考数学学科复习备考策略每年的中考备考都是时间紧,任务重,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。
结合河南中考数学试题的变化趋势、课程标准对初中数学的要求,并对2008—2010年河南中招试题分析研究以及我县九年级数学的实际情况,我们将在今年的复习备考中,打破以前的三轮复习,把原来的第一轮知识梳理、形成知识网络和第二轮的专题复习合二为一,同时进行,第二轮改为题型训练,第三轮仍是综合训练和模拟训练。
下面我就具体谈一下各轮复习的安排、要求以及应注意的问题。
第一轮:专题复习(时间:3月至4月约两个月)1、第一轮复习的形式及要求近几年的初中数学中考试题安排了较大比例的试题来考查“双基”。
全卷的基础知识的覆盖面较广,起点低,许多试题源于课本,在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展,复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,达到举一反三、触类旁通的目的,做到以不变应万变,提高应试能力。
在这一阶段教学中,可以按《数与式》、《方程与不等式(组)》、《函数》、《统计与概率》、《图形的认识》、《三角形》、《四边形》、《解直角三角形》和《圆》这九个专题进行系统的复习。
这一阶段是总复习的基础,是重点,既要侧重双基训练,又要侧重培养学生的数学能力。
为更好的搞好第一轮复习,全面提高学生的数学水平,争取在中考中取得优异的成绩,特对第一轮复习提出以下要求:①按照“课本为根本,课标为指导”的宗旨,采用课本知识梳理与考试说明专题复习相结合的形式进行复习,第一轮复习要求面面俱到,题型全,面向全体学生,以训练学生的基本能力为主,争取大面积丰收。
②各教研组的老师要加强集体备课,既有分工又有合作。
③每一部分结束以后,均安排一次单元过关检测,要求难度系数为5:4:1。
④第一轮复习结束以后,组织学生做好2011—2014年中考题,然后安排一次综合检测,难度可适当降低。
2014年中考数学一轮复习讲义:一元二次方程【考纲要求】1.理解一元二次方程的概念.2.掌握一元二次方程的解法.3.了解一元二次方程根的判别式,会判断一元二次方程根的情况;了解一元二次方程根与系数的关系并能简单应用.4.会列一元二次方程解决实际问题.【命题趋势】结合近年中考试题分析,一元二次方程的内容考查主要有一元二次方程的有关概念,一元二次方程的解法及列一元二次方程解决实际问题,题型以选择题、填空题为主,与其他知识综合命题时常为解答题.【知识梳理】一、一元二次方程的概念:1、只含有一个未知数,并且未知数的最高次数是二次,这样的整式方程叫做一元二次方程。
2、一元二次方程的一般形式是ax2+bx+c=0(a≠0)。
二、一元二次方程的解法:1、解一元二次方程的基本思想是降次,主要方法有:直接开平方法、配方法、公式法、因式分解法。
2、配方法:通过配方把一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)变形为能直接开平方的形式,再利用直接开平方法求解。
3、公式法:一元二次方程ax2+bx+c=0(a≠0)当b2-4ac≥0时,方程有两个实数根。
4、因式分解法:用因式分解法解方程的原理是:若a·b=0,则a=0或b=0.三、一元二次方程根的判别式:1.一元二次方程根的判别式是⊿=b2-4ac。
2.(1)b2-4ac>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根;(2)b2-4ac=0一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根;(3)b2-4ac<0一元二次方程ax2+bx+c=0(a≠0)无实数根。
四、一元二次方程根与系数的关系:1.在使用一元二次方程的根与系数的关系时,要先将一元二次方程化为一般形式. 2.若一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根是x 1,x 2,则x 1+x 2=﹣,12c x x a五、实际问题与一元二次方程: 列一元二次方程解应用题的一般步骤: (1)审题;(2)设未知数;(3)找相等关系;(2)(4)列方程;(5)解方程;(6)检验;(7)写出答案. 题型分类 、深度剖析:考点一、一元二次方程的有关概念【例1】下列方程中是关于x 的一元二次方程的是( ) A .x 2+1x2=0 B .ax 2+bx +c =0C .(x -1)(x +2)=1D .3x 2-2xy -5y 2=0解析:由一元二次方程的定义可知选项A 不是整式方程;选项B 中,二次项系数可能为0;选项D 中含有两个未知数.故选C.答案:C方法总结 方程是一元二次方程要同时满足下列条件:①是整式方程;②只含有一个未知数;③未知数的最高次数为2;④二次项系数不等于0.容易忽略的是条件①和④.触类旁通1 已知3是关于x 的方程x 2-5x +c =0的一个根,则这个方程的另一个根是( )A .-2B .2C .5D .6 考点二、一元二次方程的解法 【例2】解方程x 2-4x +1=0.分析:本题可用配方法或公式法求解.配方法通常适用于二次项系数化为1后,一次项系数是偶数的一元二次方程.对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解.解:解法一:移项,得x 2-4x =-1.配方,得x 2-4x +4=-1+4,即(x -2)2=3,由此可得x -2=±3,x 1=2+3,x 2=2- 3.解法二:a =1,b =-4,c =1.b 2-4ac =(-4)2-4×1×1=12>0,x =4±122=2± 3.方法总结 此类题目主要考查一元二次方程的解法及优化选择,常常涉及到配方法、公式法、因式分解法.选择解法时要根据方程的结构特点,系数(或常数)之间的关系灵活进行,解题时要讲究技巧,尽量保证准确、迅速.触类旁通2 解方程:x 2+3x +1=0. 考点三、一元二次方程根的判别式的应用【例3】关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .4± 2D .0或8解析:b 2-4ac =(m -2)2-4(m +1)=0,解得m 1=0,m 2=8.故选D. 答案:D方法总结 由于一元二次方程有两个相等的实数根,可得根的判别式b 2-4ac =0,从而得到一个关于m 的方程,解方程求得m 的值即可.一元二次方程根的判别式的应用主要有以下三种情况:(1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数中字母的取值范围;(3)应用判别式证明方程根的情况.触类旁通3 已知关于x 的一元二次方程mx 2+nx +k =0(m ≠0)有两个实数根,则下列关于判别式n 2-4mk 的判断正确的是( )A .n 2-4mk <0 B .n 2-4mk =0 C .n 2-4mk >0 D .n 2-4mk ≥0 考点四、一元二次方程根与系数的关系【例4】已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.解:(1)依题意,得b 2-4ac ≥0,即[-2(k -1)]2-4k 2≥0,解得k ≤12.(2)解法一:依题意,得x 1+x 2=2(k -1),x 1x 2=k 2. 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1x 2-1, 即2(k -1)=k 2-1,解得k 1=k 2=1.∵k ≤12,∴k 1=k 2=1不合题意,舍去.②当x 1+x 2<0时,则有x 1+x 2=-(x 1x 2-1), 即2(k -1)=-(k 2-1).解得k 1=1,k 2=-3. ∵k ≤12,∴k =-3.综合①②可知k =-3.解法二:依题意,可知x 1+x 2=2(k -1). 由(1)可知k ≤12,∴2(k -1)<0,即x 1+x 2<0.∴-2(k -1)=k 2-1,解得k 1=1,k 2=-3.∵k ≤12,∴k =-3.方法总结 解决本题的关键是把给定的代数式经过恒等变形化为含x 1+x 2,x 1x 2的形式,然后把x 1+x 2,x 1x 2的值整体代入.研究一元二次方程根与系数的关系的前提为:①a ≠0,②b 2-4ac ≥0.因此利用一元二次方程根与系数的关系求方程的系数中所含字母的值或范围时,必须要考虑这一前提条件.触类旁通4 若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是( ) A .4 B .3 C .-4 D .-3 考点五、用一元二次方程解实际问题【例5】汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?解:设该品牌汽车年产量的年平均增长率为x ,由题意,得 6.4(1+x )2=10,解得x 1=0.25,x 2=-2.25.∵x 2=-2.25<0,故舍去,∴x =0.25=25%.10×(1+25%)=12.5.答:2011年的年产量为12.5万辆.方法总结 此题是一道典型的增长率问题,主要考查列一元二次方程解应用题的一般步骤.解应用题的关键是把握题意,找准等量关系,列出方程.最后还要注意求出的未知数的值是否符合实际意义,不符合的要舍去.触类旁通5 商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,请回答:(1)商场日销售量增加__________件,每件商品盈利__________元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2 100元?。
2014年中考数学一轮复习讲义:一次方程(组)【考纲要求】1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质. 2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法. 3.会列方程(组)解决实际问题. 【命题趋势】一元一次方程在各省市的中考试题中体现的不突出,个别省市仅以填空题、选择题、列方程解应用题的方式出现.二元一次方程组在中考中一般以填空题、选择题考查定义与解法,以解答题考查列方程组解应用题.【知识梳理】知识点一:一元一次方程1、等式及其性质 ⑴ 等式:用等号“=”来表示相等关系的式子叫等式. ⑵ 性质:① 等式的两边都加上或减去同一个数或整式,等式仍然成立。
② 等式的两边都乘以或除以同一个数(除数不等于0),等式仍然成立。
2、 方程、一元一次方程的概念 ⑴ 方程:含有未知数的等式叫做方程。
使方程左右两边值相等的未知数的值,叫做方程的解。
求方程解的过程叫做解方程. 方程的解与解方程不同。
⑵ 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是一次,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0()0≠a .3、 解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1. 4、易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解 ②去分母时,不要漏乘没有分母的项; ③解方程时一定要注意“移项”要变号. 知识点二:二元一次方程组的相关概念. 1. 二元一次方程的定义定义:方程中含有两个未知数(x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程.注意问题:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式. 3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数。
2014年中考数学考前指导及知识梳理一、考前指导每次临近中考,师生普遍感到时间紧、任务重.出现教师疲惫,学生很累,家长焦虑的现象.为了更好地提高应试能力、激发应试潜质、调节应试心理,建议从以下几方面做起:一、加强应试技能训练1、认真审题,注重方法把好审题关是关键,审题时,要抓题眼、题干、题魂;要结合文字背景,对本题的图表信息进行分析、处理和加工,挖出隐含条件;要利用相关的知识储备,检索出解决问题的思路;要对于题目中的关键句、难理解语句多读几遍,必须弄清题意.选择题的解决方法有:直接法、间接法、筛选法、数形结合法、排除法、特殊值(图形)法、代入法、图像法、量一量、画一画、折一折等.解答题,审题时,还要分清主次,抓住重点,注意轻重缓急.2、知此知彼,百战百胜考试时,要充满自信,保持高昂的斗志.遇见容易题,不沾沾自喜;要深知,我易人也易,怎可大意?遇见似曾相识的题,不慌乱,不要老想在哪见过,煞费苦心,,犹豫不决;要静下来,寻求方法;遇到难题,不要惊慌,要冷静、沉着应战,相信我难人更难,从而调释自己的畏难情绪.3、先易后难,稳步答题考题的设计一般按照先易后难的顺序设计的,难易分配为6:3:1.为此要求从前往后依次做,个别卡壳的,不要太纠缠,可跳行,如有时间,再回头攻破.先做简单的、易做的,这样有助于缓解应试的紧张情绪.4、仔细答题,稳中求快由于数学试题总题量较多,在时间分配上要注意调控.多数学生感到时间紧,这是正常现象.答题效果在于简单的会做;会做的不失分;难题努力做,争取得点分;难题(大题)不求得满分,唯求总能得点分.平时训练表明:“要想得高分,基础题争取不失分”基础题做得好,就为中档和高档题赢得时间保证.其他涉及几何图形转化,统计和概率,解直角三角形,方程、函数的应用,图表题,阅读题,合情推理题,操作探究题等,要抓住主干知识,做到分析对口,理解到位,解题得法.不盲目解答,先找入口,理清思路,才有出路.5、注重方法,讲究策略考生答题,对于涉及几何图形转化,统计和概率,解直角三角形,方程、函数的应用,图表题,阅读题,合情推理题,操作探究题等,要抓住已知,剖析未知,要抓住主干知识,做到分析对口,理解到位,解题得法.不盲目解答,先找入口,理清思路,才有出路.要特别注意隐含条件;要关注要点,易错易混点;要关注主要的数学方法:换元、配方、待定系数、消元等.6、注重思想,构建模型数学考试强调解题思想的重要性,初中阶段需要掌握的数学思想主要有:数形结合、分类讨论、方程与函数以及划归与转化等.在解题时有意渗透这种思想,能有效地寻求思路,能从总体上得到解题的入口,起到引领考生初步进入解题的关口.如平面直角坐标系的建立,就搭建数形结合的平台,函数图像问题,方程(组)解的问题,可以通过数形结合的思想加以解决.判断等腰三角形,直角三角形,相似三角形,质点在线上运动等问题要注意运用分类讨论的思想加以考虑,压轴题,如求函数解析式,要设未知数,用所设的未知数来表示相关的量,运用方程的思想(整式方程、分式方程)进行分析.如求质点运动的时间问题,也需要运用方程思想,可采用相似三角形;勾股定理;或简单的一次方程加以解决.运用思想找方法是解决问题的突破口.应该引起考生的高度注意.7、关注细节,寻求契机考生在解题时,往往忽视一些细节,殊不知细节决定成败.审题不清或审题疏漏会导致整解题结果报废。
2014中考数学复习指导每年的中考都是数学成绩拉分,如何在短时间内提高复习的效率和质量,是我们数学教师关心研究的问题。
注重学法指导,建立和谐民主的课堂,让学生学会学习数学,能切实提高数学复习的质量。
学校组织部分初三老师到长春参加中考研讨会,听了专家的报告,学习了很多宝贵经验。
结合这些经验和我校的实际情况,谈一谈我校的具体做法和体会,求得大家的批评和指正。
一、制定合理的复习计划切实可行的复习计划能让复习有条不紊地进行下去,避免复习时的随意性和盲目性。
我们将中考的数学复习分为三轮进行。
第一轮:基础知识系统复习。
1、在复习时我们首先要认真研究新课程标准,和吉林省学业考试指导纲要,摸清初中数学内容的脉络,开展基础知识系统复习。
我们按照数与代数、空间与图形、统计与概率、实践与综合应用四个模块,按照课程标准给学生重新梳理哪些知识点是识记,哪些知识点是理解,哪些知识点是运用。
如在复习实数时,我们将实数的有关知识按照课标要求中的识记、理解、运用整理出来,然后以教科书为蓝本进行基础知识复习。
将每个知识点给学生整理出来,在这里我们要求学生过“三关”,第一关“记忆关”必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果;第二关过基本方法关,如:待定系数法求二次函数基础知识;第三关过基本技能关,如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
基本宗旨:知识系统化,练习专题化,专题规律化。
在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
2、我们通过典型的例、习题讲解让学生掌握学习方法,对例、习题能举一反三,触类旁通,变条件、变结论、变图形、变式子、变表达方式等。
3、我们定期检测,及时反馈。
练习要有针对性、典型性、层次性,不能盲目的加大练习量。
要定期检查学生完成的作业。
我们对于作业、练习、测验中的问题,采用集中讲授和个别辅导相结合,因材施教,全面提高复习效率。
2014年中考数学一轮复习讲义:一次函数【考纲要求】1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式. 2.会画一次函数的图象,掌握一次函数的基本性质.3.体会一次函数与二元一次方程的关系,能用一次函数解决简单实际问题. 【命题趋势】一次函数是中考的重点,主要考查一次函数的定义、图象、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.【知识梳理】一、正比例函数和一次函数的概念:一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
二、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
k 的符号b 的符号函数图像图像特征k>0b>0图像经过一、二、三象限,y 随x 的增大而增大。
b<0图像经过一、三、四象限,y 随x 的增大而增大。
K<0b>0图像经过一、二、四象限,y 随x 的增大而减小b<0图像经过二、三、四象限,y 随x 的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
三、正比例函数的性质:一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
四、一次函数的性质:一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 五、正比例函数和一次函数解析式的确定:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。