月考模拟
- 格式:doc
- 大小:1.26 MB
- 文档页数:6
甘肃省2024年八年级语文下册第一次月考模拟试卷(三)满分:120分时间:120分钟一、积累与运用(15分)请在下面相应的横线上端正地书写正确答案或填写相应选项。
(第1—4题每句1分,第5题按要求赋分)1.微君之故,?(《诗经·式微》)2.《诗经·子衿》中运用夸张的手法,造成主观时间与客观时间的反差,从而将抒情主人公强烈的情绪心理形象地表现出来的诗句是:,。
3.陶渊明《桃花源记》中描写桃花源社会环境安定平和的语句是:,。
4.描写传统节日习俗的古诗文有很多,请你默写出连续的两句:,。
【答案】(1)胡为乎中露(2)一日不见;如三月兮(3)阡陌交通;鸡犬相闻(4)清明时节雨纷纷;路上行人欲断魂(或遥知兄弟登高处,遍插茱萸少一人;爆竹声中一岁除,春风送暖入屠苏;但愿人长久,千里共婵娟)【知识点】一般性默写;理解性默写;开放性默写【解析】根据平时对古诗文的积累答题,注意“乎、兮、阡、陌、萸、屠、婵”的书写。
故答案为:⑴胡为乎中露;⑵一日不见,如三月兮;⑶阡陌交通,鸡犬相闻;⑷清明时节雨纷纷,路上行人欲断魂(或遥知兄弟登高处,遍插茱萸少一人;爆竹声中一岁除,春风送暖入屠苏;但愿人长久,千里共婵娟)【点评】此题考查默写古诗文名句的能力。
古诗文默写题不论分几种类型,都是以记忆、积累为根本的,然后在此基础上加以理解、应用、赏析。
解题时一是要透彻理解诗歌的内容,二是要认真审题,找出合适的诗句,三是答题时不能写错别字。
5.阅读语段,按要求完成题目。
(8分)品读一本好书,如同与一位智者对话;顺境时,给你清醒;迷wǎng时,给你希望;挫折时,给你信心;追梦时,给你力量。
以书籍为灯塔,人们不断开掘、延展生活的光谱。
因为阅读,许多人超越庸常,积蓄了向上的力量。
人生因阅读而____。
腹有诗书气自华,读书有益于开阔眼界,提升格局;最是书香能致远,书海中深蕴着灼热的理想信仰,chì烈的家国情怀。
翻阅《论语》《孟子》《礼记》等国学经典,感悟“修身齐家治国平天下”的____;细览《史记》《资治通鉴》等古代典籍,获得“可以知兴替”的历史镜鉴……书是桥梁,让人思接千里;书是翅膀,让人心游万rèn。
2023-2024学年河南省洛阳市九年级上学期第一次月考数学模拟试题一.选择题(共30分)1.若是二次根式,则x的取值范围是( )A.x>1B.x≤1C.x≥1D.x≥02.下列二次根式中,是最简二次根式的是( )3.以下列数据(单位:cm)为长度的各组线段中,成比例线段的是( )4.下列运算正确的是( )5.若关于x的一元二次方程(k+2)x2+3x+k2﹣k﹣6=0必有一根为0,则k的值是( )A.3 或﹣2 B.﹣3或2C.3D.﹣26.化简:a的结果是( )7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )A.k>且k≠1B.k>C.k≥且k≠1D.k≥8.如图,AC与BD相交于点O,DC∥AB,若,CO=8,则AC的长为( )A.10B.12C.14D.169.某热门电影上映的第一天票房约为2亿元,第二天、第三天持续增长,三天累计票房6.62亿元,若第二天、第三天按相同的增长率增长,则平均每天票房的增长率为( )A.5%B.10%C.15%D.20%10.如图,在等边三角形ABC中,AB=4,点D是边AB上一点,且BD=1,点P是边BC上一动点(D、P两点均不与端点重合),作∠DPE=60°,PE交边AC于点E.若CE=a,当满足条件的点P有且只有一个时,则a的值为( )A.2B.2.5C.3D.4(8题图)(10题图)(14题图)二.填空题(15分)11.最简二次根式与二次根式是同类二次根式,则x= .12.若=,则= .13.设x1,x2是方程x2﹣2x﹣3=0的两个实数根,则(x1﹣1)(x2﹣1)的值为 .14.如图,在正方形ABCD中,E为AD的中点,连接BE交AC于点F.若AB=6,则△AEF的面积为 .15.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、BC上的点,沿直线EF将∠B折叠,使点B恰好落在AC上的D处,当△ADE恰好为直角三角形时,BE 的长为 .三.解答题(共75分)16.(8分)计算.(1);(2).17.(8分)根据要求解下列方程(1)2x2﹣4x+1=0(用配方法);(2)3x2+5(2x﹣1)=0.(用公式法)18.(8分)若a=1﹣,先化简再求的值.19.(10分)如图,AB∥CD,AC与BD交于点E,且AB=6,AE=3,AC=12.(1)求CD的长.(2)求证:△ABE∽△ACB.20.(10分)关于x的方程x2﹣(m﹣3)x+m﹣4=0.(1)求证:无论m取任何实数值,此方程都有两个实数根;(2)若有一根大于4且小于8,求实数m的取值范围.21.(10分).如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.(10分)已知:矩形ABCD的两边AB,BC的长是关于x的方程x2﹣mx+=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长.(2)若AB的长为2,那么矩形ABCD的周长是多少?23.(11分)如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P以2cm/s的速度从点A出发,沿AC向点C移动,同时动点Q以1cm/s的速度从点C出发.沿CB向点B移动,设P、Q两点移动t s(0<t<5)后,△CQP的面积为Scm2(1)在P、Q两点移动的过程中,△CQP的面积能否等于3.6cm2?若能,求出此时t的值;若不能,请说明理由;(2)当运动时间为多少秒时,△CPQ与△CAB相似.答案一.选择题1.C;2.C;3.B;4.A;5.C;6.B;7.A;8.C;9.B;10.D;二.填空题11.;12.;13.﹣4;14.3;15.或;16.解:(1)原式=(6﹣+4)÷2=÷2=;(2)解:===.17.解:(1)方程整理得:x2﹣2x=﹣,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣;(2)方程整理得:3x2+10x﹣5=0,这里a=3,b=10,c=﹣5,∵Δ=102﹣4×3×(﹣5)=100+60=160>0,∴x===,解得:x1=,x2=.18.解:=+.∵a=1﹣<1,∴原式=+=.把a=1﹣代入得:===(1+)2=3+2.19.(1)解:∵AE=3,AC=12∴CE=AC﹣AE=12﹣3=9;∵AB∥CD,∴△CDE∽△ABE;∴=,∴CD===18;(2)证明:∵=,=,∴=,∵∠A=∠A,∴△ABE∽△ACB.20.解:(1)x2﹣(m﹣3)x+m﹣4=0,∵a=1,b=﹣(m﹣3),c=m﹣4,∴Δ=[﹣(m﹣3)]2﹣4(m﹣4)=m2﹣10m+25=(m﹣5)2≥0,∴无论m取任何实数值,此方程都有两个实数根;(2),解得:x1=m﹣4,x2=1,∵有一根大于4且小于8,∴4<m﹣4<8,∴8<m<12.21.解:(1)设矩形ABCD的边AB=xm,则边BC=70﹣2x+2=(72﹣2x)m.根据题意,得x(72﹣2x)=640,化简,得x2﹣36x+320=0,解得x1=16,x2=20,当x=16时,72﹣2x=72﹣32=40;当x=20时,72﹣2x=72﹣40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)答:不能,理由:由题意,得x(72﹣2x)=650,化简,得x2﹣36x+325=0,Δ=(﹣36)2﹣4×325=﹣4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.22.解:(1)当矩形ABCD为正方形时,可知AB=BC,∴关于x的方程x2﹣mx+=0有两个相等实数根,∴Δ=0,即(﹣m)2﹣4()=0,解得m1=m2=1,此时方程为x2﹣x+=0,解得x1=x2=,即正方形的边长为;(2)当AB=2时,即x=2是方程的根,∴22﹣2m+=0,解得m=,‘此时方程为x2﹣x+1=0,解得x=2或x=,∴BC=,∴矩形ABCD的周长=2(AB+BC)=2×(2+)=5.23.解:(1)在矩形ABCD中,∵AB=6cm,BC=8cm,∴AC=10cm,AP=2tcm,PC=(10﹣2t)cm,CQ=tcm,过点P作PH⊥BC于点H,则PH=(10﹣2t)cm,根据题意,得t•(10﹣2t)=3.6,解得:t1=2,t2=3.答:△CQP的面积等于3.6cm2时,t的值为2或3.(2)如答图1,当∠PQC=90°时,PQ⊥BC,∵AB⊥BC,AB=6,BC=8,QC=t,PC=10﹣2t,∴△PQC∽△ABC,∴=,即=,解得t=(秒);如答图2,当∠CPQ=90°时,PQ⊥AC,∵∠ACB=∠QCP,∠B=∠QPC,∴△CPQ∽△CBA,∴=,即=,解得t=(秒).综上所述,t为秒与秒时,△CPQ与△CAB相似。
第一次月考模拟测试卷班级姓名学号得分一、选择题(每小题只有一个正确答案,每小题3分,共60分)1.下列关于水资源的叙述,正确的是( )A. 通常说的水资源主要指陆地上的淡水资源B. 我国水资源丰富,按人口平均居世界第六位C. 世界上水资源除沙漠地区以外,其分布是比较均匀的D. 河流水、湖泊淡水及浅层地下水占陆地淡水资源储量的大部分2.常温下,下列溶液的溶质是液体的是( )A. 碘酒B. 糖水C. 白酒D. 雪碧3. 炉甘石洗剂是生活中一种非常常见的外用药,其主要成分是炉甘石、氧化锌和水。
久置不用的话,会出现固体粉末分层现象。
所以炉甘石洗剂是( )A. 乳浊液B. 悬浊液C. 溶液D. 纯净物4.下列有关溶液的说法,正确的是( )A. 溶液都是澄清、透明、无色的B. 溶液都是由一种溶质和一种溶剂混合而成的C. 饱和溶液中溶质质量分数一定比不饱和溶液中溶质质量分数大D. 向100克硝酸钾的饱和溶液中加入10克硝酸钾,溶质的质量分数不变5. 据《说文解字》记载,我们的祖先在神农氏时代就开始利用海水晒盐。
下列关于海水晒盐原理的说法正确的是( )A.日晒风吹使海水中的氯化钠蒸发B.日晒风吹使溶液由饱和变为不饱和C.日晒风吹使水分蒸发、晶体析出D.日晒风吹使氯化钠的溶解度变小6. 将70℃的不饱和硝酸钾溶液逐渐冷却至室温,不考虑水的蒸发,下列说法不正确的是( )A. 溶液中溶质的质量一定变小B. 溶液的密度可能变小C. 硝酸钾的溶解度一定变小D. 溶液中溶剂的质量一定保持不变7.以下情景中没有受到浮力的物体是( )A. 海上航行的“辽宁号”B. 空中上升的热气球C. 遨游太空的“天宫二号”D. 海中下潜的“蛟龙”号8.下列四个情景中,受到的浮力增大的物体是( )A. 从钱塘江驶入大海的船只B. 海面下正在下沉的潜水艇C. 从海水深水处走向海岸沙滩的游泳者D. 正在装载货物的轮船9. 如图所示,质量相等的甲、乙两球分别悬浮、漂浮在水中,下列说法正确的是( )A.甲球受到的浮力大B.乙球受到的浮力大C.甲球浸在水中的体积大D.两球浸在水中的体积一样大10. 在普通环境里的鸡蛋容易变质。
江苏南京市第九中学2024-2025学年高三数学上第一次月考模拟训练一.选择题(共10小题)1.已知函数为f(x)=在R上单调递增,则a的取值范围是( )A.(﹣∞,0]B.[﹣1,0]C.[﹣1,1]D.[0,+∞)2.当x∈[0,2π]时,曲线y=sin x与y=2sin(3x﹣)的交点个数为( )A.3B.4C.6D.83.设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a2+b2的最小值为( )A.B.C.D.14.已知函数(ω>0)的最小正周期为π.则函数在的最小值是( )A.﹣B.﹣C.0D.5.双曲线的左、右焦点分别为F1、F2.P是双曲线右支上一点,且直线PF2的斜率为2,△PF1F2是面积为8的直角三角形,则双曲线的方程为( )A.B.C.D.6.设函数f(x)=sinωx(ω>0).已知f(x1)=﹣1,f(x2)=1,且|x1﹣x2|的最小值为,则ω=( )A.1B.2C.3D.47.设椭圆C1:+y2=1(a>1),C2:+y2=1的离心率分别为e1,e2.若e2=e1,则a=( )A.B.C.D.8.已知sin(α﹣β)=,cosαsinβ=,则cos(2α+2β)=( )A.B.C.﹣D.﹣9.已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.10.已知α为锐角,cosα=,则sin=( )A.B.C.D.二.多选题(共4小题)(多选)11.设函数f(x)=(x﹣1)2(x﹣4),则( )A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f(x2)C.当1<x<2时,﹣4<f(2x﹣1)<0D.当﹣1<x<0时,f(2﹣x)>f(x)(多选)12.抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y﹣4)2=1的一条切线,Q为切点,过点P作l的垂线,垂足为B,则( )A.l与⊙A相切B.当P,A,B三点共线时,C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个(多选)13.已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则( )A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点(多选)14.若函数f(x)=alnx++(a≠0)既有极大值也有极小值,则( )A.bc>0B.ab>0C.b2+8ac>0D.ac<0三.填空题(共6小题)15.设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,过F2作平行于y轴的直线交C 于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为 .16.若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a= .17.(x﹣1)2+y2=25的圆心与抛物线y2=2px(p>0)的焦点F重合,两曲线与第一象限交于点P,则原点到直线PF的距离为 .18.若直线y=k(x﹣3)与双曲线只有一个公共点,则k的一个取值为 .19.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2.点A在C上,点B在y轴上,⊥,=﹣,则C的离心率为 .20.已知函数f(x)=sin(ωx+φ),如图,A,B是直线y=与曲线y=f(x)的两个交点,若|AB|=,则f(π)= .四.解答题(共1小题)21.已知双曲线C中心为坐标原点,左焦点为(﹣2,0),离心率为.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(﹣4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于P,证明P在定直线上.参考答案与试题解析一.选择题(共10小题)1.【解答】解:函数为f(x)=在R上单调递增,可知:,可得a∈[﹣1,0].故选:B.2.【解答】解:在同一坐标系中,作出函数y=sin x与y=2sin(3x﹣)在[0,2π]上的图象如下,由图象可知,当x∈[0,2π]时,曲线y=sin x与y=2sin(3x﹣)的交点个数为6个.故选:C.3.【解答】解:f(x)的定义域为(﹣b,+∞),令x+a=0,得x=﹣a,令ln(x+b)=0,得x=1﹣b,因为f(x)≥0,当﹣b<x<1﹣b时,ln(x+b)<0,所以x+a≤0,则1﹣b+a≤0,当x>1﹣b时,ln(x+b)>0,所以x+a≥0,则1﹣b+a≥0,故1﹣b+a=0,即b﹣a=1,所以,当且仅当,时等号成立.故选:C.4.【解答】解:∵函数=sin(3ωx+π),(ω>0)T==π,ω=,可得f(x)=sin(2x+π)=﹣sin2x,x∈,2x∈[﹣,],所以f(x)在2x∈[﹣,]上单调递减,﹣sin=﹣,故函数取最小值是﹣.故选:A.5.【解答】解:根据题意,画出图形,如下图:设|PF1|=m,|PF2|=n,则m﹣n=2a,因为△PF1F2是面积为8的直角三角形,所以m2+n2=(2c)2=4c2,=8,因为直线PF2的斜率为2,所以tan∠F1F2P==2,所以m=2n,联立,解得,所以2a=m﹣n=2,即a=,所以4c2=m2+n2=40,即c2=10,所以b2=c2﹣a2=10﹣2=8,所以双曲线的方程为=1.故选:C.6.【解答】解:因为f(x)=sinωx,则f(x1)=﹣1为函数的最小值,f(x2)=1为函数的最大值,又=,所以T=π,ω=2.故选:B.7.【解答】解:由椭圆C2:+y2=1可得a2=2,b2=1,∴c2==,∴椭圆C2的离心率为e2=,∵e2=e1,∴e1=,∴=,∴=4=4(﹣)=4(﹣1),即3=4,解得a1=(负的舍去),即a=.故选:A.8.【解答】解:因为sin(α﹣β)=sinαcosβ﹣sinβcosα=,cosαsinβ=,所以sinαcosβ=,所以sin(α+β)=sinαcosβ+sinβcosα==,则cos(2α+2β)=1﹣2sin2(α+β)=1﹣2×=.故选:B.9.【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.10.【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.二.多选题(共4小题)11.【解答】解:对于A,f′(x)=2(x﹣1)(x﹣4)+(x﹣1)2=3(x﹣1)(x﹣3),易知当x∈(1,3)时,f′(x)<0,则函数f(x)在(1,3)上单调递减,当x∈(﹣∞,1)∪(3,+∞)时,f′(x)>0,则函数f(x)在(﹣∞,1),(3,+∞)上单调递增,故x=3是函数f(x)的极小值点,选项A正确;对于B,当0<x<1时,0<x2<1,且x2<x,又f(x)在(0,1)上单调递增,则f(x2)<f(x),选项B错误;对于C,由于1<x<2,一方面,f(2x﹣1)=(2x﹣2)2(2x﹣5)=4(x﹣1)2(2x﹣5)<0,另一方面,f(2x﹣1)+4=4(x﹣1)2(2x﹣5)+4=4[(x﹣1)2(2x﹣5)+1]=4(x﹣2)2(2x﹣1)>0,则﹣4<f(2x﹣1)<0,选项C正确;对于D,由于﹣1<x<0,则f(2﹣x)﹣f(x)=(x﹣1)2(﹣2﹣x)﹣(x﹣1)2(x﹣4)=(x﹣1)2(2﹣2x)=﹣2(x﹣1)3>0,即f(2﹣x)>f(x),选项D正确.故选:ACD.12.【解答】解:对于A,抛物线y2=4x的准线为x=﹣1,是x2+(y﹣4)2=1的一条切线,选项A正确;对于B,⊙A的圆心为A(0,4),当P、A、B三点共线时,P(4,4),所以,选项B正确;对于C,当PB=2时,P(1,2)或P(1,﹣2),对应的B(﹣1,2)或(﹣1,﹣2),当P(1,2)时,AB=PA=,PB=2,PA与AB不垂直,当P(1,﹣2)时,AB=PA=,PB=2,PA与AB不垂直,选项C错误;对于D,焦点F(1,0),由抛物线的定义知PB=PF,则PA=PB等价于P在AF的中垂线上,该直线的方程为,它与抛物线有两交点,选项D正确.故选:ABD.13.【解答】解:由f(xy)=y2f(x)+x2f(y),取x=y=0,可得f(0)=0,故A正确;取x=y=1,可得f(1)=2f(1),即f(1)=0,故B正确;取x=y=﹣1,得f(1)=2f(﹣1),即f(﹣1)=f(1)=0,取y=﹣1,得f(﹣x)=f(x),可得f(x)是偶函数,故C正确;由上可知,f(﹣1)=f(0)=f(1)=0,而函数解析式不确定,不妨取f(x)=0,满足f(xy)=y2f(x)+x2f(y),常数函数f(x)=0无极值,故D错误.故选:ABC.14.【解答】解:函数定义域为(0,+∞),且f′(x)=﹣﹣=,由题意,方程f′(x)=0即ax2﹣bx﹣2c=0有两个正根,设为x1,x2,则有x1+x2=>0,x1x2=>0,Δ=b2+8ac>0,∴ab>0,ac<0,∴ab•ac=a2bc<0,即bc<0.故选:BCD.三.填空题(共6小题)15.【解答】解:由题意知,|F1A|=13,|F2A|=|AB|=5,所以|F1A|﹣|F2A|=2a=8,解得a=4;又x=c时,y=,即|F2A|==5,所以b2=5a=20,所以c2=a2+b2=16+20=36,所以c=6,所以双曲线C的离心率为e==.故答案为:.16.【解答】解:曲线y=e x+x,可得y′=e x+1,在点(0,1)处切线的斜率为:e0+1=2,切线方程为:y﹣1=2x,即y=2x+1.曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,设y=ln(x+1)+a的切点的横坐标为x,可得切线的斜率为:=2,可得x=,x=代入y=2x+1,可得切点坐标为:(﹣,0),切点在曲线y=ln(x+1)+a上,所以0=ln(﹣+1)+a,解得a=ln2.故答案为:ln2.17.【解答】解:∵(x﹣1)2+y2=25的圆心与抛物线y2=2px(p>0)的焦点F重合,∴F(1,0),∴p=2,∴y2=4x,联立,得或,∵两曲线与第一象限交于点P,∴P(4,4),∴直线PF的方程为==,即4x﹣3y﹣4=0,∴原点到直线PF的距离为d==.故答案为:.18.【解答】解:联立,化简可得(1﹣4k2)x2+24k2x﹣36k2﹣4=0,因为直线y=k(x﹣3)与双曲线只有一个公共点,故1﹣4k2=0,或Δ=(24k2)2+4(1﹣4k2)(36k2+4)=0,解得k=或k无解,当k=时,符合题意.故答案为:(或﹣).19.【解答】解:(法一)如图,设F1(﹣c,0),F2(c,0),B(0,n),设A(x,y),则,又,则,可得,又⊥,且,则,化简得n2=4c2.又点A在C上,则,整理可得,代n2=4c2,可得,即,解得或(舍去),故.(法二)由,得,设,由对称性可得,则,设∠F1AF2=θ,则,所以,解得t=a,所以,在△AF1F2中,由余弦定理可得,即5c2=9a2,则.故答案为:.20.【解答】解:由题意:设A(x1,),B(x1+,),由y=sin(ωx+φ)的图象可知:f(x1)=sin(ωx1+φ)=,故,f(x2)=sin[+φ]=,则,两式相减得:,由图可知:T<,即,解得ω∈(3,6),∵ω=4+12(k2﹣k1),k2﹣k1∈Z∴ω=4,∴f(x)=sin(4x+φ),又f()=sin(+φ)=0,∴+φ=kπ,k∈Z,即φ=﹣+kπ,k∈Z,∵f(0)=sinφ<0,∴当k=2时,φ=﹣满足条件,∴∴f(π)=sin(4π﹣)=﹣.故答案为:﹣.四.解答题(共1小题)21.【解答】解:(1)双曲线C中心为原点,左焦点为(﹣2,0),离心率为,则,解得,故双曲线C的方程为;(2)证明:过点(﹣4,0)的直线与C的左支交于M,N两点,则可设直线MN的方程为x=my﹣4,M(x1,y1),N(x2,y2),记C的左,右顶点分别为A1,A2,则A1(﹣2,0),A2(2,0),联立,化简整理可得,(4m2﹣1)y2﹣32my+48=0,故Δ=(﹣32m)2﹣4×48×(4m2﹣1)=256m2+192>0且4m2﹣1≠0,,,直线MA1的方程为,直线NA2方程y=,故=====,故,解得x=﹣1,所以x P=﹣1,故点P在定直线x=﹣1上运动.。
黑龙江省哈尔滨市2023-2024学年七年级下学期月考数学模拟试题温馨提示:亲爱的同学们,这份试卷将记录下你的自信、沉着、智慧和收获!请认真审题,看清要求,仔细答卷,规范书写,祝你取得优异的成绩!第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每题3分,共30分)1.下列方程中,是二元一次方程的是()A .B .C .D .32x y -=3x y z+=121y x+=238x y +=2.在下列长度的四根木棒中,能与3cm 、7cm 长的两根木棒钉成一个三角形的是()A .3cmB .4cmC .9cmD .12cm3.若,则下列各式中不成立的是()a b >A .B .C .D .33a b +>+66a b->-22a b>22a b ->-4.已知甲、乙两名同学在四次模拟测试中的数学平均成绩都是112分,但他们的方差不同,分别是,,那么成绩比较稳定的是()25s =甲212s =乙A .甲B .乙C .甲和乙一样D .无法确定5.满足的数在数轴上表示为()12x -≤≤A .B .C .D .6.如图,“花影遮墙,峰峦叠窗.”苏州园林空透的窗中蕴含着许多的数学元素,图①中的窗棂是冰裂纹窗棂,图②是这种窗棂中的部分图案.若,,则1275∠=∠=︒3465∠=∠=︒的度数是()5∠A .80°B .75°C .65°D .60°7.不等式的最小整数解为()71245x x ->-A .0B .1C .2D .38.如图,若,则下列结论中不一定成立的是()ABC ADE△≌△A .B .C .D .BC DE =AC AE =BAD CAE ∠=∠ACB DAC∠=∠9.《孙子算经》中有一道名题:“今有木,不知长短.引绳度之,余绳四尺五寸,屈绳量之,缺乏一尺,木长几何?”意思是:用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?设长木的长为x 尺,绳子长为y 尺,则可列方程为()A .B .C .D .4.5112y xx y +=⎧⎪⎨-=⎪⎩ 4.5112x yx y +=⎧⎪⎨-=⎪⎩()4.5112x yx y +=⎧⎪⎨-=⎪⎩ 4.5112x yx y +=⎧⎪⎨+=⎪⎩10.如图,在四边形ABCD 中,,,连接BD ,,90A ∠=︒3AD =BD CD ⊥,若P 是BC 边上一动点,则DP 长的最小值为()ADB C ∠=∠A .1B .6C .3D .12第Ⅱ卷非选择题(共90分)二、填空题(每题3分,共30分)11.已知,______.(请用含有x 的式子表示)26x y +=y =12.“n 与4的和是正数”用不等式表示为______.13.正五边形每个内角的度数是______.14.在△ABC 中,已知,,则______.75A ∠=︒60B ∠=︒C ∠=15.有一组数据:x 、3、4、6、7,它们的平均数是5,这组数据的中位数是______.16.已知,是方程的解,则m 的值为______.1x =5y =21mx y -=-17.如图,图1是一路灯的实物图,图2是该路灯的平面示意图,若,50MAC ∠=︒,则图2中的度数为______.20ACB ∠=︒CBA ∠18.某次数学竞赛中,共有20道题,评分标准是:答对一题得5分,答错或不答1题扣一分,某同学想要超过72分,他至少要答对______道题.19.已知点A 、B 的坐标分别为,,点P 为坐标轴上一点(P 点异于O 点),若()2,0()2,4以A 、B 、P 为顶点的三角形与△ABO 全等,则点P 的坐标为______.20.如图,在四边形ABCD 中,,连接AC 、BD ,点E 在BA 边延45ABC DCB ∠=∠=︒长线上,连接DE ,,,若,45BED ∠=︒EAC DBC ABC ∠=∠+∠ 4.5ABC BDES S +=△△则线段BD 的长为______.三、解答题(21、23、24题各8分;22题6分;25、26、27各10分,共60分)21.(本题8分)解方程(不等式)组(不等式组的解集需在数轴上表示出来)(1)(2)34225x y x y +=⎧⎨-=⎩()5131131722x x x x ⎧->+⎪⎨-≤-⎪⎩22.(本题6分)如图,△ABC 的顶点A 、B 、C 都在小正方形的格点上,这样的三角形叫做格点三角形,试在方格纸上画出相应的格点三角形:(1)在图1中画出一个格点三角形与△ABC 全等且有一条公共边AB ;(2)在图2中画出一个格点三角形与△ABC 全等且有一个公共角.C ∠23.(本题8分)我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式:①②③中,不等式的“云不等式”是210x -<2x ≤()310x x --<2x ≥______;(填序号)(2)若关于x 的不等式不是的“云不等式”,求m 的取值范围.20x m +≥23x x m -<+24.(本题8分)如图,,,垂足分别为D ,E ,BE ,CD 相交于点O ,CD AB ⊥BE AC ⊥连接AO ,若.OB OC=(1)求证:;BAO CAO ∠=∠(2)在不添加任何辅助线的情况下,请直接写出图中所有成对的全等三角形.25.(本题10分)哈69中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买4个足球和3个篮球共需750元,购买3个足球和5个篮球共需920元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需从体育用品商店一次性购买足球和篮球共90个,要求购买足球和篮球的总费用不超过8980元,这学校最多可以购买多少个篮球?26.(本题10分)如图1,在△ABC 中,,AD 平分.AB AC =BAC ∠(1)求证:;AD BC ⊥(2)如图2,点E 为△ABC 内一点,连接AE 、DE ,点F 为AE 上一点,连接DF 并延长至点G ,使得,若,求证:;AG DE =180EDG AGF ∠+∠=︒AF EF =(3)在(2)的条件下,,,,若12DF AB =EDF BAD ∠=∠45FDA CAD ∠+∠=︒CD 的长.AD =27.(本题10分)如图1,在△ABC 中,,,若点A 的坐标为90ACB ∠=︒AC BC =,且满足,点.(),x y 2320x y -+=()1,3B -(1)求点A 的坐标;(2)如图2,点F 为x 轴上一点,连接FA 并延长,交y 轴于点G ,若,求线段AE AF =OF 的长;(3)在(2)的条件下,点M 为y 轴上一点,,连接MA 并延长,交x 轴于点N ,1GM =点K 为AN 上一点,连接OK ,,过点K 作OK 的垂线,交过点M 平行于x 轴的OK BC =直线于点T ,连接OT ,若,求线段OT 的长.AB =数学答案一、选择题(每题3分,共30分)12345678910ACBACADDBC二、填空题(每题3分,共30分)1112131415161718192062x -40n +>45°5230°16或()4,0()0,43三、解答题(21、23、24题各8分,22题6分,25、26、27题各10分,共30分)21.(1)解:②.得③4⨯8420x y -=①③,得+2x =将代入②,得:2x =1y =-∴原方程组的解为21x y =⎧⎨=-⎩(2)解:解不等式①得:2x >解不等式②得:4x ≤∴原不等式组的解集为:24x <≤22.每图3分,共6分23.(1)②③(2)解:由得20x m +≥2x m ≥-由得23x x m -<+3x m <-∵不是的“云不等式”。
河南省商丘市2023_2024学年九年级上册第三次月考语文模拟试卷一、阅读下面各文段,完成1-6题。
(共20分)凡树有根,方能生发;凡水有源,方能奔涌。
中华文明有着独特的历史脉络、浓厚的文化底蕴,其突出特性承载着生生不息的基因密码,为我们坚定文化自信提供了深层而持久的驱动力。
1、上面文段中加点字的字音或字形有误的一项是()(3分)A.奔涌B.脉( mài )络C.底蕴D.承载(zǎi)戏曲是中国传统审美文化孕育出的一道亮丽景观①是唯一一个有着数千年史前史和800年兴盛史、现存300个剧种和5万个剧目②覆盖城乡辽阔幅员和十几亿民众③生生不息繁衍至今的舞台艺术门类④是人类三大古老戏剧样式的唯一存活体。
其舞台综合性发展到精淳的地步,其美学原则成为各类戏剧的典型代表,以自身的独特与丰富,自立于世界艺术之林。
2、对上面文段中划线句的修改,正确的一项是()(3分)A.其舞台综合性达到精淳的地步,其美学原则成为各类戏剧的典型代表,以自身的独特与丰富,自立于世界艺术之林。
B.其舞台综合性发展到精淳的地步,其美学原则成为各类戏剧的典型代表,它以自身的独特与丰富,自立于世界艺术之林。
C.其舞台综合性发展到精淳的地步,其美学原则使之成为各类戏剧的典型代表,以自身的独特与丰富,自立于世界艺术之林。
D.其舞台综合性达到精淳的地步,其美学原则成为各类戏剧的典型代表,它以自身的独特与丰富,自立于世界艺术之林。
3、上面文段中序号处标点符号使用有误的一项是()(3分)A.①,B.②,C.③、D.④,()科技成果从零星到井喷,从量变到质变,靠的是科研工作者们勇攀高峰、潜心研究、矢志不移的科学家精神。
他们勇闯科研“无人区”的胆魄,也激励着广大年轻人跳出“舒适圈”,勇蹚改革“深水区”,争做走在时代前列的开拓者。
要以力排万难为万里海疆树起“千里眼”的刘永坦院士为榜样,面对更难走的“上坡路”、更难啃的“硬骨头”、更难涉的“礁石滩”,以的魄力、敢为人先的首创力、的执行力,克服畏难情绪,实现精准破局。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-1C. πD. 0.1010010001…2. 下列各式中,正确的是()A. 3a = a + a + aB. 2(a + b) = 2a + 2b + 2C. 3(a - b) = 3a - 3b - 2D. 4(a + b) = 4a + 4b - 23. 已知x² - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -44. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x²C. y = 3/xD. y = 2x - 55. 已知三角形的三边长分别为3,4,5,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形6. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²7. 下列各式中,正确的是()A. 3a - 2b = 2a + 3bB. 3a + 2b = 2a + 3bC. 3a - 2b = 2a - 3bD. 3a + 2b = 2a - 3b8. 已知一次函数y = kx + b的图象经过点(2,3),则k和b的值分别为()A. k = 1,b = 1B. k = 1,b = 2C. k = 2,b = 1D. k = 2,b = 29. 下列各式中,正确的是()A. 2a + 3b = 3a + 2bB. 2a + 3b = 3a - 2bC. 2a + 3b = 2a + 3bD. 2a + 3b = 2a - 3b10. 下列各式中,正确的是()A. 3(a + b) = 3a + 3bB. 3(a + b) = 3a + 2bC. 3(a + b) = 2a + 3bD. 3(a + b) = 2a + 2b二、填空题(每题5分,共25分)11. 若a + b = 5,a - b = 1,则a = ______,b = ______。
桐城市实验中学办学集团校2024~2025学年度第一学期七年级数学月考模拟练习【温馨提示】满分150分,时间90分钟.一、选择题(每小题4分,共40分)1. 如图,数轴上点A 表示向东走了8m ,则点B 表示( )A. 向东走8mB. 向南走8mC. 向西走8mD. 向北走8m 2. 下列各组数中,互为相反数的一组是( )A. 2−和12B. 2和12C. 2−和2D. 2−和12− 3. ()()53125123+−+=++−应用了( )A. 加法交换律B. 加法结合律C. 分配律D. 移项 4. 某品牌水笔笔管直径的合格范围是0.030.021.5−Φ(单位:mm ),下列笔管直径不符合要求的是( )A 1.49mm B. 1.51mm C. 1.52mm D. 1.54mm 5. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数1可列式计算为()()110++−=,由此可推算图2中计算所得的结果为( )A. 1+B. 7+C. 1−D. 7−6. 比2−大5数是( )A 3 B. 3− C. 7 D. 7−7. 下列运算错误的是( )A. ()330−−=B. 550−+=是.的.C. 12133 −−=D. ()4=4−−8. 已知一个乒乓球的标准质量为2.70g ,把质量为2.72g 的乒乓球记为0.02+,则质量为2.59g 的乒乓球应记为( )A. 0.11+B. 0.1+C. 0.1−D. 0.11−9. 如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“3.6cm ”对应数轴上的数为( )A. 0.4−B. 0.6−C. 1.6−D. 1.410. 观察前三个图形,利用得到的计算规律,得到第四个图形的计算结果为( )A 3− B. 5− C. 5 D. 9二、填空题(每小题5分,共20分)11. 化简14−−−= ______.12. 3.14-π的绝对值为_________;13. 若b −的相反数是 2.4−,则b =______.14. 用(,)x y 表示x ,y 两数中较大的一个数,用[x ,]y 表示x ,y 两数中较小的一个数,3(5,0.5)[4−−,2]3−的值为 _____.三、解答题(共90分)15. 比较大小:(1)13 −+ 与12−−(2)253−−与536−−16. 计算:.(1)()()()340328−++−+−;(2)()132518.25343 +−+++− ; 17. 计算:(1)()()()()815912−−−+−−−(2)53141553266767−+−++−−+18. 若1=a ,12b −=,且a b >,求a b −的值. 19. 阅读计算5231591736342 −+−++− 的方法,再用这种方法计算2个小题. 【解析】原式()()()5231591736342=−+−+−+−+++−+−()()()5231591736342 =−+−++−+−+−++− 1101144 =+−=−, 上面这种解题方法叫做拆项法.(1)计算:231117161523432−++−− ; (2)计算522120001999400016332−+−++−. 20. 我们知道:数轴是一条特殊的直线,它既可以用来表示数,又可以帮助我们比较两个数的大小.请根据你对数轴的理解,解答下列问题:(1)如图所示,A ,B ,C 为数轴上三点,且当A 为原点时,点B 表示的数是2,点C 表示的数是5.若以B 为原点,则点A 表示的数是______,点C 表示的数是______;若A ,C 表示的两个数互为相反数,则点B 表示的数是______.(2)数aa 和b 在数轴上的位置如图所示,则aa ,b ,a −,b −从小到大排列为______.21. 我国某次军事演习中,一艘核潜艇的初始位置在海平面下400m ,规定核潜艇上升记为“+”,下降记为“-”,下面是这艘核潜艇在某段时间内的运动情况:100,25,30,28,52,40,80−−−−−.(单位:m )(1)最后这艘核潜艇停留的位置在海平面下多少米?(2)如果这艘核潜艇每上升或下降1m ,核动力装置所提供的能量相当于15L 汽油燃烧所产生的能量,那么在这艘核潜艇运动的这段时间内,核潜艇动力装置提供的能量相当于多少升汽油燃烧所产生的能量?22. 对于一个数x ,我们用(]x 表示小于x 的最大整数,例如(]2.62=,(]34−=−. (1)填空:(]10=__________;(]202−=__________;17=___________. (2)若a ,b 都是整数,且(]a 和(]b 互为相反数,求a b +的相反数.桐城市实验中学办学集团校2024~2025学年度第一学期七年级数学月考模拟练习【温馨提示】满分150分,时间90分钟.一、选择题(每小题4分,共40分)1. 如图,数轴上点A 表示向东走了8m ,则点B 表示( )A. 向东走8mB. 向南走8mC. 向西走8mD. 向北走8m 【答案】C【解析】【分析】本题考查了相反意义的量,根据数轴可得点A 、点B 分别在数轴原点的两边,且距离原点的距离相等,得出A B 、表示相反意义的量,即可得出答案.【详解】解: 数轴可得,点A 、点B 分别在数轴原点的两边,且距离原点的距离相等, 点A 表示向东走了8m ,则点B 表示向西走8m ,故选:C .2. 下列各组数中,互为相反数的一组是( )A. 2−和12B. 2C. 2−和2D. 2−和12− 【答案】C【解析】【分析】本题考查了相反数的定义,根据“只有符号不同的两个数互为相反数”逐项判断即可,熟练掌握相反数的定义是解此题的关键.【详解】解:A 、2−和12不是相反数,故不符合题意; B 、2和12不是相反数,故不符合题意; C 、2−和2是相反数,故符合题意;D 、2−和12−不是相反数,故不符合题意; 故选:C .3. ()()53125123+−+=++−是应用了( )A. 加法交换律B. 加法结合律C. 分配律D. 移项【答案】A【解析】 【分析】根据题意结合运算律即可得到答案,此题考查了加法交换律,a b b a +=+.【详解】解:()()53125123+−+=++−是应用了加法交换律,故选:A4. 某品牌水笔笔管直径的合格范围是0.030.021.5−Φ(单位:mm ),下列笔管直径不符合要求的是( )A. 1.49mmB. 1.51mmC. 1.52mmD. 1.54mm【答案】D【解析】【分析】本题主要考查了正负数的实际意义,解题的关键是找出合格零件的直径范围为1.48mm ~1.53mm .【详解】解:∵水笔笔管直径的合格范围是0.030.021.5−Φ,∴水笔笔管直径的合格范围1.48mm ~1.53mm ,∴不符合要求的是1.54mm ,故选D .5. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,图1可列式计算为()()110++−=,由此可推算图2中计算所得的结果为( )A. 1+B. 7+C. 1−D. 7−【答案】C【解析】 【分析】本题主要考查的是有理数的加法与阅读理解型,根据图示得出两个数,然后再进行求和得出答案.【详解】解:由题意得:()()341++−=−,故选:C .6. 比2−大5的数是( )A. 3B. 3−C. 7D. 7−【答案】A【解析】【分析】本题考查了有理数加法的实际应用,根据题意列出式子计算即可.【详解】解:根据题意得:253−+=,故选:A .7. 下列运算错误的是( ) A. ()330−−=B. 550−+=C. 12133 −−=D. ()4=4−− 【答案】A【解析】【分析】本题考查了有理数的加减法,掌握相关的运算性质是解题的关键.根据有理数的加减法则对各选项依次计算判断即可.【详解】A .()33336−−=+=,原式计算错误,故此选项符合题意;B .550−+=,原式计算正确,故此选项不符合题意;C .121213333−−=+= ,原式计算正确,故此选项的计算正确; D .()4=4−−,故此选项不符合题意;故选:A .8. 已知一个乒乓球的标准质量为2.70g ,把质量为2.72g 的乒乓球记为0.02+,则质量为2.59g 的乒乓球应记为( )A 0.11+B. 0.1+C. 0.1−D. 0.11−【答案】D【解析】【分析】本题考查正负数的意义,比标准质量多记为正数,比标准质量少就记为负数.【详解】解:2.59g 比标准质量少0.11g ,记0.11−,故选:D ..为9. 如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“3.6cm ”对应数轴上的数为( )A. 0.4−B. 0.6−C. 1.6−D. 1.4【答案】B【解析】 【分析】根据刻度尺上“3.6cm ”在原点的左侧0.6的位置即可求解.【详解】解:根据题意可知刻度尺上“3.6cm ”在原点的左侧0.6的位置,∴刻度尺上“3.6cm ”对应数轴上的数为0.6−,故选:B .【点睛】本题考查了在数轴上表示有理数,数形结合是解题的关键.10. 观察前三个图形,利用得到的计算规律,得到第四个图形的计算结果为( )A. 3−B. 5−C. 5D. 9【答案】D【解析】【分析】根据前三个图形得到规律:左上角与右下角的两数之和减去右上角与左下角的两数之和,即可得到答案.此题考查了有理数的加减混合运算,根据图形,发现规律是解题的关键.【详解】解:由题意可得, ()()1423550+−+=−=,()()2423615+−−+=−=,()()3516253−+−−+=−=−,∴()()3516279−+−−−=+=,故选:D .二、填空题(每小题5分,共20分)11. 化简14 −−−= ______. 【答案】14−##0.25− 【解析】 【分析】本题考查相反数,解题的关键是切记求一个数的相反数只需这个数前面加上一个负号就可以了,若原数带有符号(不论正负),则应先添括号,根据相反数的定义即可得到答案.【详解】解: 111444 −−−=−=− ; 故答案为:14−. 12. 3.14-π的绝对值为_________;【答案】π-3.14【解析】详解】∵π>3.14,∴3.14−π<0,∴|3.14−π|=−(3.14−π)=π−3.14,故答案为π−3.14.13. 若b −的相反数是 2.4−,则b =______.【答案】 2.4−【解析】【分析】根据相反数的性质解答即可.本题考查了相反数的性质,熟练掌握互为相反数的两个数的和为0,列出方程求解是解题的关键.【详解】解:根据题意,得()2.40b −+−=, 解得 2.4b =−.故答案为: 2.4−.14. 用(,)x y 表示x ,y 两数中较大的一个数,用[x ,]y 表示x ,y 两数中较小的一个数,3(5,0.5)[4−−,2]3−的值为 _____. 【答案】234【解析】【分析】根据题中给出的条件进行计算即可.【【详解】解:(,)x y 表示x ,y 两数中较大的一个数,用[x ,]y 表示x ,y 两数中较小的一个数, 3(5,0.5)[4∴−−,2]3− 35()4=−− 354=+ =234. 故答案为:234. 【点睛】本题考查的是有理数的大小比较,根据题意得出(5,0.5)和3[4−,2]3−的值是解题的关键. 三、解答题(共90分)15. 比较大小:(1)13−+ 与12−− (2)253−−与536 −−【答案】(1)1132−+−−> (2)523563−−−− > 【解析】 【分析】(1)先化简,后比较大小,解答即可.(2)先化简,后比较大小,解答即可.本题考查了有理数大小的比较,熟练掌握负数比较,绝对值大的反而小是解题的关键.【小问1详解】 解:∵1133−+=− ,1122−−=−, 且113112226336−−==>==, ∴1132−+−−> .【小问2详解】 解:∵553366 −−= ,225533−−=−, ∴523563 −−−− >. 16. 计算:(1)()()()340328−++−+−;(2)()132518.25343 +−+++−; 【答案】(1)3−(2)2−【解析】【分析】(1)根据有理数加减混合运算解答即可.(2)根据有理数加减混合运算解答即可.本题考查了有理数加减混合运算,熟练掌握运算法则是解题的关键.【小问1详解】解:()()()340328−++−+−340328=−+−−3=−.【小问2详解】 解:()132518.25343 +−+++− 1250.7518.2533=−+− 79=−2=−.17. 计算:(1)()()()()815912−−−+−−−(2)53141553266767−+−++−−+【答案】(1)10 (2)3−【解析】【分析】(1)根据有理数加减混合运算解答即可.(2)根据有理数加减混合运算解答即可.本题考查了有理数加减混合运算,熟练掌握运算法则是解题的关键.【小问1详解】解:()()()()815912−−−+−−−815912=−+−+2717=−10=.【小问2详解】 解:53141553266767−+−++−−+ 53141553266767=−−−− 15521361=−−−−−−3=−.18. 若1=a ,12b −=,且a b >,求a b −的值. 【答案】2【解析】【分析】本题考查绝对值,有理数的减法,先根据绝对值的结果分别求出a ,b 的所有的值,再根据a b >得出1a =,1b =−,最后代入计算即可. 【详解】解:1a = ,1a ∴=±,12b −= ,12b ∴−=±,3b ∴=或1−,a b > ,1a ∴=,1b =−,()112a b ∴−=−−=.19. 阅读计算5231591736342 −+−++−的方法,再用这种方法计算2个小题. 【解析】 原式()()()5231591736342=−+−+−+−+++−+−()()()5231591736342 =−+−++−+−+−++− 1101144 =+−=−, 上面这种解题方法叫做拆项法.(1)计算:231117161523432−++−− ; (2)计算522120001999400016332−+−++− . 【答案】(1)3184− (2)43− 【解析】【分析】本题考查了有理数加法的运算法则和运算律,熟练掌握运算法则和运算律是解题的关键. (1)先将各带分数拆分成一个整数与真分数的和,再利用有理数加法的交换律与结合律进行计算即可得;(2)先将各带分数拆分成一个整数与真分数的和,再利用有理数加法的交换律与结合律进行计算即可得;【小问1详解】231117161523432 −++−−()()()231117161523432 =−++−+−+−++−+−3184 =−+−,3184=−; 【小问2详解】522120001999400016332 −+−++−()()()522120001999400016332 =−+−++−+−+−++−403 =+−, 43=−. 20. 我们知道:数轴是一条特殊的直线,它既可以用来表示数,又可以帮助我们比较两个数的大小.请根据你对数轴的理解,解答下列问题:(1)如图所示,A ,B ,C 为数轴上三点,且当A 为原点时,点B 表示的数是2,点C 表示的数是5.若以B 为原点,则点A 表示的数是______,点C 表示的数是______;若A ,C 表示的两个数互为相反数,则点B 表示的数是______.(2)数aa 和b 在数轴上的位置如图所示,则aa ,b ,a −,b −从小到大排列为______.【答案】(1)-2,3,-0.5;(2)b <-a <a <-b .【解析】【分析】(1)根据各点之间的位置关系、原点位置及相反数的性质解答;(2)根据各点之间的相对位置、原点位置及相反数的性质解答 .【小问1详解】解:由题意可知:AB =2,AC =5,BC =3,∴以B 为原点时,点A 表示的数是-2,点C 表示的数是3,若A ,C 表示的两个数互为相反数,则AC 的中点(如图,设为D )为原点,∴AD =2.5,BD =0.5,且D 在B 的右边,∴点B 表示的数是-0.5;【小问2详解】如图,可以把-a 、-b 在数轴上表示出来,∴根据数轴的意义可得:b <-a <a <-b .【点睛】本题考查数轴的综合应用,熟练掌握点在数轴上的表示、数轴的意义及三要素、相反数的意义和性质等是解题关键.21. 我国某次军事演习中,一艘核潜艇的初始位置在海平面下400m ,规定核潜艇上升记为“+”,下降记为“-”,下面是这艘核潜艇在某段时间内的运动情况:100,25,30,28,52,40,80−−−−−.(单位:m )(1)最后这艘核潜艇停留的位置在海平面下多少米?(2)如果这艘核潜艇每上升或下降1m ,核动力装置所提供的能量相当于15L 汽油燃烧所产生的能量,那么在这艘核潜艇运动的这段时间内,核潜艇动力装置提供的能量相当于多少升汽油燃烧所产生的能量?【答案】(1)615 (2)5325【解析】【分析】本题考查正负数的意义和有理数加法的实际应用.熟练掌握正负数的意义和有理数加法法则,是解题的关键.(1)将所有数据相加,根据最终结果确定核潜艇处在什么位置;(2)将所有数据的绝对值相加,再15×即可得解.【小问1详解】解:()()()()()()400100253028524080−+−+−++−+−++−400100253028524080=−−−+−−+−615m =−;答:核潜艇处在海平面下615米位置;【小问2详解】解:()10025302852408015++++++×35515×5325=(升);答:在这一时段内核动力装置所提供的能量相当于5325升汽油燃烧所产生的能量.22. 对于一个数x ,我们用(]x 表示小于x 的最大整数,例如(]2.62=,(]34−=−. (1)填空:(]10=__________;(]202−=__________;17 =___________. (2)若a ,b 都是整数,且(]a 和(]b 互为相反数,求a b +的相反数.【答案】(1)9,203−,0(2)a b +的相反数为2−【解析】【分析】(1)根据(]x 的定义求得即可;(2)根据(]x 的定义求得2a b +=,可得结论.【小问1详解】 (]109=,(]320220=−−,107 =故答案为:9,203−,0;【小问2详解】(]1a a =−,(]1b b =−(]a 与(]b 互相反数∴110a b −+−=∴2a b +=∴a b +的相反数为2−.【点睛】本题考查了有理数的大小比较和相反数的定义,根据(]x 的定义确定其结果是解题的关键.为。
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
人教版2024年七年级下册第一次月考数学模拟卷(范围:第5-7章满分120分)一.选择题(共10小题,满分30分,每小题3分)1.下列四个图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.2.下列各数中是无理数的是( )A.﹣1B.0C.D.3.143.点P(3,m2+1)位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等5.下列说法不正确的是( )A.±0.3是0.09的平方根,即B.=﹣C.的平方根是±9D.存在立方根和平方根相等的数6.如图,一辆汽车经过两次拐弯后,行驶方向与原来平行,若第一次是向左拐30°,则第二次拐弯的角度是( )A.右拐30°B.左拐30°C.左拐150°D.右拐150°7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.428.在平面直角坐标系中,点A(x,y),B(4,3),AB=4,且AB∥y轴,则A点的坐标为( )A.(4,7)B.(4,﹣1)C.(0,3),或(8,3)D.(4,7),或(4,﹣1)9.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为( )A.1个B.2个C.3个D.4个10.如图的象棋盘中,“卒”从A点到B点,规定只能向右和向上走,每次走一格,则不同的路径共有( )A.14条B.15条C.20条D.35条二.填空题(共6小题,满分24分,每小题4分)11.比较大小: 2(填“>”、“<”或“=”号).12.把命题“对顶角相等”改写成“如果…,那么…”形式为如果 ,那么 .13.第四象限内的点P(x,y)满足|x|=7,y2=9.则点P的坐标是 .14.一个实数的平方根为3x+3与x﹣1,则这个实数是 .15.已知AO⊥BO,DO⊥CO,∠AOD=4∠BOC,则∠AOD的度数为 .16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为 .三.解答题(共8小题,满分66分)17.(6分)解答下列问题:(1)计算:;(2)求出式子中x的值:(x﹣1)2﹣25=0.18.(6分)已知4x﹣37的立方根是3,求2x+4的平方根.19.(6分)如图,已知AB∥CD,∠A=140°,∠C=130°,求∠E的度数.20.(8分)请把下面证明过程补充完整.如图,已知AD⊥BC于点D,点E在BA的延长线上,EG⊥BC于点G,交AC于点F,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC= °( ).∴AD∥EG( ).∴∠1=∠2( ),∠E=∠3( ).∵∠E=∠1(已知),∴∠2=∠ ( ).∴AD平分∠BAC( ).21.(8分)(1)已知a是的整数部分,b是的小数部分,求(﹣a)3+(b+3)2的值;(2)实数a在数轴上对应的位置如图,化简:.22.(10分)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A′B′C′,且点C的对应点坐标是C′.(1)画出△A′B′C′,并直接写出点C′的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P′,直接写出点P′的坐标;(3)求△ABC的面积.23.(10分)如图1,已知AD∥BC,∠B=∠D=120°.(1)求证:AB∥CD;(2)若点E,F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图2,求∠FAC的度数;(3)若点E在直线CD上,且满足∠EAC=∠BAC,求∠ACD:∠AED的值.(请自己画出正确图形,并解答)24.(12分)如图,在平面直角坐标系中,点A(a,0),点B(b,c),点C(0,c),其中a是算术平方根等于本身的正数,且,AB与y轴交于点E.(1)求点E的坐标;(2)如图2,点P为线段BC延长线上一点,连接OP,OM平分∠KOP,OM⊥ON,当点P运动时,∠OPC与∠MOC是否有确定的数量关系?写出你的结论并说明理由;(3)如图3,点G是线段AB上一点,点F是射线BS上一点,射线FH平分∠GFS,射线GT平分∠AGF,GQ∥FH,求的值.人教版2024年七年级下册第一次月考数学模拟卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.能通过其中一个四边形平移得到,不合题意;B.能通过其中一个四边形平移得到,不合题意;C.能通过其中一个四边形平移得到,不合题意;D.不能通过其中一个四边形平移得到,符合题意.故选:D.2.【解答】解:A、﹣1是有理数,不符合题意;B、0是有理数,不符合题意;C、是无理数,符合题意;D、3.14是有理数,不符合题意.故选:C.3.【解答】解:∵m2+1≥1,∴点P(3,m2+1)位于第一象限.故选:A.4.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.5.【解答】解:A、±0.3是0.09的平方根,即,该说法正确,故选项不符合题意;B、=﹣,该说法正确,故选项不符合题意;C、,9的平方根是±3,所以的平方根是±3,该说法不正确,故选项符合题意;D、0的立方根和平方根都是它本身,所有存在立方根和平方根相等的数,该说法正确,故选项不符合题意,故选:C.6.【解答】解:如图,延长AB到C,∵BD∥AE,∴∠CBD=∠BAE=30°,∴第二次拐弯的角度是右拐30°,故选:A.7.【解答】解:由平移的性质知,BE=6,DE=AB=10,S△ABC=S△DEF,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S△DEF﹣S△EOC=S△ABC﹣S△EOC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.8.【解答】解:∵AB∥y轴,∴A、B两点的横坐标相同,又∵AB=4,∴A点纵坐标为:3+4=7或3﹣4=﹣1,∴A点的坐标为:(4,7)或(4,﹣1).故选:D.9.【解答】解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选:C.10.【解答】解:如图所示,利用“标数法”可得:共35条路径,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵>,∴>2,故答案为:>.12.【解答】答案:两个角是对顶角;这两个角相等.解:“对顶角相等”改写成“如果……,那么……”的形式是“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.【解答】解:∵第四象限内的点P(x,y),∴x>0,y<0,∵|x|=7,y2=9,∴x=7,y=﹣3.故点P的坐标是:(7,﹣3).故答案为:(7,﹣3).14.【解答】解:根据题意得:①这个实数为正数时:3x+3+x﹣1=0,∴x=﹣,∴(x﹣1)2=,②这个实数为0时:3x+3=x﹣1,∴x=﹣2,∵x﹣1=﹣3≠0,∴这个实数不为0.故答案为:.15.【解答】解:由AO⊥BO,DO⊥CO,得∠AOB=∠COD=90°.由余角的性质,得∠AOC=∠BOD,由角的和差,得∠AOC+∠BOC+∠BOD=∠AOD,即2∠AOC+∠BOC=4∠BOC,解得∠AOC=∠BOC.由于角的定义,得∠AOC+∠BOC=90°,即∠BOC+∠BOC=90°,解得∠BOC=36°,∠AOD=4∠BOC=4×36°=144°,故答案为:144°.16.【解答】解:观察可得到第n列有(1+2+3+4+…+n)个点,当n=13时,有91个点.所以排到横坐标为13的点是第91个点横坐标为13的点最后一个是(13,0)∴(13,0)是第91个点∴可数得第100个点是(14,8);故答案为:(14,8).三.解答题(共8小题,满分66分)17.【解答】解:(1)=3+(﹣1)﹣3=﹣1;(2)(x﹣1)2﹣25=0,(x﹣1)2=25,x﹣1=±5,x=6或x=﹣4.18.【解答】解:由题意得:4x﹣37=33,4x﹣37=27,4x=64,解得x=16,∴2x+4=36,∴2x+4的平方根是±6.19.【解答】解:过点E作EF∥AB,如图:则EF∥AB∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°∴∠AEF=180°﹣∠A=40°,∠CEF=180°﹣∠C=50°,∴∠AEC=∠AEF+∠CEF=90°.20.【解答】解;∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°(垂直的定义).∴AD(同位角相等,两直线平行).∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等).∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:90;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;3;等量代换;角平分线的定义.21.【解答】解:(1)∵,∴的整数部分为3,的小数部分为,∴,∴;(2)由实数a在数轴上对应的位置可知,a<π,∴==.22.【解答】解:(1)如图,△A′B′C′即为所求,点C′的坐标(5,﹣2);(2)点P′的坐标(a+4,b﹣3);(3)△ABC的面积=5×5﹣3×52×52×3=.23.【解答】(1)证明:∵AD∥BC,∴∠A+∠B=180°,又∵∠B=∠D=120°,∴∠D+∠A=∠180°,∴AB∥CD.(2)解:∵AD∥BC,∠B=∠D=∠120°,∴∠DAB=60°,∵AC平分∠BAE,AF平分∠DAE,∴,,∴∠FAC=∠EAC+∠EAF==30°.(3)解:当点E在线段CD上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,∵∠EAC=,∴∠ACD:∠AED=2:3;当点E在线段DC的延长线上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,又∵,∴∠ACD:∠AED=2:1,综上,∠ACD:∠AED=2:1或∠ACD:∠AED=2:3.24.【解答】解:(1)∵a是算术平方根等于本身的正数,∴a=1,∵,∴b+2=0,c﹣3=0,∴b=﹣2,c=3,∴A(1,0),B(﹣2,3),C(0,3),连接OB,作BF⊥x轴于点F,∴BF=3,OA=1,BC=2,S△OAB=S△AOE+S△BOE,∴∴∴OE=1,∴E(0,1);(2)∵OM平分∠KOP,∴∠KOM=∠POM=α,∵OM=ON,∴∠MON=90°,∴∠PON=90°﹣α=∠AON,∵BC∥OA,∴∠OPC=∠POA=180°﹣2α,∠MOC=∠KOC﹣∠KOM=90°﹣α,∴∠OPC=2∠COM;(3)∵射线FH平分∠GFS,射线GT平分∠AGF,∴∠SFH=∠GFH=α,∠AGT=∠FGT=β,∵GQ∥FH,∴∠GFH+∠QGF=180°,∴∠QGF=180°﹣α,∴∠TGQ=∠QGF﹣∠FGT=180°﹣α﹣β,∵BC∥OA,∴∠ABC=∠KAB,由“U型”可得:∠KAB+∠AGF+∠SFG=360°,∴∠KAB=360°﹣2α﹣2β,即∠ABC=360°﹣2α﹣2β,∴.。
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、选择题1. −4的倒数是( )A.14B.−14C.4D.−42. 下列各数中是有理数的是( )A.π2B.πC.12D.0.1010010001⋯3. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10∘C记作+10∘C,则−2∘C表示气温为( )A.零上8∘C B.零下8∘C C.零上2∘C D.零下2∘C4. −114的倒数乘14的相反数,其结果是( )A.5B.−5C.15D.−155. 在下列各数:−(+2),−32,(−13)4,−225,−(−1)2023,−∣−3∣中,负数的个数是( )A.2个B.3个C.4个D.5个6. 如图,数轴上A,B两点所表示的两数的关系不正确的是( )A.两数的绝对值相等B.两数互为相反数C.两数互为倒数D.两数的平方相等7. 已知点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为( )A.−2或1B.−2或2C.−2D.18. 已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b<0B.a<0,b>0C.a−b<0D.a,b异号,且负数的绝对值较大9. 式子∣x−1∣−3取最小值时,x等于( )A.1B.2C.3D.410. 已知a,b,c为非零的实数,且不全为正数,则a∣a∣+ab∣ab∣+ac∣ac∣+bc∣bc∣的所有可能结果的绝对值之和等于( )A.4B.6C.8D.10二、填空题11. 南海海域面积约为3500000 km2,该面积用科学记数法应表示为km2.12. 用>,<,=号填空.−(+34)−∣−23∣,−227−3.14,−(−0.3)∣−13∣.13. 近似数2.30万精确到位.14. 若a,b互为相反数,c,d互为倒数,则a+b2+2cd=.15. 你会玩“二十四点”游戏吗?现有“2,−3,−4,5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):=24.16. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,得到的结果依次是−2,−3,3,5,从轻重的角度看,最接近标准的工件是第个.17. 点M表示的有理数是−1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.18. 如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出12+14+18+⋯+126的值.三、解答题(共5题)19. 观察下列各数,按要求完成下列各题5,−12,(−2)2,−5,∣−1.5∣,+(−2),0,−∣−0.5∣,−(−72)2(1) 将下列各数填在相应的括号里.整数集合:{ };分数集合:{ };正数集合:{ };负数集合:{ }.(2) 在数轴上表示出所有的分数.(3) 用“<”把各负数连接起来.20. 计算.(1) −20−(+14)+(−18)−(−13).(2) (14+16−12)×(−12).(3) −12024−6÷(−2)×∣−13∣.(4) [2−(1−0.5×23)]×[7+(−1)3].21. 阅读材料:计算 130÷(23−110+16−25).分析:利用通分计算 23−110+16−25 的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数是: =(23−110+16−25)÷130=(23−110+16−25)×30=23×30−110×30+16×30−25×30=10.故 原式=110.请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23).22. 某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5,+6.(1) 养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2) 养护过程中,最远处离出发点有多远?(3) 若汽车耗油量为 0.5 升/千米,则这次养护共耗油多少升?23. 如图,数轴上A,B两点分别对应有理数a,b;A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,如:∣5−(−2)∣实际上可理解为数轴上表示5与−2的两点之间的距离.利用数形结合思想回答下列问题.(1) ∣8−(−1)∣=.(2) 写出所有符合条件的整数x,使∣x+2∣+∣x−1∣=3成立.(3) 根据以上探索猜想,对于任何有理数x,∣x−3∣+∣x−8∣是否有最小值?如果有,指出当x满足什么条件时∣x−3∣+∣x−8∣取得最小值,并写出最小值,如果没有,请说明理由.答案一、选择题1. B2. C3. D4. C5. C6. C7. A8. D9. A10. C二、填空题11. 3.5×10612. <;<;<13. 百14. 215. 答案不唯一16. 117. −6或418. 6364三、解答题19.(1) 5,−12,(−2)2,+(−2),0;−5,∣−1.5∣,−(−72);25,(−2)2,∣−1.5∣,−(−72);−12,−52,+(−2),−∣−0.5∣(3) ∵∣−12∣=1,∣−52∣=52,∣+(−2)∣=2,∣−∣−0.5∣∣=0.5,∴∣−∣−0.5∣∣<∣−12∣<∣+(−2)∣<∣−52∣,∴−∣−0.5∣>−12>+(−2)>−52,∴−52<+(−2)<−12<−∣−0.5∣.20.(1) 原式=−20−14−18+13=−39.(2) 原式=−3−2+6=1.(3) 原式=−1+3×13=−1+1=0.(4) 原式=(2−1+13)×6=6+2=8.21. 原式的倒数是:(1 12−316+524+23)÷148=(112−316+524+23)×48 =4−9+10+32=37.故原式=137.22.(1) 17+(−9)+7+(−15)+(−3)+11+(−6)+(−8)+5+6=5(千米).答:养护小组最后到达的地方在出发点的北方距出发点5千米.(2) 第一次17千米,第二次17+(−9)=8,第三次8+7=15,第四次15+(−15)=0,第五次0+(−3)=−3,第六次−3+11=8,第七次8+(−6)=2,第八次2+(−8)=−6,第九次−6+5=−1,第十次−1+6=5.答:最远距出发点17千米.(3) (17+∣−9∣+7+∣−15∣+∣−3∣+11+∣−6∣+∣−8∣+5+6)×0.5=87×0.5=43.5(升).答:这次养护共耗油43.5升.23.(1) 9(2) ∵∣x+2∣+∣x−1∣=3,∴x=−2,−1,0,1.(3) 对于任何有理数x,∣x−3∣+∣x−8∣有最小值.当3≤x≤8时,原式可以取得最小值,最小值为5.。
辽宁省普通高中2024-2025学年度上学期10月月考模拟试题高一物理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10小题,共46分。
在每小题给出的四个选项中,第1~7题中只有一项符合题目要求,每小题4分;第8~10题有多项符合题目要求,每小题6分,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.在2018年11月6日上午9时开幕的第十二届航展上,中国航天科工集团有限公司正在研发的高速飞行列车仿真模型首次亮相。
该飞行列车利用磁悬浮技术及近真空管道线路减小阻力,未来项目落地时最大运行速度可达4000km/h ,从郑州到北京的路程为693km ,只要12min 就可到达,真是“嗖”的一声,人就到了。
根据以上信息判断,下列说法正确的是( ) A .“2018年11月6日上午9时”和“12min”都是时刻 B .从郑州到北京的路程为693km ,“路程”是矢量 C .飞行列车从郑州到北京的平均速率为3465km/hD .若研究飞行列车经过某一路标所用的时间,可将列车看成质点2.将一弹力球从某一高度处由静止释放,弹力球从地面弹起的最大高度不到释放高度的一半,不计球与地面相互作用的时间和空气阻力,以向下为正方向,下列关于弹力球运动的v t −和a t −图像,可能正确的是( )A .B .C .D .3.如图所示,t =0时刻,一个物体以08m /s v =的初速度沿光滑斜面向上滑动,加速度的大小为2m/s 2,运动到最高点之后,又以相同的加速度往回运动,则物体( ) A .第2s 末的速度大小为4m/s B .前3s 内的位移是9m C .第4s 末的加速度为零 D .前5s 内的路程是15m4.如图所示,一列“和谐号”动车,每节车厢的长度均为l ,列车启动过程中可视为匀加速直线运动,列车员站在列车一侧的站台上,已知第3节车厢经过列车员的时间为t 1,第4节车厢经过列车员的时间为t 2,则列车的加速度为( )A .l (t 1-t 2)t 1t 2(t 1+t 2)B .l (t 1+t 2)t 1t 2(t 1-t 2)C .2l (t 1+t 2)t 1t 2(t 1-t 2)D .2l (t 1-t 2)t 1t 2(t 1+t 2)5.一长为L 的金属管从地面以0v 的速率竖直上抛,管口正上方高()h h L >处有一小球同时自由下落,金属管落地前小球从管中穿过.已知重力加速度为g ,不计空气阻力.关于该运动过程说法正确的是( )A .小球穿过管所用时间大于LB .若小球在管上升阶段穿过管,则0>vC 0v<<D .小球不可能在管上升阶段穿过管6.某人驾驶一辆汽车甲正在平直的公路上以某一速度匀速运动,突然发现前方50m 处停着一辆乙车,立即刹车,刹车后做匀减速直线运动。
八年级物理人教版月考模拟试卷01(考试范围:第一、二章考试时间:90分钟试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________一、单选题(每题3分,共36分)。
1.关于某中学生的估测,下列数据合理的是A.身高约为160dmB.100m短跑成绩约为6sC.步行速度约为1m/sD.脉搏正常跳动60次所用时间约为1s【答案】CA.中学生的身高略小于成年人,在160cm=16dm左右,故A不符合实际;B.男子百米世界纪录略小于10s,中学生百米成绩不可能小于10s,故B不符合实际;C.成年人正常步行的速度在4km/h=4×1/3.6m/s≈1m/s左右,故C符合实际;D.正常情况下,人的脉搏1min跳动的次数在75次左右,跳动一次的时间接近1s,故D不符合实际,故选C.2.如图所示,空中加油机正在给战斗机加油的情境,下列说法中错误的是A.以加油机为参照物,战斗机甲是静止的B.以地面为参照物,战斗机乙是运动的C.以战斗机甲为参照物,战斗机乙是运动的D.加油机相对于地面是运动的【答案】C【解析】A. 以加油机为参照物,战斗机甲的位置没有发生改变,所以是静止的,故A正确;B. 以地面为参照物,战斗机乙的位置发生了改变,所以是运动的,故B正确;C. 以战斗机甲为参照物,战斗机乙的位置没有发生改变,所以是静止的,故C错误; D. 加油机相对于地面位置发生了改变,所以是运动的,故D正确.点睛:判断物体的运动与静止时,要看物体相对于参照物的位置是否发生改变.如果改变就是运动的,如果不变就是静止的.3.甲、乙两人同时从同一起跑线出发,同向做匀速直线运动,某时刻他们的位置如图所示,图中能正确反映两人运动距离与时间关系的是A.B.C.D.【答案】D【解析】由图可知,甲乙两个人都在运动,并且乙的速度大于甲的速度.图中能正确反映两人运动距离与时间关系的是选D.4.某学习小组对一辆在平直公路上做直线运动的小车进行观测研究.他们记录了小车在某段时间内通过的路程与所用的时间,并根据记录的数据绘制了路程与时间的关系图象,如图所示.根据图象可以判断A.0~5 s内,小车的平均速度是0.4 m/sB .0~7 s 内,小车的平均速度是1.5 m/sC .2s ~5 s 内,小车做匀速直线运动D .5s ~7 s 内,小车做加速直线运动【答案】A【解析】A .0~5s 时间内的平均速度:2m =0.4m/s 5ss v t ==,故A 正确; B .由图知,7s 时,通过的距离为6m ,则0~7s 时间内的平均速度6m 0.86m/s 7ss v t ==≈,故B 错误; CD .根据路程—时间图像可知,在0~2s 时间段,小车前进的路程随着时间的增加而增大且成正比,即小车做匀速直线运动;2~5s 时间段,小车的路程没有发生改变,说明小车处于静止状态;5~7s 时间段,小车继续做匀速直线运动且速度比0~2时间段时大.所以,C 、D 错误;故选A .5.关于声现象,下列说法正确的是( )A .“闻其声而知其人”是根据声音的响度来判断的B .“不敢高声语,恐惊天上人”中的“高”是指声音的音调高C .高速公路两侧安装透明板墙是在声源处减弱噪声D .超声波可以粉碎结石,说明声音具有能量【答案】D【解析】试题分析:A.“闻其声而知其人”意思是说听见声音就知道是某人了,是根据声音的音色来判断的,错误;B.“不敢高声语,恐惊天上人”意思是不高大声说话,怕影响到天上人,这里的“高”指声音的响度大,错误;C.高速公路两侧的透明玻璃板能阻碍声音的传播,这是在传播途径中减弱噪声,错误;超声波可以粉碎结石,粉碎结石是需要能量的,说明声波具有能量,正确;所以选择D . 考点:声音的三个特征 声音的应用6.在学校组织的文艺汇演中,小希用二胡演奏了《二泉映月》,如图所示.演奏过程中,她不断变换手指在琴弦上的位置,其目的是为了改变A.声音的响度B.声音的音色C.声音的音调D.琴弦的振幅【答案】C【解析】演员在表演二胡时,用弓拉动琴弦,使琴弦振动发声;当不断调整手指在琴弦上的按压位置,琴弦的振动快慢就会不一样,故发出声音的音调就会不同.点睛:物理学中把声音的高低称为音调,音调的高低与发声体的振动快慢有关,物体振动越快,音调就越高.7.生活中经常需要控制噪声,以下措施中,属于在传播过程中减弱噪声的是( )A.道路两旁栽行道树B.考场周围禁鸣喇叭C.机场员工佩戴耳罩D.建筑工地限时工作【答案】A【解析】A.道路两旁栽行道树是在传播过程中减弱噪声,A符合题意.B.考场周围禁鸣喇叭是在声源处减弱噪声,B不符合题意.C.机场员工佩戴耳罩是在耳朵处减弱噪声,C不符合题意.D.建筑工地限时工作是在声源处控制噪声,D不符合题意.8.音乐会上小提琴演奏乐曲时,下列说法正确的是()A.演奏前,调节小提琴的琴弦松紧可改变声音的响度B.演奏时,用力拉紧小提琴的同一琴弦可提高声音的音调C.小提琴演奏的乐曲通过空气传入听众的耳朵D.小提琴的音色和二胡的音色相同【答案】C【解析】A. 演奏前,调节小提琴的琴弦松紧可改变声音的音调,故A错误;B. 演奏时,用力拉紧小提琴的同一琴弦,琴弦的振幅大,响度大,改变的是响度,故B错误;C. 空气可以传播声音,所以小提琴演奏的乐曲通过空气传入听众的耳朵,故C正确;D. 音色是发声体特有的特征,可以用来区分声源,小提琴的音色和二胡的音色是不同的,所以我们能分辨是用哪一种乐器演奏的,故D错误;故选C.【点睛】注意能正确区分声音的三个特征,即音调、响度、音色,其中音色是发声体特有的特征,由声源振动的材料、方式等决定,可以用来区分声源.9.关于下列四个情景的说法中错误的是A.图甲:发声扬声器旁的烛焰晃动,说明声波能传递能量B.图乙:不能听到真空罩中闹钟的响铃声,说明声波的传播需要介质C.图丙:发声的音叉将乒乓球弹开,说明发声的物体在振动D.图丁:8个相同玻璃瓶装不同高度的水,敲击它们时发出声音的音色不同【答案】D【解析】放在扬声器附近的点燃的蜡烛,在扬声器发出声音时烛焰晃动,说明声波能传递能量,A说法正确;真空罩实验中,当抽取罩内的空气,不能听到真空罩内闹铃声,说明声波的传播需要介质,B说法正确;发声的音叉是否在振动,用肉眼不易观察,将发声的音叉靠近细线悬吊的乒乓球,发现乒乓球被弹开,说明发声的物体在振动,C说法正确;8个相同玻璃瓶装不同高度的水,敲击它们时振动的频率不同,故发出声音的音调不同;D说法错误;答案选D.10.如图,是声音输入到示波器上时显示的波形.说法正确的是A.甲和乙音调相同,乙和丙响度相同B.甲和乙音调相同,乙和丙音色相同C.甲和丁音调相同,乙和丙响度相同D.甲、乙、丙、丁音调和响度都相同【答案】A【解析】频率决定音调,振幅决定响度,所以可知甲和乙音调相同,乙和丙响度相同,故A符合题意.11.甲、乙两物体速度比是1∶2,路程比是2∶1,则运动时间之比是A .1∶1B .1∶2C .1∶4D .4∶1【答案】D【解析】 由s v t=得s t v =; 则甲、乙两物体的运动时间之比为:224===111s t v s v s t s v v =⨯⨯甲甲甲甲乙乙乙乙甲乙. 故选D .12.一辆长30米的大型平板车,在匀速通过长为70米的大桥时,所用时间为10秒,它以同样速度通过另一座桥时,所用的时间为20秒,则另一座桥的长度为A .60米B .140米C .170米D .200米 【答案】C【详解】平板车的长度为s 0=30m ,第一座桥的长度为s 1=70m ,通过第一座桥时,车通过总路程s 前=s 0+s 1═30m+70m=100m , 平板车的速度为10010/10s m v m s t s===前前, 当通过第二座桥时它以同样的速度,车通过总路程s 后=v ×t 后=10m/s ×20s=200m ,因为车通过总路程s 后=s 0+s 2,所以s 2=s 后-s 0=200m-30m=170m .故选C .【点睛】解决本题要注意:车全部通过桥的总路程等于车长和桥长之和;通过第一座桥和通过第二座桥时有个物理量没有变化,即以同样的速度的行驶.二、填空题(每空1分,共20分)。
辽宁省普通高中2024-2025学年度上学期10月月考模拟试题(2)高三物理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10小题,共46分。
在每小题给出的四个选项中,第1~7题中只有一项符合题目要求,每小题4分;第8~10题有多项符合题目要求,每小题6分,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.汽车在水平地面转弯时,坐在车里的小云发现车内挂饰偏离了竖直方向,如图所示。
设转弯时汽车所受的合外力为F ,关于本次转弯,下列图示可能正确的是( )A .B .C .D .2.影视作品中的武林高手展示轻功时都是吊威亚(钢丝)的。
如图所示,轨道车A 通过细钢丝跨过滑轮拉着特技演员B 上升,便可呈现出演员B 飞檐走壁的效果。
轨道车A 沿水平地面以速度大小5m/s v =向左匀速前进,某时刻连接轨道车的钢丝与水平方向的夹角为37°,连接特技演员B 的钢丝竖直,取sin370.6°=,cos370.8°=,则下列说法正确的是( ) A .该时刻特技演员B 有竖直向上的加速度 B .该时刻特技演员B 处于失重状态C .该时刻特技演员B 的速度大小为3m/sD .该时刻特技演员B 的速度大小为6.25m/s 3.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A 的上表面水平且放有一斜劈B ,B 的上表面上有一物块C ,A 、B 、C 一起沿斜面匀加速下滑.已知A 、B 、C 的质量均为m ,重力加速度为g ,下列说法正确的是( ) A .A 、B 间摩擦力为零 B .A 加速度大小为cos g θ C .C 可能只受两个力作用 D .斜面体受到地面的摩擦力为零4.2024年3月20日,鹊桥二号中继星成功发射升空,并顺利进入月球附近的椭圆形捕获轨道,沿顺时针方向运行。
2024—2025学年第一次月考物理模拟优选卷(本试卷共19小题考试时间:70分钟试卷满分:70分)一、选择题(本大题共12题,每题3分,共36分,每题只有一个正确选项)1.下列情景中不是扩散现象的是()A.甲图中,抽掉玻璃板,瓶内气体颜色最后变得均匀B.乙图中,两个铅柱洗净紧压后结合在一起C.丙图中,百花盛开,四溢的花香引来了长喙天蛾D.丁图中,水和硫酸铜溶液,静置十天后界面就逐渐变得模糊不清了.【答案】B【详解】A. 抽掉玻璃板,瓶内气体颜色最后变得均匀,说明分子在不停地运动,属于扩散现象,故A不符合题意;B. 两个铅柱洗净紧压后结合在一起,说明分子间有引力,不属于扩散现象,故B符合题意;C. 长喙天蛾能够闻到花香,是扩散现象,是空气中有大量的花粉分子,说明分子在不停地做无规则运动,故C不符合题意;D. 在量筒里装入的清水和蓝色的硫酸铜溶液之间有明显的界面,静置几天后,界面变模糊了,这属于扩散现象,说明一切物体分子都在永不停息地做无规则运动,属于扩散现象,故D不符合题意.故选B.2.关于热机,下列说法错误的是()A.热机性能好坏的重要标志之一是热机效率B.在四冲程内燃机中减少废气带走的大量热量可以大大提高热机效率C.柴油机的效率比汽油机的高,这是因为柴油的热值比汽油的大D.在压缩冲程中内燃机将机械能转化为内能【答案】C【详解】柴油机的效率比汽油机的效率高,是因为柴油机损失的能量较少,并不是因为柴油的热值高.故选C.【答案】D【详解】A.比热容是物质的一种特性,与物质的种类、物态等因素有关,如:水和冰,它们属于同种物质,但由表中数据可知其比热容不同,故A错误;B.夏天我们往往会在地上洒水来达到降温的效果,利用水蒸发吸热,故B错误;C.比热容是物质的一种特性,与物体吸收的热量的多少无关,故C错误;D.质量和初温都相同的铝和铜,铝的比热容较大,由Q吸=cmΔt可知,升高相同温度时,铝吸收的热量较多,故D正确。
甘肃省2024年七年级语文下册第一次月考模拟试卷(三)满分:120分时间:120分钟一、积累与运用(15分)请在下面相应的横线上端正地书写正确答案或填写相应选项。
(第1—4题每句1分,第5题按要求赋分)1.杨花榆荚无才思,。
(韩愈《晚春》)改为(4)小蕾发现小林用了很多四字短语,语言典雅,请选出下列短语结构与其他三个不一致的一项()(2分)A.轻轻摇曳B.格外静谧C.亲密接触D.心旷神怡(5)小林游船时,在连接翠洲与十里长堤的旭桥的桥洞两侧梁柱上,发现了一副对联,觉得非常好,回来后想抄写在整理本上,可是记忆错乱,请帮他理清。
(2分)春色显碧水绿波湖光五洲十顷映钟山龙蟠上联:下联:二、阅读(45分)(一)文言文阅读(15分)(甲)阅读下面文章,完成6—10题。
(10分)木兰诗(节选)万里赴戎机,关山度若飞。
朔气传金柝,寒光照铁衣。
将军百战死,壮士十年归。
归来见天子,天子坐明堂。
策勋十二转,赏赐百千强。
可汗问所欲,木兰不用尚书郎,愿驰千里足,送儿还故乡。
爷娘闻女来,出郭相扶将;阿姊闻妹来,当户理红妆;小弟闻姊来,磨刀霍霍向猪羊。
开我东阁门,坐我西阁床。
脱我战时袍,著我旧时裳。
当窗理云鬓,对镜帖花黄。
出门看火伴,火伴皆惊忙:同行十二年,不知木兰是女郎。
雄兔脚扑朔,雌兔眼迷离;双兔傍地走,安能辨我是雄雌?6.《木兰诗》选自朝编写的。
这是时北方的一首乐府,它与合称为“乐府双璧”。
(2分)7.解释下列句中的加点词。
(2分)万里赴.戎机策勋..十二转8.用现代汉语翻译下列句子。
(2分)①将军百战死,壮士十年归。
②双兔傍地走,安能辨我是雄雌?9.指出下面句子运用的修辞手法,并体会其表达效果。
(2分)雄兔脚扑朔,雌兔眼迷离;双兔傍地走,安能辨我是雄雌?10.联系全诗,简要评价木兰这一人物形象。
(2分)(乙)阅读下面文字,完成11—13题。
(5分)孙叔敖疾,将死,戒其子曰:“王数封我矣,吾不受也。
为我死,王则封汝,必无受利地。
2024-2025学年第一学期第一次月考模拟卷(一)八年级·数学测试范围:11.1—12.2 测试时间:120分钟满分:120分一.选择题(共10小题)1.下面四个图形中,线段BD 是ABC V 的高的是( )A .B .C .D .2.人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .两点之间,线段最短B .垂线段最短C .两直线平行,内错角相等D .三角形具有稳定性3.一个多边形的内角和是它的外角和的4倍.这个多边形是( )A .六边形B .九边形C .八边形D .十边形4.在ABC V 中,1122A B C Ð=Ð=Ð,则ABC V 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形5.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°6.一副含30°角和45°角的直角三角板如图摆放,则1Ð的度数为( )A .60°B .65°C .75°D .70°7.如图,ABC DCB △≌△,若7AC =,5BE =,则DE 的长为( )A .2B .3C .4D .58.如图,点E 、H 、G 、N 共线,∠E =∠N ,EF =NM ,添加一个条件,不能判断△EFG ≌△NMH 的是( )A .EH =NGB .∠F =∠MC .FG =MHD .FG HM ∥9.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD 的度数为( )A .20°B .35°C .40°D .45°10.如图,在ABC V 中,D 是AB 上一点,DF 交AC 于点E ,AE EC =,=DE EF ,则下列结论中:①ADE EFC Ð=Ð;②180ADE ECF FEC Ð+Ð+Ð=°;③+180B BCF ÐÐ=°;④ABC DBCF S S =V 四边形,正确的结论有( )A .4个B .3个C .2个D .1个二.填空题(共6小题)11.已知三角形的三边长分别是8、10、x ,则x 的取值范围是 .12.如图,已知AD 、AE 分别是△ABC 的中线、高,且AB =5cm ,AC =3cm ,则△ABD 与△ADC 的周长之差为 .13.在△ABC 中,∠A =∠B +∠C ,则∠A = .14.如图,A B C D B F Ð+Ð+Ð+Ð+Ð+Ð的度数为 .15.如图,BP 、CP 分别是ABC V 的内角、外角平分线,若40P Ð=°,则A Ð= °.16.如图,90ACB Ð=°,AC BC =,AD CE ^,BE CE ^,垂足分别是点D 、E ,3AD =,1BE =,则DE 的长是 .三.解答题(共9小题)17.如图,ABC DBE ≌△△,请写出对应角,对应边.①B Ð的对应角为( )②C Ð的对应角为( )③BAC Ð的对应角为( )④AB 的对应边为( )⑤AC 的对应边为( )⑥BC 的对应边为( )18.如图,ABC V 中,B C Ð=Ð,FD BC ^,DE AB ^,152A FD Ð=°,求EDF Ð.19.已知ABC V 的三边长是a b c ,,.(1)若68a b ==,,且三角形的周长是小于22的偶数,求c 的值;(2)化简a b c c a b +---+.20.如图,ABC DEF ≌△△,其中点A 、E 、B 、D 在一条直线上.(1)若,58AD FE F ^Ð=°,求A Ð的大小;(2)若9cm,5cm AD BE ==,求AE 的长.21.如图,A 、D 、E 三点在同一条直线上,且ABD CAE △△≌.(1)若6DB =,4CE =,求DE ;(2)若BD CE ∥,求BAC Ð.22.在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.23.ABC V 中,32AB AC =::,1BC AC =+,若ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:,求边AB ,AC 的长.24.小丽与爸爸妈妈在公园里荡秋千,如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m 高的B 处接住她后用力一推,爸爸在C 处接住她,若妈妈与爸爸到OA 的水平距离BF CG 、分别为1.8m 和2.2m ,90BOC Ð=°.(1)CGO V 与OFB △全等吗?请说明理由.(2)爸爸是在距离地面多高的地方接住小丽的?25.如图,ABC V 中,P 为AB 上一点,Q 为BC 延长线上一点,且PA CQ =,过点P 作PM AC ^于点M ,过点Q 作QN AC ^交AC 的延长线于点N ,且PM QN =,连PQ 交AC 边于D .求证:(1)APM CQN ≌△△;(2)12DM AC =.【分析】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BD 是ABC V 的高.【详解】解:由图可得,线段BD 是ABC V 的高的图是D 选项.故选:D2.D【分析】根据三角形具有稳定性,进行判断即可.【详解】解:人字梯中间一般会设计一“拉杆”,这样做的道理是:三角形具有稳定性;故选D .【点睛】本题考查三角形的稳定性.熟练掌握三角形具有稳定性,是解题的关键.3.D【分析】本题考查了多边形的内角与外角和,解题的关键是熟练的掌握多边形的内角与外角和定理与运算.根据外角和是360°求出内角和,代入公式计算即可.【详解】解:Q 多边形外角和是360°,设多边形边数为n ,故多边形的内角和为3604(2)180n °´=-´°,解得10n =,故选D .4.A【分析】设A x Ð=,则2B C x Ð=Ð= ,再根据三角形内角和定理求出x 的值即可.【详解】在ABC V 中,1122A B C Ð=Ð=Ð 设A x Ð=,则2B C x Ð=Ð=,180A B C Ð+Ð+Ð=°Q ,即22180x x x ++=°°,解得36x =°,223672B C x \Ð=Ð==´°=° ,ABC \V 是锐角三角形.故选:A .【点睛】本题考查的是三角形内角和定理,根据题意列出关于x 的方程是解答此题的关5.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .6.C【分析】本题主要考查了三角形外角的性质.根据三角形外角的性质,可得43304575Ð+Ð=°+°=°即可.【详解】解:如图,根据题意得:430Ð=°,3245Ð=Ð=°,∴43304575Ð+Ð=°+°=°.故选:C7.A【分析】根据全等三角形的对应边相等推知7BD AC ==,然后根据线段的和差即可得到结论.【详解】解:ABC DCB QV V ≌,7BD AC \==,5BE =Q ,2DE BD BE \=-=,故选:A .【点睛】本题考查了全等三角形的性质,仔细观察图形,根据已知条件找准对应边是解决本题的关键.8.C【分析】根据全等三角形的判定定理,即可一一判定.【详解】解:在△EFG 与△NMH 中,已知,∠E =∠N ,EF =NM ,A .由EH =NG 可得EG =NH ,所以添加条件EH =NG ,根据SAS 可证△EFG ≌△NMH ,故本选项不符合题意;B .添加条件∠F =∠M ,根据ASA 可证△EFG ≌△NMH ,故本选项不符合题意;C .添加条件FG =MH ,不能证明△EFG ≌△NMH ,故本选项符合题意;D .由FG HM ∥可得∠EGF =∠NHM ,所以添加条件FG HM ∥,根据AAS 可证△EFG ≌△NMH ,故本选项不符合题意;故选:C .【点睛】本题考查了全等三角形的判定定理,熟练掌握和运用全等三角形的判定定理是解决本题的关键.9.B【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE 内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B .【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.10.A【分析】根据条件证明ADE CFE V V ≌,从而得证AD CF ∥,最后根据全等三角形的性质和平行的性质即可求解.【详解】ADE V 和CFE △中,DE EF AED CEF AE EC =ìïÐ=Ðíï=î,()SAS ADE CFE \V V ≌,A ACF \Ð=Ð,ADE EFC Ð=Ð,,ADE CFE S S =△△,①正确,AD CF \∥,ADE CFE BDCE BDCE S S S S +=+四边形四边形V V ,180B BCF \Ð+Ð=°,③正确,ABC DBCF S S =四边形V ,④正确,180EFC ECF FEC Ð+Ð+Ð=°,180ADE ECF FEC \Ð+Ð+Ð=°,②正确综上所述,正确的共有4个,故选A .【点睛】本题考查了全等三角形的判定及性质的运用,三角形的面积公式的运用,等式的性质的运用,三角形的内角和定理的运用,平行线的判定及性质的运用,解答时证明三角形全等是关键.11.2<x <18【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边可得答案.【详解】解:根据三角形的三边关系可得:10−8<x <10+8,即2<x <18,故答案为:2<x <18.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.12.2【分析】△ABD 与△ACD 的周长的差=AB-AC ,据此答题即可.【详解】解:△ABD 的周长=AB+AD+BD ,△ACD 的周长=AC+AD+CD ,∵AD 是BC 的中线,∴BD=CD ,∵AB=5cm ,AC=3cm ,∴△ABD 的周长-△ACD 的周长=AB+AD+BD-AC-AD-CD=AB-AC=2(cm ),故答案为:2.【点睛】考查了三角形的中线概念和性质,掌握三角形的中线的概念是解题的关键.13.90°【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,故答案为:90°.14.360°##360度【分析】本题考查角的计算.由D C CBE DEB Ð+Ð=Ð+Ð,推出A B C D AEC BFD B C BFE CEF Ð+Ð+Ð+Ð+Ð+Ð=Ð+Ð+Ð+Ð,即可得到答案.【详解】解:连接EF ,D A AEF DFE Ð+Ð=Ð+ÐQ ,A B C D AEC BFD\Ð+Ð+Ð+Ð+Ð+Ð360B C BFE CEF =Ð+Ð+Ð+Ð=°.故答案为:360°.15.80【分析】本题主要考查角平分线的定义和三角形外角的性质,熟练利用角平分线的定义和三角形外角的性质是解题的关键.首先根据平分线的概念得到2ABC PBC Ð=Ð,2ACD PCD Ð=Ð.然后利用三角形外角的性质得到40PCD PBC Ð-Ð=°,进而得到80ACD ABC Ð-Ð=°,即可求解.【详解】∵BP 、CP 分别是ABC V 的内角、外角平分线,∴2ABC PBC Ð=Ð,2ACD PCDÐ=Ð∵40P Ð=°∴40PCD PBC Ð-Ð=°∴2280PCD PBC Ð-Ð=°∴80ACD ABC Ð-Ð=°∴80A Ð=°.故答案为:80.16.2【分析】本题考查了全等三角形的判定及性质,熟练掌握性质定理是解题的关键.根据条件可以得出90E ADC Ð=Ð=°,利用AAS 可以得出CEB ADC V V ≌,再根据全等三角形的性质得出BE DC =,CE AD =,最后根据线段的和差即可得出答案.【详解】解:∵BE CE ^,AD CE ^,∴90E ADC Ð=Ð=°,∴90EBC BCE Ð+Ð=°.∵90BCE ACD Ð+Ð=°,∴EBC DCA Ð=Ð.在CEB V 和ADC △中,E ADC EBC DCA BC AC Ð=ÐìïÐ=Ðíï=î,∴()AAS CEB ADC V V ≌,∴1BE DC ==,3CE AD ==.∴312DE EC CD =-=-=,故答案为:2.17.见解析【分析】根据全等三角形的性质可直接得出答案.【详解】①B Ð的对应角为B Ð②C Ð的对应角为E Ð,③BAC Ð的对应角为BDE Ð④AB 的对应边为BD ,⑤AC 的对应边为DE ⑥BC 的对应边为BE .【点睛】本题考查了全等三角形的性质,找准对应边、对应角是解题的关键.18.62°【分析】本题考查了直角三角形内角的性质,熟练掌握直角三角形两锐角互余是本题的关键.根据平角的定义,求得28DFC Ð=°,由于B C Ð=Ð,FD BC ^,DE AB ^,根据直角三角形的性质求得28EDB DFC Ð=Ð=°,即可求得EDF Ð.【详解】解:152AFD Ð=°Q ,28DFC \Ð=°,B C \Ð=Ð,FD BC ^,DE AB ^,28EDB DFC \Ð=Ð=°,180180902862EDF EDB FDC \Ð=°-Ð-Ð=°-°-°=°.19.(1)4c =或6(2)222a b c+-【分析】本题考查了三角形三边关系、化简绝对值,熟练掌握三角形三边关系是解此题的关键.(1)由三角形三边关系结合三角形的周长是小于22的偶数,得出28c <<,即可得出答案;(2)由三角形三边关系得a b c +>,再利用绝对值的性质化简即可.【详解】(1)解:Q ABC V 的三边长是a b c ,,,68a b ==,,8686c \-<<+,即214c <<,Q 三角形的周长是小于22的偶数,28c \<<,\4c =或6;(2)解:由三角形三边关系得:a b c +>,0a b c \+->,()0c a b c a b --=-+<,a b c c a b\+-+--()a b c c a b =+----a b c c a b=+--++222a b c =+-.20.(1)32°(2)2cm【分析】此题考查了全等三角形的性质、直角三角形的性质等知识,熟练掌握全等三角形的性质是解题的关键.(1)先根据垂直以及直角三角形两锐角互余求出9032D F Ð=°-Ð=°,再利用全等三角形对应角相等即可得到A Ð的大小;(2)利用全等三角形的性质得到AB DE =,则AB BE DE BE -=-,即可得到()()12cm 2AE BD AD BE ==-=.【详解】(1)解:∵,FE AD ^∴90DEF Ð=°,∵58F Ð=°,∴9032D F Ð=°-Ð=°,∵ABC DEF≌△△∴32A D Ð=Ð=°(2)∵ABC DEF ≌△△,∴AB DE=∴AB BE DE BE -=-,∴()()()11952cm 22AE BD AD BE ==-=-=21.(1)2DE =(2)90BAC Ð=°【分析】本题考查了全等三角形的性质,平行线的性质,(1)根据ABD CAE △△≌,6BD =,4CE =得6BD AE ==,4AD CE ==,即可得;(2)根据BD CE ∥得BDE CEA Ð=Ð,根据ABD CAE △△≌得ADB CEA Ð=Ð,ABD CAE Ð=Ð,则ADB BDE Ð=Ð,根据180ADB BDE +Ð=°得90ADB Ð=°,可得90ABD BAD Ð+Ð=°,即可得;掌握全等三角形的性质,平行线的性质是解题的关键.【详解】(1)解:∵ABD CAE △△≌,6BD =,4CE =,∴6BD AE ==,4AD CE ==,2DE AE AD \=-=;(2)解:∵BD CE ∥,BDE CEA \Ð=Ð,∵ABD CAE △△≌,ADB CEA \Ð=Ð,ABD CAE Ð=Ð,ADB BDE \Ð=Ð,∵180ADB BDE +Ð=°,90ADB \Ð=°,90ABD BAD \Ð+Ð=°,90BAC BAD CAE BAD ABD \Ð=Ð+Ð=Ð+Ð=°.22.15°【分析】根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,然后根据直角三角形两锐角互余求出∠ACD ,最后根据角平分线的定义求出∠ACE 即可.【详解】∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x ,∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得:x =30°,∴∠A =30°,∠ACB =90°,∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =90°-30°=60°,∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.【点睛】本题考查了三角形的内角和定理,直角三角形两锐角互余,角平分线的定义,熟记概念并准确识图是解题的关键.23.6AB =,4AC =或2111AB =,1411AC =【分析】此题主要考查了三角形的中线,解题的关键是掌握三角形中线的定义,并注意分类讨论.首先设3AB x =,2AC x =,则21BC x =+,根据ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:可得①()()87AB AD BC CD ++=::;②()()87BC CD AB AD ++=::,分两种情况进行计算即可.【详解】解:如图:利用32AB AC =::,设3AB x =,2AC x =,∵1BC AC =+,∴21BC x =+,∵ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:,则①当()()87AB AD BC CD ++=::时,由题意得:()83322115x x x x x +=+++´,解得:2x =,则6AB =,4AC =;②当()()87BC CD AB AD ++=::时,由题意得:()73322115x x x x x +=+++´,解得:711x =,则2111AB =,1411AC =,答:6AB =,4AC =或2111AB =,1411AC =.24.(1)CGO OFB ≌△△,理由见解析(2)爸爸接住小丽的地方距地面的高度为1.6m【分析】(1)由直角三角形的性质得出BOF OCG Ð=Ð,根据AAS 可证明CGO OFB ≌△△;(2)由全等三角形的性质得出,OF CG OG BF ==,求出FG 的长则可得出答案.【详解】(1)CGO OFB ≌△△.理由如下;∵90BOC Ð=°,∴90COG BOF Ð+Ð=°∵CG OA ^,∴90COG OCG Ð+Ð=°,∴BOF OCG Ð=Ð.又∵BF OA ^,∴90BFO OGC Ð=Ð=°.∵OC OB =,∴()AAS CGO OFB ≌△△.(2)∵CGO OFB ≌△△,∴,OF CG OG BF ==,∴ 2.2 1.80.4m FG OF OG CG BF =-=-=-=,∴爸爸接住小丽的地方距地面的高度为1.20.4 1.6m +=.【点睛】本题考查了全等三角形的判定与性质,直角三角形两锐角互余,证明CGO OFB ≌△△是解题的关键.25.(1)证明见解析(2)证明见解析【分析】本题考查了三角形全等的判定与性质.熟练掌握三角形全等的判定与性质是解题的关键.(1)由“HL ”可证Rt Rt APM CQN V V ≌;(2)先由(1)可知AM CN =,证PDM QDN V V ≌,从而由三角形全等的性质可得DM DN =,然后由线段的和差即可得证.【详解】(1)证明:∵PM AC ^,QN AC ^,∴在APM △与CQN △中,PA CQ PM QN=ìí=î,()Rt Rt HL APM CQN \V V ≌;(2)证明:由(1)知APM CQN ≌△△,AM CN \=,∵PM AC ^,QN AC ^,90PMD QND \Ð=Ð=°,在PDM △与QDN △中,90PMD QND PDM QDN PM QN Ð=Ð=°ìïÐ=Ðíï=î,()AAS PDM QDN \V V ≌,DM DN \=,2AC AM DM CD CN CD DM DN DM DM \=++=++=+=,12DM AC \=.。
合肥七年级上学期第一次月考模拟预测卷(满分100 时间120分钟)一、单选题(每题3分,满分30分)1. 2024﹣的相反数的倒数是( ) A. 2024 B. 2024﹣ C. 12024 D. 12024− 2. 中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果将“收入500元记作500+元”,那么“支出100元”应记作( )A. 100−B. 100C. 500D. 500− 3. 大于 4.6−且小于3.1的整数的和为( )A. 0B. 4−C. 1−D. 3− 4. 5210000000用科学记数法可表示为( )A. 100.52110×B. 95.2110×C. 852.110×D. 752110× 5. 如图.数轴上的点A 、B 分别表示实数a 、b 、则( )A. 0ab >B. 0a b −C. 0a b +>D. a b −> 6. 下列说法正确是( )A. 近似数7.20和近似数7.2的精确度一样B. 2.135精确到百分位是2.13C. 近似数7.20和近似数7.2的有效数字相同D. 130542精确到千位写为51.3110×7. 计算()()3222−+−的结果是( )A. 12−B. 12C. 4−D. 4 8. 数轴上一点到原点距离是8,则该点表示的数为( )A. 8B. 8−C. 8或8−D. 16或16− 9. 已知3a =,4b =,且a b >,则a b +的值为( )A. 7−B. 1−C. 1−或7−D. 1或710. 若0abc >,则a cb abca b c abc +++的值为( )的的A. 4±B. 4或0C. 2±D. 4±或0二、填空题(每题3分,满分18分)11. 化简337 −−− ___________.12. 已知a ,b 互为相反数,c ,d 互为倒数,则﹣5a+2017cd ﹣5b=_____.13. 比较大小:45−_______34−.(填“>”或“<”). 14. 已知数轴上两数m 与n 互为相反数,且m 与n 之间距离为8,且m n <.则m n −=___________. 15. 定义一种新运算“※”,对于任意两个有理数a b ,,3a b ab =−※.问:若m 与12−互为倒数,n 与5互为相反数,m n ※的值为___________.16. 观察下列等式:11111222=−=× 111112112232233+=−+−=×× 1111111131122334223344++=−+−+−=××× ……请按上述规律,写出第n 个式子的计算结果(n 为正整数)______.(写出最简计算结果即可) 三、解答题17. 计算(1)()()12641−−+−−(2)5143618129 −×−+(3)()151******** ÷−×−÷−(4)()231432623−+×−+−−÷ 18. 在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.3−,2.5, 2.5−−,23−,0.8,0 19. 已知|a +1|+(b ﹣2)2=0,求(a +b )2016+a 2017.20. 把下列各数填入对应集合:的的12−,4.5 ,5− , 5.7+ ,0 ,25,3 ,π ,10% ,•2.7 整数( )自然数( )正数( )非负数( )分数( )正有理数( )21. 某食堂购进30袋大米,每袋以50千克为标准,超过的记为正,不足的记为负,称重记录如下表: 与标准重量偏差(单位:千克) −21− 0 1 2 3 袋数5 10 3 1 56(1)这30袋大米最重为多少千克?最轻的为多少千克?(2)这30袋大米的总重量比标准总重量多或少了多少千克?(3)大米的单价是每千克5元,食堂购进大米总共花了多少钱?22. 如图,已知数轴上的点 A 表示的为 6,点B 表示的是4的相反数,点 C 到点A 、点B 的距离相等,动点P 从点 B 出发,以每秒2个单位长度的速度沿数轴向右速运动,设运动时间为t (t >0)秒.(1)点B 表示的数是___________;A 、B 两点之间的距离为___________;点 C 表示的数是___________.(2)当等于多少秒时,P 、C 之间的距离为 2个单位长度? 的。
2024.09高二上学期月考模拟·数学试卷考试范围:充要条件、向量、椭圆及椭圆综合;考试时间:90分钟一、单项选择题(每小题2分)1.点()1,0A -,()0,2B ,则向量AB=( )A .()1,2-B .()1,2C .()1,2--D .()1,02.椭圆22142x y +=的离心率为( )A B .12 C D .133.化简AE EB CB +-等于( )A .ABB .BAC .0D .AC4.下列命题正确的是( ) A .单位向量都相等B .任一向量与它的相反向量不相等C .平行向量不一定是共线向量D .模为0的向量与任意向量共线5.()()22a b a b ---=( )A .a b +B .3a b -C .33a b +D .3a b -6.已知椭圆22194x y +=上有一点P 到右焦点的距离为4,则点P 到左焦点的距离为( )A .6B .3C .4D .2 7.已知向量()1,2a = ,(),4b x = ,若2b a =,则x =( )A .5B .2C .3D .48.已知椭圆的方程为22143x y +=,则该椭圆的( )A .长轴长为2 BC .焦距为1D .离心率为129.已知椭圆222:125x y C b +=(0b >)与椭圆22194x y +=有相同的焦点,则b =( )A .B .C .3D .410.“22023x >”是“22024x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.在平行四边形ABCD 中,E 是BC 的中点,则DE =( )A .12AB AD +B .12AB AD -+ C .12AB AD -D .12AB AD --12.已知向量(),2a x =- ,()2,1b = ,且a b ⊥ ,则x =( ).A .4-B .4C .1-D .113.已知点(1,3),(4,1)A B -,则与向量AB 同方向的单位向量为( )A .34,55⎛⎫- ⎪⎝⎭B .43,55⎛⎫- ⎪⎝⎭C .34,55⎛⎫ ⎪⎝⎭D .43,55⎛⎫ ⎪⎝⎭14.方程22142x y m m+=+-表示椭圆的充要条件是( )A .41m -<<-B .1m >-C .42m -<<D .41m -<<-或12m -<<15.在ABC 中,()//AB k AC BC +,则k =( )A .1B .1-C .2D .2-16.已知1e ,2e是平面内两单位向量,则下列结论一定正确的是( )A .12e e =B .121e e ⋅=C .2212e e =D .()12e e +与()12e e - 都是单位向量17.下列各式中不表示向量的是( )A .0a ⋅B .3a b +ρρC .|3|aD .1(e x x y-,R y ∈,且)x y ≠ 18.已知1:1,:p q x m x>>,若q 是p 的必要条件,则实数m 的取值范围是( ) A .[)0,+∞ B .[)1,+∞ C .(],1-∞D .(],0-∞二、填空题(每小题3分)19.已知正方形ABCD 的边长为1,则||AB AD +=;20.已知向量(2,5),(,2)a b m == ,若a b ⊥ ,则实数m = .21.已知椭圆C 的左焦点为F ,右顶点为A ,上顶点为B ,若ABF △为等腰三角形,则C 的离心率为 .22.椭圆的标准方程为2216x y n +=,焦点在x 轴上,焦距为,则n = .23.已知a ,b为非零不共线向量,向量8a kb - 与ka b -+ 共线,则k = .24.若直线2y x m =+与椭圆22142x y +=有唯一公共点,则实数m = . 三、解答题(有5小题,共46分)25.如图,在ABC 中,已知D 是BC 的中点,2AG GD =,设向量BC a =,向量AC b = .试用向量a 、b 分别表示向量AD 、AG 、GC .26.已知在平面直角坐标系中,O 为原点,点()4,3A -,()5,12B -.(1)求向量AB的坐标及AB ;(2)已知向量2OC OA OB =+ ,3OD OA OB =-,求OC 及OD 的坐标;(3)求OA OB ⋅ .27.已知向量()()4,3,1,2.a b ==-(1)求向量a 与b 夹角的余弦值;(2)若向量()()//2a b a b λ-+,求实数λ的值.28.若集合{}34M x x =-≤≤∣,{}|132P x m x m =-≤≤-.若x M ∈是x P ∈的充分条件,求m 的取值范围.29.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其中左焦点为()F ,长轴长为4. (1)求椭圆C 的方程;(2)直线l :1y x =-与椭圆C 交于不同两点P 、Q ,求弦长PQ 及PQ 的中点坐标.。
月考复习题:1 什么是商品?商品的基本属性?2货币的本质是什么?货币职能是什么?3 国家能决定纸币的什么?4信用工具的分类\优点5 保持外汇稳定的作用6什么是买方市场卖方市场?7理解商品的价值量与数量、价值总量的关系8价值规律的内容与形式9价格变动对互为替代品与互补商品的影响10价格对生产的影响11影响消费水平的因素消费的类型恩格尔系数12人们的消费心理有哪些?我们应坚持什么消费原则?13我们应树立什么金钱观?月考模拟(90分钟,100分)(要求:请同学们科学合理的安排时间,选择题争取50分钟左右完成)一、选择题1.下列选项中,属于商品的是A刘先生买彩票中奖,得宝马轿车一辆B废品收购站收购的废品C农民向地主交纳的地租D种在地里自家吃的蔬菜和水果2.货币的本质是A.一般等价物B.商品C.金银D.人类劳动3.不同商品之所以可以按一定的量的比例进行交换,是因为所有商品A都是具体劳动的结果B都具有相等的使用价值C都是脑力劳动的结果D都凝结着一般人类劳动4.在同一时空条件下,生产同样的商品,不同生产者有的赚钱有的赔钱,其根本原因在于A生产技术条件不同B所耗费的个别劳动时间不同C出售产品的价值不同D所耗费的社会必要劳动时间不同5.小张在淘宝网上购买了一个u盘,并通过支付宝支付了50元。
这次网购过程中的货币①执行价值尺度职能②执行流通手段职能③只是观念上的货币④必须是现实的货币A.①③B.②④C.②③D.①④6.小张在商店里购买一件打折商品,原标价为50元,实际支付40元。
在这次购买活动中,货币不能执行的职能是①支付手段②流通手段③价值尺度④贮藏手段A①②③B①③④C②③④D①②④7.在下列经济行为中,属于货币执行支付手段职能的是A.1支钢笔标价5元钱B.用10元钱购买了3千克花生C.赊买2千克芒果,一周后付款10元钱D.张先生花3200元预订了一周后飞美国的机票8.纸币是由国家发行的强制使用的价值符号,这就是说①在一定时期内发行多少纸币是由国家决定②纸币的面值(如1元、10元、100元)是由国家决定的③每种面值的纸币各发行多少是由国家决定的④每种面值的纸币各代表多大价值是由国家决定的A.①②③B.①②④C. ②③④D.①③④9. .8月24日,100美元兑换756.91元人民币:9月24日,100美元兑换639.65元人民币。
这一变化表明A. 人民币汇率跌落,美元贬值B. 人民币汇率升高,美元升值C. 美元汇率升高,人民币贬值D. 美元汇率跌落,人民币升值10.人民币升值对我国经济的影响,表述正确的是①有利于我国产品的出口②国内企业对外投资能力增强③有利于对外国商品的进口④不利于我国产品的出口A ②③④B ①③④C ①②③D ①②④11.商品的价值量是由决定的A.质量B.使用价值C.个别劳动时间D.社会必要劳动时间12.商品的价值总量与社会劳动生产率A.成正比B.成反比C.无关D. 无法确定其关系13. “洛阳纸贵”这个典故出自我国《晋书•左思传》。
说的是晋朝有个叫左思的文人,构思十年,写成名篇。
于是洛阳城里的“豪贵之家竞相传写,洛阳为之纸贵”。
“洛阳纸贵”这一典故,主要表明--------因素也影响价格。
A.气候B.时间C.文化D.财富《经济日报》报道,新的知识、技术产品产生之时,物以稀为贵,可获得高额利润;但随着产品产量达到一定数量后,新增加的产品利润便会不断减少,直至在市场不能获得任何利润。
根据相关知识回答14-15题。
14.新的知识、技术产品产生之时,一般价格较高,其根本原因是A.高新技术产品的价值量大B.供不应求的商品使用价值大C.供求关系决定商品价格D.供不应求商品耗费的社会必要劳动时间多15.产品产量达到一定数量后,新增加的产品利润便会不断减少,依据是A.单位商品价值量与社会劳动生产率成正比B.单位商品价值量与社会劳动生产率成反比C.企业利润与商品价值量成反比D.使用价值与供求关系成反比16.“茅台酒越存越香,越存越值钱。
”贵州茅台股份有限公司负责人披露:茅台酒的价格每年都会提高10%,即“按年论价”。
50年的茅台市场价近万元,而80年茅台堪称“液体黄金”,更是价值连城。
由此可以看出,茅台酒的价格是由A.储存茅台酒的时间及其质量所决定的B.茅台酒使用价值高低所决定的C.市场上茅台酒的供求关系所决定的D.生产并储存茅台酒所耗费的人类劳动所决定的17.“大米涨价了,也得买。
”“金价涨了,以后再买金项链吧。
”这些现象包含的经济学道理是①价格变动会引起需求量的变化②价格变动对生活必需品的影响较小③价格变动对高档耐用品的影响较大④价格变动对各种商品的影响相同A.①②③B.①②④C.②③④D.①③④18.下列商品,价格变动对其影响最小的是A.时装B.生活日用品C.家用汽车D.高档电器19.汽车销量的增加会导致汽油需求量增加,反过来,油价的上涨又会使买车族变的更为谨慎,这是因为汽油和汽车A.互补商品B.功能趋同C.是互相替代品D.是高档消费品20.尽管国务院和有关部委多次叫停,但钢铁、电解铝、水泥行业的投资过热现象在去年仍然愈演愈烈,这一切都源于价格的不断上涨。
这说明A.商品价格的变动会对生产产生一定影响B.商品价格的变动会促使劳动生产率提高C.商品价格的变动会对高档消费品影响大D.生产决定消费,消费促进生产21.假定当甲商品的互补品价格上升20%时,甲商品需求量变动为30单位;当甲商品的替代品价格下降20%时,甲商品需求量变动为40单位。
如果其他条件不变,当甲商品的互补品价格上升20%、替代品价格下降20%同时出现时,那么,甲商品的需求数量A 减少70单位B 增加70单位C 增加40单位D 减少30单位22. 下图表示甲乙两种商品的需求变化,对此下列判断正确的是①两种商品的价格与需求量都呈正向变动②两种商品的价格与需求量都呈反向变动③两种商品相比,甲商品更可能是生活必需品④两种商品相比,甲商品更可能是高档耐用品 A ①③ B ②④ C ②③ D ①④23. 判断下列哪些是商品:①赵庄市场的水果②二中小卖部的矿泉水③唐百大楼中的电器④自家种自家吃的蔬菜⑤废品收购站的废品⑥捐赠台湾的物资⑦有线电视节目⑧中奖得的手机A①②③④⑤ B②③④⑤⑥ C③④⑤⑥⑦⑧ D①②③⑤⑦24.消费可划分为贷款消费、钱货两清的消费和租赁消费。
这种划分的依据是:A、消费品耐用程度不同B、产品类型不同C、交易方式不同D、消费的目的不同25.商品流通过程中实际需要的货币数量是受货币流通规律支配的。
在一定时期内,流通中需要的货币数量①与货币价值成正比②与货币流通速度成反比③与商品价格水平成反比④与流通中的商品数量成正比A. ①②B. ②③C. ②④D. ③④26.气候、时间、地域、宗教信仰、习俗等因素的变化,都会引起商品价格的变动。
它们对商品价格的影响,是因为改变了A. 该商品的个别劳动生产率B. 该商品的价值量C. 该商品的供求关系D. 该商品的社会劳动生产率27.东部地区人们的消费水平相对于西部地区来说要高,这主要取决于A.东部地区人们的收入水平相对较高B.东西部地区人们的收入差距太大C.东部地区人们的过去和未来的收入水平高D.东部地区人们的消费观念超前28. 有位准备买汽车的消费者说“新车一上牌就成了二手车,开始贬值。
对我来说,汽车只是一种为我服务的工具,什么品牌无所谓,关键是质量要好,价格要实在。
”从消费心理角度看,这是一种A.攀比心理B.求实心理C.适度消费D.盲目从众29.居民生活消费主要因素是①居民收入②社会总体消费水平③消费品价格④商品的性能、外观、质量、包装A.②④B.①③④C.①②③D.①③30.郑先生家每月固定1500元收入中主要用于燃气、缓慢上涨的粮食、油料、蔬菜等生活必需品支出有700多元。
按照消费的目的来划分,郑先生家的消费类型属于A.有形商品消费和劳务消费B.生存资料消费C.发展资料消费D.享受资料消费31.对“看菜吃饭,量入为出”与“花明天的钱,圆今天的梦”两种不同的消费观,你的看法是A.前者明显过时了B.后者脱离中国实际,属于超前消费C.只要不超出一定的度,信贷消费同样属于量入为出D.二者是对立的,不可能同时并存32.信用卡越来越普及,其原因主要是①信用卡是一般等价物,可以作为财富的代表②信用卡能够简化收款手续,节省交易费用,方便购物消费③信用卡可以增强消费安全④银行信用卡是商业银行发给资信状态良好的客户的一种信用凭证A.①②③B.②③④C.①④ D.②③33.“不求最好,但求最贵”,“吃的就是面子,要的就是档次”,成为一些请吃者或受吃者饮食需求之外的需求,比富斗阔的奢侈成为财富、地位的象征。
这主要是由________心理引发的消费。
A.从众 B.求异 C.攀比 D.求实34. 通货膨胀与通货紧缩是两种不同的经济现象,它们的共同点在于 A.都是由社会总需求与社会总供给不平衡造成的B.都是商品价格持续下跌造成的,影响社会经济的正常进行C.都是纸币发行量超过了流通中实际需要的货币量D.都对经济发展起刺激作用,导致物价上涨,纸币贬值35.用陪驾交换电脑维修,用杨氏太极招式交换摄影技术……越来越多的人加人到“技能互换”中,成为“技客一族”。
从市场角度看,下列关于“技能互换”的说法正确的是:①互换中的“技能”是使用价值与价值的统一体 ②“技能互换”属于商品流通 ③从消费目的看,“技能互换”属于劳务消费 ④“技能互换”要符合等价交换原则 A ②③ B ①④ C ①②④ D ②③④36. 小赵的父母贷款买了新房,用现金买了轿车,一家人还利用节假日外出旅游,请小时工帮助做家务。
下列选项中,正确说明小赵一家消费类型的是①购车属于钱货两清消费 ②外出旅游属于生存资料消费 ③购房属于贷款消费 ④请小时工做家务属租赁消费 A. ①② B. ②③ C. ②④ D. ①③ 37. 商品生产者提高个别劳动生产率的目的是 A. 缩短社会必要劳动时间 B. 降低单位商品的价值量C. 使个别劳动时间低于社会必要劳动时间,获得收益D. 改进技术,改善经营管理38. 如果两种商品的功用相同或相近,可以满足消费者的同一需要,这两种商品就是互为替代品。
当其中一种商品价格下降后,所产生的影响是①消费者将减少对该商品的需求量 ②消费者将增加对该商品的需求量 ③另一种商品的需求量将增加 ④另一种商品的需求量将减少 A. ①② B. ①③ C. ②④ D. ③④该居民家庭这一年的恩格尔系数约为A 21.24%B 30.09%C 38.1%D 53.97%A 乙家相对于甲家恩格尔系数高,生活水平高B 甲家侧重于生存资料消费,乙家侧重于享受资料消费C 乙家恩格尔系数低,生活水平和质量高D 乙家比甲家生活得更幸福41.心理经济学认为,人们只为自己喜欢的人买单。