2018-2019学年浙江省温州市瑞安市西部学校九年级(上)期末数学试卷(解析版)
- 格式:doc
- 大小:707.75 KB
- 文档页数:27
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。
1.2矩形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 16. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14027. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=,则OE=()A. 1B. 2C. 3D. 48. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等9. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm10. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°11. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形二、填空题(本题包括3个小题)12. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.13. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC 平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________14. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题(本题包括5个小题)15. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形16. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积17. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形18. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?19. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案一、选择题1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD 的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质3. 【答案】D【解析】∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D.考点:矩形的性质.4. 【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=O B=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.考点:1.矩形的性质;2.等边三角形的判定与性质.5. 【答案】A【解析】在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.6. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm2).故选A.考点:矩形的性质.7.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=,∠OAD=60°,∴∠OAE= 30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.8.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.9. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.考点:矩形的性质.10. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=×(180°﹣∠AOB)=×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.11. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.二、填空题12. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.13.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.14. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.考点:勾股定理的逆定理点评:本题属于基础应用题,只需学生熟练掌握勾股定理的逆定理,即可完成.三、解答题15. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥B D,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.考点:1.矩形的判定与性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质.16. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.17. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.18. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.19. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.点睛:本题主要考查矩形的判定和性质,由角平分线及等腰三角形的性质证明AE∥BD是解题的关键.。
浙江省温州市瑞安市五校联考2018届九年级数学上学期期末学业检测试题温馨提醒∶1.本试卷分试题卷和答题卷两部分,满分150分,考试时间120分钟.2.须在答题卷上作答,字体要工整,笔迹要清楚,在试题卷上作答一律无效.3参考公式:二次函数()20y ax bx c a =++≠的图象的顶点坐标是(24,24b ac b a a--).一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1. 若32a b =,则a bb +的值等于( ▲ ) A .12B .52C .53D .542. 已知⊙O 的半径为4cm ,点P 到圆心O 的距离为3cm ,则点P ( ▲ )A .在圆内B .在圆上C .在圆外D .不能确定 3.二次函数21y x =-的图象与y 轴的交点坐标是( ▲ )A .(0,1)B .(1,0)C .(-1,0)D .(0,-1) 4. 若两个三角形的相似比为1:2,则它们的面积比为( ▲ )A .1:2B .1:4C .2:1D .4:15. 一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( ▲ ) A .20 B .24 C .28 D .306.已知二次函数的图象(0≤x ≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( ▲ )A .有最大值2,有最小值-2.5B .有最大值2,有最小值1.5C .有最大值1.5,有最小值-2.5 C .有最大值2,无最小值7. 如图,D 是等边△ABC 外接圆AC 上的点,且∠CAD =20°,则∠ACD 的度数为( ▲ )A .20°B .30°C .40°D .45°8. 如图,有一块直角三角形余料ABC ,∠BAC =90°,D 是AC 的中点,现从中切出一条矩形纸条DEFG ,其中E ,F 在BC 上,点G 在AB 上,若BF =4.5cm ,CE =2cm ,则纸条GD 的长为( ▲ ) A .3 cmB .213cmC .132cm D .133cm 9. 二次函数21y x bx c =++与一次函数29y kx =-的图象交于点A (2,5)和点B (3,m ),要使(第6题)(第7题)(第8题)12y y <,则x 的取值范围是( ▲ )A .23x <<B .2x >C .3x <D .2x <或3x >10.如图,点A ,B ,C 均在坐标轴上,AO =BO =CO =1,过A ,O ,C 作⊙D ,E 是⊙D 上任意一点,连结CE , BE ,则22CE BE +的最大值是(▲)A .4B .5C .6D .42+二、填空题(本题有6小题.每小题5分,共30分)11. 某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是▲ .12. 已知扇形的圆心角为120°,它的弧长为6π,则它的半径为 ▲ .13. 如图,点B ,E 分别在线段AC ,DF 上,若AD ∥BE ∥CF ,AB =3,BC =2,DE =4.5,则DF 的长为 ▲ .14.若二次函数223y ax ax =+-的图象与x 轴的一个交点是(2,0),则与x 轴的另一个交点坐标是 ▲ .15. 如图,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD =BD .若⊙O 的半径OB =2,则AC 的长为 ▲ . 16. 两幢大楼的部分截面及相关数据如图,小明在甲楼A 处透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D 处喷出,水流正好经过E ,F . 若点B 和点E 、点C 和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m ,再向左后退了 ▲ m ,恰好把水喷到F 处进行灭火.三、解答题(本题有8小题,共80分)17.(本题6分)如图,在⊙O 中,AB =CD .求证:AD =BC .18.(本题8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为13. (1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小(第17题)(第10题)(第15题) (第13题)(第16题)单位:m球的概率.(请结合树状图或列表解答)19.(本题10分)如图,点O 是线段AB 的中点,根据要求完成下题: (1)在图中补画完成:第一步,以AB 为直径的画出⊙O ;第二步,以B 为圆心,以BO 为半径画圆弧,交⊙O 于点C ,连接点CA ,CO ; (2)设AB =6,求扇形AOC 的面积.(结果保留π)20.(本题10分) 如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的C '处,点D 落在点D '处,C 'D '交线段AE 于点G . (1)求证:△BC 'F ∽△AGC ';(2)若C '是AB 的中点,AB =6,BC =9,求AG 的长.21.(本题10分) 如图,二次函数的图象的顶点坐标为(1,23),现将等腰直角三角板直角顶点放在原点O ,一个锐角顶点A 在此二次函数的图象上,而另一个锐角顶点B 在第二象限,且点A 的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B 是否在此二次函数的图象上,并说明理由.22.(本题10分)甲乙两位同学利用灯光下的影子来测量一路灯A 的高度,如图,当甲走到点C 处时,乙测得甲直立身高CD 与其影子长CE 正好相等,接着甲沿BC 方向继续向前走,走到点E 处时,甲直立身高EF 的影子恰好是线段EG ,并测得EG =2.5m.已知甲直立时的身高为1.75m ,求路灯的高AB 的长.(结果精确到0.1m )(第22题) (第21题)(第19题)(第20题)23.(本题12分)如图,二次函数213222y x x =-++的图象与x 轴交于点A ,B ,与y 轴交于点C .点P 是该函数图象上的动点,且位于第一象限,设点P 的横坐标为x .(1)写出线段AC , BC 的长度:AC = ▲ ,BC = ▲ ; (2)记△BCP 的面积为S ,求S 关于x 的函数表达式;(3)过点P 作PH ⊥BC ,垂足为H ,连结AH ,AP ,设AP 与BC 交于点K ,探究:是否存在四边形ACPH为平行四边形?若存在,请求出PK AK 的值;若不存在,请说明理由,并求出PKAK的最大值.24.(本题14分) 如图,AB 是⊙O 的直径,AC BC =,连结AC ,过点C 作直线l ∥AB ,点P 是直线l上的一个动点,直线PA 与⊙O 交于另一点D ,连结CD ,设直线PB 与直线AC 交于点E .(1)求∠BAC 的度数;(2)当点D 在AB 上方,且CD ⊥BP 时,求证:PC =AC ; (3)在点P 的运动过程中①当点A 在线段PB 的中垂线上或点B 在线段PA 的中垂线上时,求出所有满足条件的∠ACD 的度数;②设⊙O 的半径为6,点E 到直线l 的距离为3,连结BD , DE ,直接写出△BDE 的面积.2017学年第一学期九年级期末检测数学参考答案一、选择题(本题有10小题.每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案BADBDACCAC二、填空题(本题有6小题.每小题5分,共30分) 11.4912.9 13.7.514.()40-,15.2216.11010- 三、解答题(本题有8小题,共80分) 17.(本题6分)证明:∵AB =CD ,∴AB CD =,(第23题) (第24题)(2分) (4分)∴AB BD CD BD -=-,即 AD BC = ∴ AD =BC 18.(本题8分)(1)设白球有x 个,则有123x x =+,解得x =1(检验可不写) (2)树状图或列表3分,计算概率2分:所以,两次都摸到相同颜色的小球的概率59. 19.(本题10分) (1)画图4分;(2)解:连结BC ,则BC =BO =OC ,∴△BOC 是正三角形, ∴∠BOC =60°,∴∠AOC =120°, ∴212033360AOCS ππ⋅==扇形20.(本题10分)(1)证明:由题意可知∠A =∠B =∠GC 'F =90°,∴∠BF C '+∠B C 'F = 90°,∠A C 'G +∠B C 'F = 90°,∴∠BF C '=∠A C 'G ∴△BC 'F ∽△AGC '. (2) 由勾股定理得()22239BF BF +=-,∴BF =4.∵ C '是AB 的中点,AB =6,∴AC '=BC '=3. 由(1)得△BC 'F ∽△AGC ',∴''AG AC BC BF =,即334AG =∴AG =94.21.(本题10分)(1)设二次函数的表达式为()2213y a x =-+, ∵图象过A (2,1),∴213a +=,即13a = ∴()212133y x =-+(2)过点A ,B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C ,D .易证得△AOC ≌△DOB ,∴DO =AC =1,BD =OC =2,∴B (-1,2)COA B (6分)(3分) (8分) (6分)(1分) (4分) (5分)(7分)(9分) (10分)(第20题)(4分) (5分)(8分)当x =-1时,()21211233y =⨯--+= ∴点B 在这个函数图象上. 22.(本题10分) 解:如图,设AB = x ,由题意知AB ⊥BG ,CD ⊥BG ,FE ⊥BG ,CD =CE ,∴AB ∥CD ∥EF ,∴BE =AB =x , ∴△ABG ∽△FEC∴AB BG FE EG =,即 2.51.752.5x x +=, ∴35 5.86x =≈m答:路灯高AB 约为5.8米.23. (本题12分)解:(1)AC 5BC =25 (2)设P (x , 213222x x -++),则有OCP OBP OBC S S S S ∆∆∆=+- =2111324242222x x x ⎛⎫⨯⋅+⨯⋅-++- ⎪⎝⎭=24x x -+ (3)过点P 作PH ⊥BC 于H , ∵22225AC BC AB +==,∴△ABC 为直角三角形,即AC ⊥BC ;∴AC ∥PH , 要使四边形ACPH 为平行四边形,只需满足PH =AC 5 ∴152S BC PH PH =⋅==5,而S =24x x -+=()2244x --+≤, 所以不存在四边形ACPH 为平行四边形 由△AKC ∽△PHK , ∴5PK PH AK AC ===14S 55≤(当x =2时,取到最大值)(说明:写出不存在给1分,其他说明过程酌情给分) 24.(本题14分)(1)∠BAC =45°; (2)解:∵AC BC =,∴∠CDB =∠CDP =45°,CB = CA ,∴CD 平分∠BDP 又∵CD ⊥BP ,∴BE =EP , 即CD 是PB 的中垂线,∴CP =CB = CA ,(3)①解答正确一个答案给2分,两个给3分,三个给5分,全对给6分(Ⅰ)如图2,当 B 在PA 的中垂线上,且P 在右时,∠ACD =15°;(2分) (10分)(4分) (6分) (8分)(10分)(6分) (10分) (12分) (12分) (3分)(6分)(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°②36或10817(如图6、图7)附16题解析要点:()()()2212216611510.22555250.4m115m10.20.425F25,6.2,m11010y x x xy x=-++=--+=--+++=-向上米,向左后退米,则有因为过点代入求得(图1)(图2)(图3)(图4)(图5)(图6)(图7)(14分)。
2019-2020学年浙江省温州市瑞安市六校联盟九年级(上)期中数学试卷一、选择题(本题共有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选,多选,错选,均不得分)1.(4分)已知=,则的值为()A.B.C.D.2.(4分)已知,A,B,C是⊙O上的三点,∠BOC=100°,则∠BAC的度数为()A.30°B.45°C.50°D.60°3.(4分)下列命题为真命题的是()A.三点确定一个圆B.度数相等的弧相等C.相等的圆心角所对的弧相等D.90°的圆周角所对的弦是直径4.(4分)某校食堂每天中午为学生提供A、B两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为()A.B.C.D.5.(4分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是()A.35°B.55°C.65°D.70°6.(4分)将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣27.(4分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.8.(4分)已知二次函数y=x2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A.有最大值8,最小值﹣8B.有最大值8,最小值﹣7C.有最大值﹣7,最小值﹣8D.有最大值1,最小值﹣79.(4分)如图,在边长为2的正方形ABCD中,点E是边CD的中点,以A为圆心,AB为半径作弧,交BE于点F.记图中分割部分的面积为S1,S2,则S1﹣S2的值为()A.4﹣πB.2π﹣4C.6﹣2πD.π﹣310.(4分)如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC、BC为直径作半圆,其中M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是()A.17B.18C.19D.20二、填空题(本题共有6小题,每小题5分,共30分)11.(5分)已知扇形的圆心角为120°,弧长为6π,则它的半径为.12.(5分)已知线段a=2,b=8,则a,b的比例中项是.13.(5分)一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有个白球.14.(5分)已知二次函数y=ax2+bx﹣3自变量x的部分取值和对应函数值y如下表:则在实数范围内能使得y﹣5>0成立的x取值范围是.15.(5分)现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB和CD平行且相等(如图2),小华用皮带尺量出AC=2米,AB=1米,那么桌面翻成圆桌后,桌子面积会增加平方米.(结果保留π)16.(5分)小林家的洗手盘台面上有一瓶洗手液(如图1).当手按住顶部A下压如图2位置时,洗手液瞬间从喷口B流出路线呈抛物线经过C与E两点.瓶子上部分是由弧和弧组成,其圆心分别为D,C.下部分的是矩形CGHD的视图,GH=10cm,点E 到台面GH的距离为14cm,点B距台面的距离为16cm,且B,D,H三点共线.若手心距DH的水平距离为2cm去接洗手液时,则手心距水平台面的高度为cm.三、解答题(本题有8小题,第17,18,19,20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)如图,△ABC分别交⊙O于点A,B,D,E,且CA=CB.求证:AD=BE.18.(8分)如图,在8×8的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出∠ADC,使得∠ADC=∠ABC,且点D为格点.(2)在图2中画出∠CEB,使得∠CEB=2∠CAB,且点E为格点.19.(8分)一项答题竞猜活动,在6个式样、大小都相同的箱子中有且只有一个箱子里藏有礼物.参与选手将回答5道题目,每答对一道题,主持人就从6个箱子中去掉一个空箱子.而选手一旦答错,即取消后面的答题资格,从剩下的箱子中选取一个箱子.(1)一个选手答对了4道题,求他选中藏有礼物的箱子的概率;(2)已知一个选手选中藏有礼物的箱子的概率为,则他答对了几道题?20.(8分)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.21.(10分)如图,抛物线y =﹣(x ﹣k )2+经过点D (﹣1,0),与x 轴正半轴交于点E ,与y 轴交于点C ,过点C 作CB ∥x 轴交抛物线于点B .连接BD 交y 轴于点F . (1)求点E 的坐标. (2)求△CFB 的面积.22.(12分)如图,在⊙O 中,弦AB ⊥弦CD 于点E ,弦AG ⊥弦BC 于点F ,AG 与CD 相交于点M .(1)求证:=;(2)若弧=80°,⊙O 的半径为6,求+的弧长和.23.(12分)一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该玩具的销售单价为x 元(x >40),请你分别用x 的代数式来表示销售量y 件和销售该玩具获得利润w 元,并把结果填写在表格中:(2)若该网店要获得了10000元销售利润,求该玩具销售单价x 应定为多少元? (3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?24.(14分)如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连结CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.2019-2020学年浙江省温州市瑞安市六校联盟九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选,多选,错选,均不得分)1.(4分)已知=,则的值为()A.B.C.D.【分析】直接利用已知表示出a,b的值,进而得出答案.【解答】解:∵=,∴设a=3x,b=2x,故==.故选:C.【点评】此题主要考查了比例的性质,正确用同一未知数表示出各数是解题关键.2.(4分)已知,A,B,C是⊙O上的三点,∠BOC=100°,则∠BAC的度数为()A.30°B.45°C.50°D.60°【分析】根据圆周角定理即可得到结论.【解答】解:∵A,B,C是⊙O上的三点,∠BOC=100°,∴∠BAC=BOC=100°=50°,故选:C.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.3.(4分)下列命题为真命题的是()A.三点确定一个圆B.度数相等的弧相等C.相等的圆心角所对的弧相等D.90°的圆周角所对的弦是直径【分析】根据过三点的圆、等弧的概念、圆心角和圆周角定理判断即可.【解答】解:A、不在同一直线上的三点确定一个圆,是假命题;B、度数相等的弧不一定相等,是假命题;C、在同圆或等圆中,相等的圆心角所对的弧相等是假命题;D、90°的圆周角所对的弦是直径,是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.(4分)某校食堂每天中午为学生提供A、B两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为()A.B.C.D.【分析】画出树状图得出所有等可能的情况数,再找出甲乙两人选择同款套餐的情况数,然后根据概率公式求解即可.【解答】解:根据题意画图如下:所有等可能的情况有4种,其中甲乙两人选择同款套餐的有2种,则甲乙两人选择同款套餐的概率为:=;故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5.(4分)如图A,D是⊙O上两点,BC是直径.若∠D=35°,则∠OAB的度数是()A.35°B.55°C.65°D.70°【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠OAB的度数.【解答】解:∵∠D=35°,∴∠AOB=2∠D=2×35°=70°,∵AO=OB,∴∠OAB=∠OBA=(180°﹣70°)=55°,故选:B.【点评】本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.(4分)将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=3x2先向左平移一个单位得到解析式:y=3(x+1)2,再向上平移2个单位得到抛物线的解析式为:y=3(x+1)2+2.故选:A.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.7.(4分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【解答】解:画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.8.(4分)已知二次函数y=x2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A.有最大值8,最小值﹣8B.有最大值8,最小值﹣7C.有最大值﹣7,最小值﹣8D.有最大值1,最小值﹣7【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴在﹣1≤x≤4的取值范围内,当x=3时,有最小值﹣8,当x=﹣1时,有最大值为y=16﹣8=8.故选:A.【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.9.(4分)如图,在边长为2的正方形ABCD中,点E是边CD的中点,以A为圆心,AB为半径作弧,交BE于点F.记图中分割部分的面积为S1,S2,则S1﹣S2的值为()A.4﹣πB.2π﹣4C.6﹣2πD.π﹣3【分析】根据正方形的性质和扇形以及三角形的面积公式即可得到结论.【解答】解:∵四边形ABCD 是正方形, ∴AB =CD =BC =2, ∵点E 是边CD 的中点,∴CE =CD =1,∴S 1﹣S 2=S △BCE ﹣(S 正方形ABCD ﹣S扇形ABD )=×2×1﹣(2×2﹣)=π﹣3, 故选:D .【点评】本题考查了扇形面积的计算,正方形的性质,三角形面积的计算,正确的识别图形是解题的关键.10.(4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC 、BC 为直径作半圆,其中M ,N 分别是AC 、BC 为直径作半圆弧的中点,,的中点分别是P ,Q .若MP +NQ =7,AC +BC =26,则AB 的长是( )A .17B .18C .19D .20【分析】连接OP ,OQ ,根据M ,N 分别是AC 、BC 为直径作半圆弧的中点,,的中点分别是P ,Q .得到OP ⊥AC ,OQ ⊥BC ,从而得到H 、I 是AC 、BC 的中点,利用中位线定理得到OH +OI =(AC +BC )=13和PH +QI =6,从而利用AB =OP +OQ =OH +OI +PH +QI 求解.【解答】解:连接OP ,OQ ,分别交AC ,BC 于H ,I ,∵M ,N 分别是AC 、BC 为直径作半圆弧的中点,,的中点分别是P ,Q ,∴OP ⊥AC ,OQ ⊥BC ,由对称性可知:H ,P ,M 三点共线,I ,Q ,N 三点共线, ∴H 、I 是AC 、BC 的中点,∴OH +OI =(AC +BC )=13,∵MH +NI =AC +BC =13,MP +NQ =7, ∴PH +QI =13﹣7=6,∴AB=OP+OQ=OH+OI+PH+QI=13+6=19,故选:C.【点评】本题考查了中位线定理的应用,解题的关键是正确作出辅助线,题目中还考查了垂径定理和轴对称的知识,有难度.二、填空题(本题共有6小题,每小题5分,共30分)11.(5分)已知扇形的圆心角为120°,弧长为6π,则它的半径为9.【分析】根据弧长的公式l=,计算即可.【解答】解:设扇形的半径为R,由题意得,=6π,解得,R=9,故答案为:9.【点评】本题考查的是弧长的计算,掌握弧长公式:l=是解题的关键.12.(5分)已知线段a=2,b=8,则a,b的比例中项是4.【分析】设线段a,b的比例中项为c,根据比例中项的定义可知,c2=ab,代入数据可直接求得c的值,注意两条线段的比例中项为正数.【解答】解:设线段a,b的比例中项为c,∵c是长度分别为2、8的两条线段的比例中项,∴c2=ab=2×8,即c2=16,∴c=4(负数舍去).故答案为:4.【点评】本题主要考查了线段的比.根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.13.(5分)一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有9个白球.【分析】设口袋中白球有x个,根据摸到红球的次数占总次数的频率可估计摸到红球的概率列出方程,解之可得.【解答】解:设口袋中白球有x个,根据题意,得:=,解得x=9,经检验x=9是分式方程的解,∴口袋中大约有9个白球,故答案为:9.【点评】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(5分)已知二次函数y=ax2+bx﹣3自变量x的部分取值和对应函数值y如下表:则在实数范围内能使得y﹣5>0成立的x取值范围是x<﹣2或x>4.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=5的自变量x的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣2时,y=5,∴x=4时,y=5,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣5>0成立的x取值范围是x<﹣2或x>4故答案为:x<﹣2或x>4.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.15.(5分)现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB 和CD 平行且相等(如图2),小华用皮带尺量出AC =2米,AB =1米,那么桌面翻成圆桌后,桌子面积会增加平方米.(结果保留π)【分析】首先将圆形补全,设圆心为O ,连接DO ,过点O 作OE ⊥AD 于点E ,进而得出AD ,EO 的长以及∠1,∠AOD 的度数,进而得出S 弓形AD 面积=S扇形AOD﹣S △AOD 求出即可.【解答】解:将圆形补全,设圆心为O ,连接DO ,过点O 作OE ⊥AD 于点E , 由题意可得出:∠DAB =∠ABC =90°, ∵AC =2米,AB =1米, ∴∠ACB =30°,∵餐桌两边AB 和CD 平行且相等, ∴∠C =∠1=30°,∴EO =AO =m ,∴AE =×=,∴AD =,∵∠1=∠D =30°, ∴∠AOD =120°, ∴S 弓形AD 面积 =S 扇形AOD ﹣S △AOD=﹣××,=﹣,∴桌面翻成圆桌后,桌子面积会增加(﹣)平方米.故答案为:﹣.【点评】此题主要考查了勾股定理以及扇形面积计算以及三角形面积求法等知识,熟练掌握特殊角的三角函数关系是解题关键.16.(5分)小林家的洗手盘台面上有一瓶洗手液(如图1).当手按住顶部A下压如图2位置时,洗手液瞬间从喷口B流出路线呈抛物线经过C与E两点.瓶子上部分是由弧和弧组成,其圆心分别为D,C.下部分的是矩形CGHD的视图,GH=10cm,点E 到台面GH的距离为14cm,点B距台面的距离为16cm,且B,D,H三点共线.若手心距DH的水平距离为2cm去接洗手液时,则手心距水平台面的高度为11cm.【分析】根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【解答】解:如图:∵CD=DE=10,根据题意,得C(﹣5,8),E(﹣3,14),B(5,16).设抛物线解析式为y=ax2+bx+c,因为抛物线经过C、E、B三点,∴解得所以抛物线解析式为y=﹣x2+x+.当x=7时,y=11.∴Q(7,11)所以手心距水平台面的高度为11cm.故答案为11.【点评】本题考查了二次函数的应用,解决本题的关键是准确进行计算.三、解答题(本题有8小题,第17,18,19,20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)如图,△ABC分别交⊙O于点A,B,D,E,且CA=CB.求证:AD=BE.【分析】根据等腰三角形的性质得到∠A=∠B,根据圆心角、弧、弦的关系定理证明结论.【解答】证明:∵AC=BC,∴∠A=∠B,∴=,∴﹣=﹣,即=,∴AD=BE.【点评】本题考查的是圆心角、弧、弦的关系、等腰三角形的性质,掌握圆心角、弧、弦的关系定理是解题的关键.18.(8分)如图,在8×8的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出∠ADC,使得∠ADC=∠ABC,且点D为格点.(2)在图2中画出∠CEB,使得∠CEB=2∠CAB,且点E为格点.【分析】(1)构造全等三角形解决问题即可.(2)利用圆周角定理解决问题即可.【解答】解:(1)如图点D,D′,D″即为所求.(2)如图点E,E′即为所求.【点评】本题考查作图﹣应用与设计,全等三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(8分)一项答题竞猜活动,在6个式样、大小都相同的箱子中有且只有一个箱子里藏有礼物.参与选手将回答5道题目,每答对一道题,主持人就从6个箱子中去掉一个空箱子.而选手一旦答错,即取消后面的答题资格,从剩下的箱子中选取一个箱子.(1)一个选手答对了4道题,求他选中藏有礼物的箱子的概率;(2)已知一个选手选中藏有礼物的箱子的概率为,则他答对了几道题?【分析】(1)求得剩下的箱子数,用概率公式求得概率即可;(2)根据概率求得箱子的总数,然后求得答对的题目即可.【解答】解:(1)∵共6个箱子,答对了4道取走4个箱子,∴还剩2个箱子,∴一个选手答对了4道题,求他选中藏有礼物的箱子的概率;(2)∵一个选手选中藏有礼物的箱子的概率为,∴他从5个箱子中选择一个箱子,∴则他答对了1道题;【点评】考查了概率公式,解题的关键是仔细读题并读懂题意,难度中等.20.(8分)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.【分析】连接AC,根据已知条件利用等角对等边可以得到CF=BF;作CG⊥AD于点G,先利用HL判定Rt△BCE≌Rt△DCG,推出BE=DG,根据边之间的关系可求得BE的值,再根据相似三角形的判定得到△BCE∽△BAC,根据相似三角形的对应边成比例,可得到BC2=BE•AB,这样便求得BC的值,注意负值要舍去.【解答】(1)证明:连接AC,如图∵C是弧BD的中点∴∠BDC=∠DBC(1分)又∵∠BDC=∠BAC在△ABC中,∠ACB=90°,CE⊥AB∴∠BCE=∠BAC∠BCE=∠DBC(3分)∴CF=BF;(4分)(2)解:解法一:作CG⊥AD于点G,∵C是弧BD的中点∴∠CAG=∠BAC,即AC是∠BAD的角平分线.(5分)∴CE=CG,AE=AG(6分)在Rt△BCE与Rt△DCG中,CE=CG,CB=CD∴Rt△BCE≌Rt△DCG(HL)∴BE=DG(7分)∴AE=AB﹣BE=AG=AD+DG即6﹣BE=2+DG∴2BE=4,即BE=2(8分)又∵△BCE∽△BAC∴BC2=BE•AB=12(9分)BC=±2(舍去负值)∴BC=2.(10分)解法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=∠ADB=90°,(5分在Rt△ADB与Rt△FEB中,∵∠ABD=∠FBE∴△ADB∽△FEB,则,即,∴BF=3EF(6分)又∵BF=CF,∴CF=3EF利用勾股定理得:(7分)又∵△EBC∽△ECA则,则CE2=AE•BE(8分)∴(CF+EF)2=(6﹣BE)•BE即(3EF+EF)2=(6﹣2EF)•2EF∴EF=(9分)∴BC=.(10分)【点评】此题主要考查学生对圆周角的定理,相似三角形的判定,全等三角形的判定等知识点的综合运用能力.21.(10分)如图,抛物线y=﹣(x﹣k)2+经过点D(﹣1,0),与x轴正半轴交于点E,与y轴交于点C,过点C作CB∥x轴交抛物线于点B.连接BD交y轴于点F.(1)求点E的坐标.(2)求△CFB的面积.【分析】(1)把点D(﹣1,0)代入y=﹣(x﹣k)2+,求k=1,令y=0 有,解得x1=﹣1,x2=3,即可求解;(2)求出BD的解析式:,OF=CF=,△CFB的面积=.【解答】解:(1)把点D(﹣1,0)代入y=﹣(x﹣k)2+,解得:k=1;令y=0 有,解得x1=﹣1(舍去),x2=3,∴点E(3,0);(2)点B的坐标为:(2,),点D(﹣1,0),将点B、D的坐标代入一次函数表达式并解得:直线BD的解析式为:,OF=,CF=,△CFB的面积=.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.22.(12分)如图,在⊙O中,弦AB⊥弦CD于点E,弦AG⊥弦BC于点F,AG与CD 相交于点M.(1)求证:=;(2)若弧=80°,⊙O的半径为6,求+的弧长和.【分析】(1)根据直角三角形的性质、同角的余角相等得到∠DCB=∠GAB,根据圆周角定理证明结论;(2)根据三角形的外角性质得到∠ACD+∠CAG=40°,根据弧长公式计算即可.【解答】(1)证明:∵AB⊥CD,AG⊥BC,∴∠DCB+∠B=90°,∠GAB+∠B=90°,∴∠DCB=∠GAB,∴;(2)∵的度数是80°,∴∠B=40°,∴∠DCB=50°,∴∠GMC=40°,∴∠ACD+∠CAG=40°,∴+的弧长和==.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.23.(12分)一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y 件和销售该玩具获得利润w元,并把结果填写在表格中:(2)若该网店要获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?【分析】(1)销售量等于600减去10(x﹣40),化简即可;(2)由题意得出1000﹣10x≥550,从而得x的一个范围,将利润函数w=﹣10x2+1300x ﹣30000写成顶点式,利用二次函数的性质可得答案.【解答】解:(1)销售量y=600﹣10(x﹣40)=1000﹣10x;销售该玩具获得利润w=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000,如下表:故答案为:1000﹣10x;﹣10x2+1300x﹣30000.(2)根据题意得出:﹣10x2+1300x﹣30000=10000,解得:x1=50,x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)∵1000﹣10x≥550解得:40<x≤45,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当40<x≤45时,w随x增大而增大.∴当x=45时,w最大值=8250,答:商场销售该品牌玩具获得的最大利润为8250元.【点评】本题考查了二次函数在实际问题中的应用,会根据题意正确列式并明确二次函数的相关性质,是解题的关键24.(14分)如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连结CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.【分析】(1)连结CD.根据圆周角定理解决问题即可.(2)①分三种情形:如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,分别求解即可解决问题.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.证明△ADE≌△CDF(SAS),推出AE=CF,S△ADE =S△CDF,由DC平分∠ACB,DM⊥AC,DN⊥BC,推出DM=DN,可得四边形DMCN是正方形,推出DM=CM=CN=DN,因为====,所以可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,再利用三角形的面积公式计算机可解决问题.(3)连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.想办法证明△ODQ是等腰直角三角形即可解决问题.【解答】(1)证明:连结CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA =CB ,AD =DB ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,CD =DA =DB∴DE =DF ,∵∠ADC =∠EDF =90°,∴∠ADE =∠CDF ,∴△ADE ≌△CDF (SAS ),∴AE =CF ,S △ADE =S △CDF ,∵DC 平分∠ACB ,DM ⊥AC ,DN ⊥BC ,∴DM =DN ,可得四边形DMCN 是正方形,∴DM =CM =CN =DN ,∵====,∴可以假设DN =3k ,EC =4k ,则AC =BC =6k ,AE =CF =2k ,∴==.(3)证明:连接OD ,OQ ,作ER ⊥AB ,OH ⊥AB ,FK ⊥AB .∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.【点评】本题属于圆综合题,考查了等腰直角三角形的性质,圆周角定理,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于则有压轴题.。
九年级(上)数学试题参考答案 第 1 页(共 3 页)温州市2018学年第一学期九年级(上)学业水平期末检测数学参考答案及评分标准 2019.1一、选择题(本题有10小题,每小题3分,共30分)题号 1 2 3 4 5 答案 C B A B A 题号 6 7 8 9 10 答案CCBDD二、填空题(本题有8小题,每小题3分,共24分)三、解答题(本题有6小题,共46分) 19.(本题6分)(2)由上表可知两数之和大于5的概率P =312 .(3分)20.(本题6分)答案不唯一,参考图如下. (1)如图1,∠AOB 为所求作图形. (3分) (2)如图2,∠BCD 为所求作图形.或如图3,∠ACD 为所求作图形.(3分)AB O C图1 B A C DO图2A B C DO 图3(第20题)九年级(上)数学试题参考答案 第 2 页(共 3 页)21.(本题6分). 解:(1)∵抛物线经过点(3,5),∴253431a =-⨯++,∴a =7,∴二次函数的表达式为248y x x =-+.(3分)(2)∵二次函数与x 轴只有一个交点,∴由判别式得014-)4-(2=+)(a ,∴3=a .(3分)22.(本题8分)(1)证明:∵正方形ABDE ,∴AE =DE ,∠AEG +∠DEH =90°. ∵EG ⊥AF ,∴∠AEG +∠EAF =90°, ∴∠EAF =∠DEH .∵∠AEF =∠EDH =90°, ∴△AEF ≌△EDH .(4分)(2)解:由△AEF ≌△EDH 得EF =DH .∵DH =2DF ,∴EF =2DF .∵CD ∥AE ,∴△CDF ∽△AEF ,∴12CD DF AE EF ==,∴CD =32.∴BC =BD +CD =3+3922=.(4分)23.(本题8分)解:(1)212x ,242-48x .(4分)(2)设铺好客厅后瓷砖总价格为y 元,则铺设甲瓷砖共需300⨯212x =23600x 元, 铺设乙瓷砖共需200⨯212x =22400x 元,铺设丙瓷砖共需100(242-48x )=(22400-4800x )元, ∴y =480036002+x , 又∵EF ≥FG +2, ∴6x ≥4x +2, ∴x ≥1.∵抛物线236004800y x =+关于y 轴对称,且开口向上, ∴当x =1时,y 有最小值为8400元.(4分)ABCDEGHF(第22题)九年级(上)数学试题参考答案 第 3 页(共 3 页)24.(本题12分) (1)解:如图1,∵AB=3,AD AO 21==4,∠BAD =90°, ∴由勾股定理得BO=5. ∵OP =OE =2,∴BE =3. ∵AD //BC ,∴△BEH ∽△OEA ,∴OEBEAO BH =. ∴6423=⨯=BH . (4分)(2)解:如图2,在△AEO 与△DFO 中,∠AOE=∠DOF ,OE =OF ,OA =OD , ∴△AEO ≌△DFO .∴∠EAO=∠FDO .∴AG//DF .∴∠FEG=∠DFM . ∵EF 为⊙O 的直径,∴∠EGF=90°. ∵DM ⊥BF ,∴∠EGF=∠DMF=90°.∴△EFG ∽△FDM . (4分) (3)分两种情况.情况1:如图3,∠EOH =90°时,作HN ⊥AD , ∴∠BAO=∠ONH=90°.又∵∠ABO+∠BOA=90°,∠BOA+∠HON=90°, ∴∠ABO=∠HON .∴△ONH ∽△BAO .∴ABONAO HN =. ∴ON =49,BH =AN=AO+ON 425=.∵BH //AN ,∴△BEH ∽△OEA .∴1625==AO BH EO BE . ∴OP =OE =418041165=×.(2分)情况2:如图4,当∠OEH =90°时,∠OEA =∠BAO =90°,∠AOE =∠AOB , ∴△AOE ∽△BOA ,AOBOEO AO =. ∴OP =OE =516.(2分)(第24题 图1)AB CHFD OEP ABCODFMPE HG (第24题 图2)(第24题 图3)A B CODFNPE H(第24题 图4)ABCOPE HFD。
浙江省温州市瑞安市五校联考九年级(上)期末数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)若=,则的值等于()A.B.C.D.2.(4分)⊙O的半径为4cm,若点P到圆心的距离为3cm,点P在()A.圆内B.圆上C.圆外D.无法确定3.(4分)二次函数y=x2﹣1的图象与y轴的交点坐标是()A.(0,1)B.(1,0)C.(﹣1,0)D.(0,﹣1)4.(4分)若两个三角形的相似比为1:2,则它们的面积比为()A.1:2B.1:4C.2:1D.4:15.(4分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20B.24C.28D.306.(4分)已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,有最小值﹣2.5B.有最大值2,有最小值1.5C.有最大值1.5,有最小值﹣2.5D.有最大值2,无最小值.7.(4分)如图,D是等边△ABC外接圆上的点,且∠DAC=20°,则∠ACD的度数为()A.20°B.30°C.40°D.45°8.(4分)如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3 cm B.2cm C.cm D.cm9.(4分)二次函数y1=x2+bx+c与一次函数y2=kx﹣9的图象交于点A(2,5)和点B(3,m),要使y1<y2,则x的取值范围是()A.2<x<3B.x>2C.x<3D.x<2或x>3 10.(4分)如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E 是⊙D上任意一点,连结CE,BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+二、填空题(本题有6小题.每小题5分,共30分)11.(5分)某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是.12.(5分)已知扇形的圆心角为120°,弧长为6π,则它的半径为.13.(5分)如图,点B,E分别在线段AC,DF上,若AD∥BE∥CF,AB=3,BC=2,DE =4.5,则DF的长为.14.(5分)若二次函数y=ax2+2ax﹣3的图象与x轴的一个交点是(2,0),则与x轴的另一个交点坐标是.15.(5分)如图,△ABC内接于⊙O,AD⊥BC于点D,AD=BD.若⊙O的半径OB=2,则AC的长为.16.(5分)两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F 处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和F的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了m,恰好把水喷到F处进行灭火.三、解答题(本题有8小题,共80分)17.(6分)如图,在⊙O中,AB=CD.求证:AD=BC.18.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)19.(10分)如图,点O是线段AB的中点,根据要求完成下题:(1)在图中补画完成:第一步,以AB为直径的画出⊙O;第二步,以B为圆心,以BO为半径画圆弧,交⊙O于点C,连接点CA,CO;(2)设AB=6,求扇形AOC的面积.(结果保留π)20.(10分)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C'处,点D落在点D'处,C'D'交线段AE于点M.(1)求证:△BC'F∽△AMC';(2)若C'是AB的中点,AB=6,BC=9,求AM的长.21.(10分)如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.22.(10分)甲乙两位同学利用灯光下的影子来测量一路灯A的高度,如图,当甲走到点C处时,乙测得甲直立身高CD与其影子长CE正好相等,接着甲沿BC方向继续向前走,走到点E处时,甲直立身高EF的影子恰好是线段EG,并测得EG=2.5m.已知甲直立时的身高为1.75m,求路灯的高AB的长.(结果精确到0.1m)23.(12分)如图,二次函数y=﹣x2+x+2的图象与x轴交于点A,B,与y轴交于点C.点P是该函数图象上的动点,且位于第一象限,设点P的横坐标为x.(1)写出线段AC,BC的长度:AC=,BC=;(2)记△BCP的面积为S,求S关于x的函数表达式;(3)过点P作PH⊥BC,垂足为H,连结AH,AP,设AP与BC交于点K,探究:是否存在四边形ACPH为平行四边形?若存在,请求出的值;若不存在,请说明理由,并求出的最大值.24.(14分)如图,AB是⊙O的直径,=,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线P A与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.(1)求∠BAC的度数;(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;(3)在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段P A的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.浙江省温州市瑞安市五校联考九年级(上)期末数学试卷参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.C;2.A;3.D;4.B;5.D;6.A;7.C;8.C;9.A;10.C;二、填空题(本题有6小题.每小题5分,共30分)11.;12.9;13.7.5;14.(﹣4,0);15.2;16.﹣10;三、解答题(本题有8小题,共80分)17.;18.;19.;20.;21.;22.;23.;2;24.;。
浙江省瑞安市2018-2019学年八年级上学期期末学业水平检测数学试题一、选择题(本大题共10小题,共30.0分)1.点在第象限.A. 一B. 二C. 三D. 四【答案】B【解析】解:点在第二象限.故选:B.根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.2.下列选项中的图标,属于轴对称图形的是A. B. C. D.【答案】C【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列各组数可能是一个三角形的边长的是A. 5,1,7B. 5,12,17C. 5,7,7D. 11,12,23【答案】C【解析】解:A、,不能组成三角形,故A选项错误;B、,不能组成三角形,故B选项错误;C、,能组成三角形,故C选项正确;D 、,不能组成三角形,故D选项错误;故选:C.根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.4.一次函数的图象与y轴交点坐标A. B. C. D.【答案】D【解析】解:令,代入解得,一次函数的图象与y轴交点坐标这,故选:D.求与y轴的交点坐标,令可求得y的值,可得出函数与y轴的交点坐标本题主要考查函数与坐标轴的交点坐标,掌握求函数与坐标轴交点的求法是解题的关键,即与x轴的交点令求x,与y轴的交点令求y.5.下列选项中,可以用来证明命题“若,则”是假命题的反例是A. B. C. D.【答案】A【解析】解:用来证明命题“若,则”是假命题的反例可以是:,,但是,A正确.故选:A.根据要证明一个命题结论不成立,可以通过举反例的方法来证明一个命题是假命题.此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.6.不等式的解集是A. B. C. D.【答案】A【解析】解:移项,得:,合并同类项,得:,系数化为1,得:,故选:A.不等式移项合并,把x系数化为1,即可求出解集.此题考查了解一元一次不等式,注意不等式两边除以负数时,不等号要改变方向.7.如图,顺次连结同一平面内A,B,C,D四点,已知,,,若的平分线BE经过点D,则的度数A. B. C. D.【答案】B【解析】解:,,,,,平分,,故选:B.首先证明,求出即可解决问题.本题考查三角形的外角的性质,三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图所示,的三条边长分别是a,b,C,则下列选项中的三角形与不一定全等的是A. B. C. D.【答案】D【解析】解:A、根据全等三角形的判定定理选项中的三角形与全等,B、,根据全等三角形的判定定理选项中的三角形与全等;C、,根据全等三角形的判定定理选项中的三角形与全等;D、D项中的三角形与不一定全等;故选:D.根据趋势进行的判定定理判断即可.本题考查了全等三角形的判定定理,熟记全等三角形的判定定理是解题的关键.9.若关于x,y的方程组满足,则k的取值范围是A. B. C. D.【答案】A【解析】解:将两个不等式相加可得,则,,,解得,故选:A.将两不等式相加,变形得到,根据列出关于k的不等式组,解之可得.本题考查了一元一次不等式组以及一元一次方程组的解法,正确利用k表示出的值是关键.10.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是A. B.C. D.【答案】B【解析】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.根据题意可以得到各段时间段内y随x的变化情况,从而可以判断哪个选项中的函数图象符合题意,本题得以解决.本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6小题,共18.0分)11.用不等式表示:x与3的和大于6,则这个不等式是______.【答案】【解析】解:根据题意知这个不等式为,故答案为:.x与3的和表示为,大于6即“”,据此可得.此题主要考查了列一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为______.【答案】【解析】解:,,,由勾股定理得:,是中线,,故答案为:.根据勾股定理求出AB,根据直角三角形斜边上中线求出即可.本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出是解此题的关键.13.点向下平移3个单位后,恰好落在正比例函数的图象上,则m的值为______.【答案】1【解析】解:点向下平移3个单位,平移后的点的坐标为,,故答案为:1由题意可得点A平移后的点坐标,代入解析式可求m的值.本题考查了一次函数图象上点的坐标特征,平移的性质,熟练掌握函数图象上点的坐标满足函数解析式是本题的关键.14.如图,在中,,AD平分交BC于点D,,则点D到AB边的距离为______.【答案】3cm【解析】解:如图,过D点作于点E,,AD平分交BC于点D,角的平分线上的点到角的两边的距离相等,,.故答案为3cm.过D点作于点E,根据角平分线的性质定理得出即可解决问题;本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.15.如图,在直角坐标系中,过点分别向x轴,y轴作垂线,垂足分别为点B,C,取AC的中点P,连结OP,作点C关于直线OP的对称点D,直线PD与AB交于点Q,则线段PQ的长为______,直线PQ的函数表达式为______.【答案】5【解析】解:连接OQ,点,轴,轴,,点P是AC的中点,,点C关于直线OP的对称点D,,,,在与中,,≌,,设,,,,,,,,,设直线PQ的函数表达式为,把,代入得,,解得:,直线PQ的函数表达式为,故答案为:5,.连接OQ,根据已知条件得到,根据全等三角形的性质得到,设,根据勾股定理列方程得到,,求得,设直线PQ的函数表达式为,解方程组即可得到结论.本题考查了待定系数法求一次函数的解析式,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.16.如图,已知线段,P是AB上一动点,分别以AP,BP 为斜边在AB同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为______.【答案】3【解析】解:如图,作于M,于N,EH垂直AD交AD的延长线于点H,作于K,则四边形KMNC为矩形,线段,P是AB上一动点,分别以AP,BP为斜边在AB同侧作等腰和等腰,设,,,,,,,即,四边形CDEF为正方形,,,,,≌,,,,同理,,,,,故答案为:3.作于M,于N,EH垂直AD交AD的延长线于点H,作于K,则四边形KMNC为矩形,设,,可得,因为,可得,得,证明≌可得,同理,进而得出.本题考查正方形的性质,等腰直角三角形的性质,三角形全的判定和性质,勾股定理,整体思想解题的关键是得出.三、计算题(本大题共1小题,共5.0分)17.解不等式组【答案】解:解不等式,得:,解不等式,得:,则不等式组的解集为.【解析】分别求出两个不等式的解集,再求其公共解集.本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.四、解答题(本大题共6小题,共47.0分)18.已知:如图,点A、D、B、E在同一直线上,,,求证:.【答案】证明:,,即,在和中,,≌,.【解析】根据等式的性质证得,然后利用SSS证明两三角形全等即可.本题考查了全等三角形的判定与性质,解题的关键是选择最合适的方法证明两三角形全等.19.如图,在方格中,按下列要求画三角形,使它的顶点均在方格的顶点上小正方形的边长为在图甲中画一个面积为6的等腰三角形;在图乙中画一个三角形与全等,且有一条公共边.【答案】解:如图甲所示:即为所求,如图乙所示:即为所求,【解析】根据等腰三角形的性质画出图形即可;以AC为公共边得出.本题考查了作图问题,关键是根据等腰三角形的性质以及全等三角形的判定定理的应用解答.20.如图,在直角坐标系中,直线分别交x轴,y轴于点E,F,交直线于点P,过线段OP上点A作x轴,y轴的平行线分别交y轴于点C,直线EF于点B.求点P的坐标.当时,求点P到线段AB的距离.【答案】解:解得,,点P的坐标为;直线分别交x轴,y轴于点E,F,,40,,,延长BA交x轴于D,设,,点A在直线OP上,,,,∽,,,,点P到线段AB的距离.【解析】解方程组即可得到结论;根据已知条件得到,40,求得,,延长BA交x轴于D,设,得到,根据相似三角形的性质即可得到结论.本题考查了两条直线相交或平行,相似三角形的判定和性质,解方程组,正确的理解题意是解题的关键.21.如图,在与中,,,,连结CA,BD.求证:≌;连接BC,若,,判断的形状.求的度数.【答案】证明:,,且,,≌如图,≌,,,,是直角三角形【解析】由题意可得,且,,即可证≌;由全等三角形的性质和勾股定理的逆定理可得,即可得是直角三角形;由全等三角形的性质可求的度数.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理的逆定理,熟练运用全等三角形的性质是本题的关键.22.为了响应“足球进校园”的号召,学校开设了足球兴趣拓展班,计划同时购买A,B两种足球30个,A,B两种足球的价格分别为50元个,80元个,设购买B种足球x个,购买两种足球的总费用为y元.求y关于x的函数表达式.在总费用不超过1600元的前提下,从节省费用的角度来考虑,求总费用的最小值.因足球兴趣拓展班的人数增多,所以实际购买中这两种足球总数超过30个,总费用为2000元,则该学校可能共购买足球______个直接写出答案【答案】31,34,37【解析】解:,即;依题意得,解得,,又为整数,,2,3.,随x的增大而增大,当时,y有最小值元.设A足球购买m个,B足球购买n个,依题意得,.解得或或.,34,31.故答案为31,34,37.根据总费用足球费用足球费用列出解析式即可;先根据足球总数30个和总费用不超过1600求出x的取值范围,再根据一次函数的增减性求出总费用最小值;设A足球购买m个,B足球购买n个,根据总费用为2000元列出方程,得到,再对n的值进行分类讨论,求出满足的整数解,即可得到总球数.本题考查了一次函数的应用,根据题意列出方程和函数解析式是解题的关键第三问列出二元一次方程,求出满足题意的整数解是本题的难点.23.如图,在直角坐标系中,直线与x轴正半轴,y轴正半轴分别交于点A,B,点,点E在第一象限,为等边三角形,连接AE,BE求点E的坐标;当BE所在的直线将的面积分为3:1时,求的面积;取线段AB的中点P,连接PE,OP,当是以OE为腰的等腰三角形时,则______直接写出b的值【答案】或【解析】解:如图1,过E作轴于C,点,,为等边三角形,,中,,,,;当BE所在的直线将的面积分为3:1时,存在两种情况:如图2,::1,即OD::1,,,的解析式为:,,,,;::3,即OD::3,,,的解析式为:,,点B在y轴正半轴上,此种情况不符合题意;综上,的面积是;存在两种情况:如图3,,过E作轴于D,作于M,作于G,是等腰直角三角形,P是AB的中点,,,四边形EGPM是矩形,,,,,.如图4,当时,则,是等腰直角三角形,P是AB的中点,,,即,故答案为:或.根据等边三角形的性质可得高线EC的长,可得E的坐标;如图2,当BE所在的直线将的面积分为3:1时,存在两种情况:如图2,::1,即OD::1,::3,即OD::3,先确认DE的解析式,可得OA和OB的长,根据面积差可得结论;存在两种情况:如图3,,作辅助线,构建矩形和高线ED和EM,根据三角形AOB面积的两种求法列等式可得b的值,如图4,,根据等腰三角形和等边三角形的性质可得b的值.此题属于一次函数综合题,涉及的知识有:坐标与图形性质,等边三角形的性质,待定系数法确定一次函数解析式,等腰直角三角形的性质,利用了分类讨论的思想,熟练掌握性质及法则是解本题的关键,最后一问利用面积法解决问题,这也是综合题中常运用的方法.。
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
2019-2020学年九年级(上)期末数学试卷一、选择题1.抛物线y=x2+2x+3与y轴的交点为()A.(0,2)B.(2,0)C.(0,3)D.(3,0)2.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合()A.90°B.135°C.180°D.270°3.已知一个扇形的半径为3,弧长为2π,那么它所对的圆心角度数为()A.240°B.120°C.90°D.60°4.若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A.y=2(x+5)2﹣1 B.y=2(x+5)2+1C.y=2(x﹣1)2+3 D.y=2(x+1)2﹣35.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.B.C.D.6.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c 的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b7.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.8.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现回款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批回款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.9.反比例函数y=,y=图象如图所示,点A在y=图象上,连接OA交y=图象于点B,则AB:BO的比为()A.1:2 B.2:3 C.4:5 D.4:910.如图矩形ABCD中,E是CD延长线上一点,连结BE交AD于点F,连结CF,已知AB=1,BC=2,若△ABF与△CEF的面积相等,则DE的长为()A.1 B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.某灯具厂从一批LED灯泡中随机抽取100个进行质量检测,结果有99个灯泡质量合格,那么可以估计这批灯泡的合格率约为.12.已知两个相似三角形△ABC与△DEF的相似比为3.则△ABC与△DEF的面积之比为.13.一个小球从水平面开始竖直向上发射,小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则小球从发射到回到水平面共需时间(s).14.某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN=m.15.已知 Rt△ACB中,∠ACB=90°,AB﹣BC=2,AC=4,以三边分别向外作三个正方形,连接DE,FG,HI,得到六边形DEFGHI,则六边形DEFGHI的面积为.16.如图,以AD为直径作⊙O,点B为半圆弧的中点,连接AB,以如图所示的AD,AB为邻边作平行四边形ABCD,连结AC交⊙O于点E,连结BE并延长交CD于F.若AD=6,则DF=.三、解答题(本题有8小题,共80分)17.(1)计算:+(π﹣2019)0﹣(+1)2(2)解方程:18.如图所示平行四边形ABCD中,EF分别是边AD,BC上的点,且AE=CF.(1)求证:BE=DF;(2)连结AF,若AD=DF,∠ADF=40°,求∠AFB的度数.19.在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.(1)用树状图或列表法表示所有可能的结果;(2)求所抽取的两个球数码的乘积为负数的概率.20.如图Rt△ABC与 Rt△DEF中,∠A=∠D=90°,∠B=40°,∠E=20°,用一条过顶点的线段将 Rt△ABC分割成两个三角形,再用另一条过顶点的线段将 Rt△DEF也分割成两个三角形;所分割成的四个三角形恰好是两对相似三角形.(要求:1.用三种不同的方法;2.在图中标出相应的锐角度数.)21.如图,Rt△ABC中,∠C=90°,在BC上取一点D使AD=BD,连结AD,作△ACD的外接圆⊙O,交AB于点E.(1)求证:AE=BE;(2)若CD=3,AB=4,求AC的长.22.如图直角坐标系中,△ABO,O为坐标原点,A(0,3),B(6,3),二次函数y=﹣x2+bx+c的图象经过点A,B,点P为抛物线上AB上方的一个点,连结PA,作PQ⊥AB垂足为H,交OB于点Q.(1)求b,c的值;(2)当∠APQ=∠B时,求点P的坐标;(3)当△APH面积是四边形AOQH面积的2倍时,求点P的坐标.23.如图一个五边形的空地ABCDE,AB∥CD,BC∥DE,∠C=90°,已知AB=4(m),BC =10(m),CD=14(m),DE=5(m),准备在五边形中设计一个矩形的休闲亭MNPQ,剩下部分设计绿植.设计要求NP∥CD,PQ∥BC,矩形MNPQ到五边形ABCDE三边AB,BC,CD的距离相等,都等于x(m),延长QM交AE与H,MH=1(m).(1)五边形ABCDE的面积为(m2);(2)设矩形MNPQ的面积为y(m2),求y关于x的函数关系式;(3)若矩形MNPQ休闲亭的造价为每平方米0.5万元,剩下部分绿植的造价为每平方米0.1万元,求总造价的最大值.24.如图 Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC 于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为.(直接写出结果)参考答案一、选择题(本题有10小题,每小题4分,共40分每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.抛物线y=x2+2x+3与y轴的交点为()A.(0,2)B.(2,0)C.(0,3)D.(3,0)解:把x=0代入y=x2+2x+3,求得y=3,∴抛物线y=x2+2x+3,与y轴的交点坐标为(0,3).故选:C.2.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合()A.90°B.135°C.180°D.270°解:图案可以被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90度的整数倍,就可以与自身重合,故选:B.3.已知一个扇形的半径为3,弧长为2π,那么它所对的圆心角度数为()A.240°B.120°C.90°D.60°解:设扇形的圆心角为n°,∵扇形的半径为3,弧长为2π,∴2π=,解得:n=120,即圆心角是120°,故选:B.4.若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A.y=2(x+5)2﹣1 B.y=2(x+5)2+1C.y=2(x﹣1)2+3 D.y=2(x+1)2﹣3解:函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到y=2(x﹣1)2+3.故选:C.5.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.B.C.D.解:∵小明从A处进入公园,那么从B,C,D三个出口出来共有3种等可能结果,其中从C出口出来是其中一种结果,∴恰好在C出口出来的概率为,故选:B.6.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c 的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x 的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴a>c>b,故选:D.7.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.解:根据题意得:AC==,AB==,BC=1,∴BC:AB:AC=1::,A、三边之比为1::,选项A符合题意;B、三边之比::3,选项B不符合题意;C、三边之比为2::,选项C不符合题意;D、三边之比为::4,选项D不符合题意.故选:A.8.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现回款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批回款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.解:设拖鞋原价每双为x元,则“双11”大减价期间该款拖鞋价格每双为(x﹣5)元,依题意,得:=﹣2.故选:D.9.反比例函数y=,y=图象如图所示,点A在y=图象上,连接OA交y=图象于点B,则AB:BO的比为()A.1:2 B.2:3 C.4:5 D.4:9解:作AM⊥x轴于M,BN⊥x轴于N,∵点A在y=图象上,连接OA交y=图象于点B,∴S△AOM=×9=,S△BOC==2,∵AM∥BN,∴=()2=,∴=,∴=,即=,故选:A.10.如图矩形ABCD中,E是CD延长线上一点,连结BE交AD于点F,连结CF,已知AB=1,BC=2,若△ABF与△CEF的面积相等,则DE的长为()A.1 B.C.D.解:设DE=x.∵DF∥BC,∴△EFD∽△EBC,∴=,∴=,∴DF=,AF=2﹣=,∵△ABF与△CEF的面积相等,∴•AF•AB=•EC•DF,∴×1=×x+1,∴解得x=或(舍弃),故选:D.二、填空题(本题有6小题,每小题5分,共30分)11.某灯具厂从一批LED灯泡中随机抽取100个进行质量检测,结果有99个灯泡质量合格,那么可以估计这批灯泡的合格率约为99% .解:这批LED灯泡的合格率=99÷100×100%=99%.故答案为:99%.12.已知两个相似三角形△ABC与△DEF的相似比为3.则△ABC与△DEF的面积之比为9 .解:∵△ABC与△DEF的相似比为3,∴△ABC与△DEF的面积之比为9.故答案为9.13.一个小球从水平面开始竖直向上发射,小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则小球从发射到回到水平面共需时间8 (s).解:由题意可知:小球在发射后第2s与第6s时的高度相等,则函数h=at2+bt的对称轴t==4,故小球从发射到回到水平面共需时间8秒,故答案是:8.14.某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN=10 m.解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.15.已知 Rt△ACB中,∠ACB=90°,AB﹣BC=2,AC=4,以三边分别向外作三个正方形,连接DE,FG,HI,得到六边形DEFGHI,则六边形DEFGHI的面积为74 .解:如图,作DJ⊥EA交EA的延长线于J.∵∠DAC=∠JAB=90°,∴∠DAJ=∠CAB,∵AD=AB,∠J=∠ACB=90,∴△ADJ≌△ABC(AAS),∴DJ=BC,∵S△ABD=•AE•DJ,S△ABC=•AC•BC,AE=AB,∴S△AED=S△ABC,同理可证S△ABC=S△BFG,∵AB﹣BC=2,AC=4,∴可以假设BC=x,则AB=x+2,∴(x+2)2=x2+42解得x=3,∴AC=4,BC=3,AB=5,∴六边形DEFGHI的面积=4××3×4+4×4+3×3+5×5=74,故答案为74.16.如图,以AD为直径作⊙O,点B为半圆弧的中点,连接AB,以如图所示的AD,AB 为邻边作平行四边形ABCD,连结AC交⊙O于点E,连结BE并延长交CD于F.若AD=6,则DF=.解:如图,连接BD交AC于O,连接DE,作FM⊥AC于M,FN⊥DE于N.∵=,∴AB=BD,∵AD是直径,∴∠ABD=∠AED=90°,∴∠BAD=∠BDA=∠AEB=45°,∵∠AEB=∠CEF=45°,∠CED=90°,∴∠FED=∠FEC=45°,∵FM⊥EC.FN⊥ED,∴FM=FN,∴===,∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD,∴∠BAO=∠DCE,∴tan∠DCE=tan∠ABO===,∴DF:CF=DE+CE=1:2,∴AD=6,△ABD是等腰直角三角形,∴AB=BD=CD=3,∴DF=CD=故答案为.三、解答题(本题有8小题,共80分)17.(1)计算:+(π﹣2019)0﹣(+1)2(2)解方程:解:(1)原式=2+1﹣(3+2+1)=2+1﹣4﹣2=﹣3;(2)去分母得3(x﹣1)=2(2x+3),去括号得3x﹣3=4x+6,移项得3x﹣4x=9,合并的得﹣x=9,系数化为1得x=﹣9.18.如图所示平行四边形ABCD中,EF分别是边AD,BC上的点,且AE=CF.(1)求证:BE=DF;(2)连结AF,若AD=DF,∠ADF=40°,求∠AFB的度数.【解答】(1)证明:在平行四边形ABCD中,AD∥BC,AD=BC,∵AE=CF,∴DE∥BF,DE=BF∴四边形BEDF是平行四边形∴BE=DF.(2)∵AD=DF,∠ADF=40°∴∠DAF=∠AFD=70°∵AD∥BC∴∠AFB=∠FAD=70°.19.在甲口袋中有三个球分别标有数码1,﹣2,3;在乙口袋中也有三个球分别标有数码4,﹣5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.(1)用树状图或列表法表示所有可能的结果;(2)求所抽取的两个球数码的乘积为负数的概率.解:(1)列表如下:(2)由表可知,共有9种等可能结果,其中所抽取的两个球数码的乘积为负数的由4种结果,∴所抽取的两个球数码的乘积为负数的概率为.20.如图Rt△ABC与 Rt△DEF中,∠A=∠D=90°,∠B=40°,∠E=20°,用一条过顶点的线段将 Rt△ABC分割成两个三角形,再用另一条过顶点的线段将 Rt△DEF也分割成两个三角形;所分割成的四个三角形恰好是两对相似三角形.(要求:1.用三种不同的方法;2.在图中标出相应的锐角度数.)解:方法一:方法二:方法三:方法四:方法五:21.如图,Rt△ABC中,∠C=90°,在BC上取一点D使AD=BD,连结AD,作△ACD的外接圆⊙O,交AB于点E.(1)求证:AE=BE;(2)若CD=3,AB=4,求AC的长.解:(1)证明:连结DE,∵∠C=90°,∴AD为直径,∴DE⊥AB,∵AD=BD,∴AE=BE;(2)设BD=x,∵∠B=∠B,∠C=∠DEB=90°∴△ABC~△DBE,∴,∴,∴x=5.∴AD=BD=5,∴AC==4.22.如图直角坐标系中,△ABO,O为坐标原点,A(0,3),B(6,3),二次函数y=﹣x2+bx+c的图象经过点A,B,点P为抛物线上AB上方的一个点,连结PA,作PQ⊥AB垂足为H,交OB于点Q.(1)求b,c的值;(2)当∠APQ=∠B时,求点P的坐标;(3)当△APH面积是四边形AOQH面积的2倍时,求点P的坐标.解:(1)把A(0,3),B(6,3)代入y=﹣x2+bx+c并解得:;(2)设P(m,﹣m2+6m+3)∵∠P=∠B,∠AHP=∠OAB=90°,∴△ABO~△HPA,∴,∴,解得m=4.∴P(4,11)(3)当△APH的面积是四边形AOQH的面积的2倍时,则2(AO+HQ)=PH∴,得:m1=4,m2=3,∴P(4,11)或P(3,12)23.如图一个五边形的空地ABCDE,AB∥CD,BC∥DE,∠C=90°,已知AB=4(m),BC =10(m),CD=14(m),DE=5(m),准备在五边形中设计一个矩形的休闲亭MNPQ,剩下部分设计绿植.设计要求NP∥CD,PQ∥BC,矩形MNPQ到五边形ABCDE三边AB,BC,CD的距离相等,都等于x(m),延长QM交AE与H,MH=1(m).(1)五边形ABCDE的面积为115 (m2);(2)设矩形MNPQ的面积为y(m2),求y关于x的函数关系式;(3)若矩形MNPQ休闲亭的造价为每平方米0.5万元,剩下部分绿植的造价为每平方米0.1万元,求总造价的最大值.解:(1)五边形ABCDE的面积为=5×14+(4+14)(10﹣5)=70+45=115(m2);故答案为:115;(2)由题意可以得:PQ=(10﹣2x),MQ=(3+x),∴y=(10﹣2x)(x+3)=﹣2x2+4x+30,(3)设总造价为w(万元),由题意得,w=115×0.1+0.4(﹣2x2+4x+30)w=﹣0.8x2+1.6x+23.5,当x=1时,w最大值=24.3,答:总造价的最大值为24.3万元.24.如图 Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC 于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为7<CP<12.5 .(直接写出结果)【解答】(1)①解:连接BE,如图1所示:∵BP是直径,∴∠BEC=90°,∵=130°,∴=50°,∵=,∴=100°,∴∠CBE=50°,∴∠C=40°;②证明:∵=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(2)解:①由AB=15,BC=20,由勾股定理得:AC===25,∵AB•BC=AC•BE,即×15×20=×25×BE∴BE=12,连接DP,如图1﹣1所示:∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴=,∴CP===CD,△BDE是等腰三角形,分三种情况:当BD=BE时,BD=BE=12,∴CD=BC﹣BD=20﹣12=8,∴CP=CD=×8=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,∴CD=BC=10,∴CP=CD=×10=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,如图1﹣2所示:AE===9,∴CE=AC﹣AE=25﹣9=16,CH=BC﹣BH=20﹣BH,∵EH∥AB,∴=,即=,解得:BH=,∴BD=2BH=,∴CD=BC﹣BD=20﹣=,∴CP=CD=×=7;综上所述,△BDE是等腰三角形,符合条件的CP的长为10或或7;②当点Q落在∠CPH的边PH上时,CP最小,如图2所示:连接OD、OQ、OE、QE、BE,由对称的性质得:DE垂直平分OQ,∴OD=QD,OE=QE,∵OD=OE,∴OD=OE=QD=QE,∴四边形ODQE是菱形,∴PQ∥OE,∵PB为直径,∴∠PDB=90°,∴PD⊥BC,∵∠ABC=90°,∴AB⊥BC,∴PD∥AB,∴DE∥AB,∵OB=OP,∴OE为△ABP中位线,∴PE=AE=9,∴PC=AC﹣PE﹣AE=25﹣9﹣9=7;当点Q落在∠CPH的边PC上时,CP最大,如图3所示:连接OD、OQ、OE、QD,同理得:四边形ODQE是菱形,∴OD∥QE,连接DF,∵∠DBC=90°,∴DF是直径,∴D、O、F三点共线,∴DF∥AQ,∴∠OFB=∠A,∵OB=OF,∴∠OFB=∠OBF=∠A,∴PA=PB,∵∠OBF+∠CBP=∠A+∠C=90°,∴∠CBP=∠C,∴PB=PC=PA,∴PC=AC=12.5,∴7<CP<12.5,故答案为:7<CP<12.5.。
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年浙江省温州市瑞安市西部学校九年级(上)期末数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的不选、多选、错选,均不给分)1.(4分)下列事件属于不确定事件的是()A.若a是实数,则|a|≥0B.今年元旦那天温州的最高气温是10℃C.抛掷一枚骰子,掷得的数不是奇数就是偶数D.在一个装有红球与白球的袋子中摸球,摸出黑球2.(4分)已知点P在半径为5cm的圆内,则点P到圆心的距离可以是()A.4cm B.5cm C.6cm D.7cm3.(4分)若将抛物线y=x2向下平移1个单位,则所得抛物线对应的函数关系式为()A.y=(x﹣1)2B.y=(x+1)2C.y=x2﹣1D.y=x2+14.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为3cm,4.5cm 和6m,另一个三角形的最长边长为12cm,则它的最短边长为()A.6cm B.9cm C.16cm D.24cm5.(4分)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0)B.(0,﹣2)C.(0,﹣3)D.(﹣3,0)6.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.(4分)已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y28.(4分)如图,⊙O是△ABC的外接圆,它的半径为3,若∠ABC=40°,则劣弧的长为()A.B.3πC.D.4π9.(4分)如图,Rt△ABC中,∠ACB=Rt∠,BC=2AC.正方形DEFG如图放置,点D,G分别在AC,BC上,E,F都在边AB上,若AB=14,则EF的长为()A.2B.4C.2D.810.(4分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为()A.6B.2C.5D.二、填空题(本题有6小题.每小题5分,共30分)11.(5分)二次函数y=(x﹣1)2+4的最小值是.12.(5分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为.13.(5分)如图,在△ABC中,DE∥BC,BD=2AD,AE=3,则AC的长是.14.(5分)在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是cm.15.(5分)如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连结AE,若AE=4,则四边形ABCD的面积为.16.(5分)如图,已知二次函数y=﹣x2+2x+3的图象与y轴交于点A,MN是该抛物线的对称轴,点P在射线MN上,连结PA,过点A作AB⊥AP交x轴于点B,过A作AC⊥MN于点C,连结PB,在点P的运动过程中,抛物线上存在点Q,使∠QAC=∠PBA,则点Q的横坐标为.三、解答题(本题有8小题,共80分)17.(8分)已知二次函数y=ax2+bx+c的图象过点(2,﹣6),顶点坐标为(4,﹣8).(1)求这个二次函数的表达式;(2)求这个函数图象与x轴的交点的坐标.18.(8分)规定:每个顶点都在格点的三角形叫做格点三角形(如格点△ABC如图①所示),要求在图②、图③中分别以DE为边画出两个不同的三角形,并且都与图①中的△ABC相似(注:若所画的两个三角形全等,视为同一种).19.(8分)某校团委计划在元且期间组织优秀团员到敬老院去服务,现选出了10名优秀团员参加服务,其中男生6人,女生4人.(1)若从这10人中随机选一人当队长,求选中女生当队长的概率;(2)现决定从甲、乙中选一人当队长,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则选甲为队长;否则,选乙为队长.试问这个游戏公平吗?请用树状图或列表法说明理由.20.(10分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.21.(10分)如图,Rt△ABC中,∠ACB=90°,AB的中垂线交边BC于点E,交AC的延长线于点F,连结AE.(1)求证:△ADE∽△FDA;(2)若DE=EF=1,求AE的长.22.(10分)如图,Rt△OAB中,∠OAB=90°,以OA为半径的⊙O交BO于点C,交BO延长线于点D.在⊙O上取一点E,且=,延长DE与BA交于点F.(1)求证:△BDF是直角三角形;(2)连接AC,AC=2,OC=2BC,求AF的长.23.(12分)某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿(补偿额=(批发价﹣生产成本价)×销售量).大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.已知这种节能灯批发价为每件12元,设它的生产成本价为每件m元(m<12)(1)当m=10时.①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元?②设所获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)物价部门规定,这种节能灯的销售单价不得超过30元.今年三月小明获得赢利,此时政府给该企业补偿了920元,若m,x都是正整数,求m的值.24.(14分)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=4,点P是射线BA上的一个动点,以BP为半径的⊙P交射线BC于点D,直线PD交直线AC于点E,点P关于直线AC的对称点为点P′,连结P′A,P′E,设直线P′E与直线BC交于点F.(1)当点P在线段BA上时,①求证:PE=PA;②连结P'P,当BF=2PB时,求P′P的长;(2)连结AD,AF,当△ADF恰为等边三角形时,求此时四边形PAP′E的面积;(3)当四边形PAP′E在⊙P内部时,请直接写出BP的取值范围.2018-2019学年浙江省温州市瑞安市西部学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的不选、多选、错选,均不给分)1.(4分)下列事件属于不确定事件的是()A.若a是实数,则|a|≥0B.今年元旦那天温州的最高气温是10℃C.抛掷一枚骰子,掷得的数不是奇数就是偶数D.在一个装有红球与白球的袋子中摸球,摸出黑球【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、若a是实数,则|a|≥0,是确定事件,不合题意;B、今年元旦那天温州的最高气温是10℃,是随机事件,符合题意;C、抛掷一枚骰子,掷得的数不是奇数就是偶数,是确定事件,不合题意;D、在一个装有红球与白球的袋子中摸球,摸出黑球,是不可能事件,故此选项错误.故选:B.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.2.(4分)已知点P在半径为5cm的圆内,则点P到圆心的距离可以是()A.4cm B.5cm C.6cm D.7cm【分析】直接根据点与圆的位置关系进行判断.【解答】解:∵点P在半径为5cm的圆内,∴点P到圆心的距离小于5cm,所以只有选项A符合,选项B、C、D都不符合;故选:A.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3.(4分)若将抛物线y=x2向下平移1个单位,则所得抛物线对应的函数关系式为()A.y=(x﹣1)2B.y=(x+1)2C.y=x2﹣1D.y=x2+1【分析】根据向下平移纵坐标减写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵抛物线y=x2向下平移1个单位,∴平移后的抛物线的顶点坐标为(0,﹣1),∴所得抛物线对应的函数关系式为y=x2﹣1.故选:C.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.4.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为3cm,4.5cm 和6m,另一个三角形的最长边长为12cm,则它的最短边长为()A.6cm B.9cm C.16cm D.24cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最短边长为xcm,根据题意,得:=,解得:x=6,即另一个三角形的最短边的长为6cm.故选:A.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(4分)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0)B.(0,﹣2)C.(0,﹣3)D.(﹣3,0)【分析】利用点B与点A关于直线x=﹣1对称确定B点坐标.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=﹣1,点A的坐标为(1,0),∴点B的坐标是(﹣3,0).故选:D.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.6.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选:C.【点评】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2【分析】首先根据二次函数解析式确定抛物线的对称轴为x=2,再根据抛物线的增减性以及对称性可得y1,y2,y3的大小关系.【解答】解:∵二次函数y=﹣x2+4x+c=﹣(x﹣2)2+c+4,∴对称轴为x=2,∵a<0,∴x<2时,y随x增大而增大,当x>2时,y随x的增大而减小,∵(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,且﹣1<2<3,|﹣1﹣2|>|2﹣3|,∴y1<y3<y2.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,关键是掌握二次函数图象上点的坐标满足其解析式.8.(4分)如图,⊙O是△ABC的外接圆,它的半径为3,若∠ABC=40°,则劣弧的长为()A.B.3πC.D.4π【分析】根据圆周角定理和弧长公式解答即可.【解答】解:∵∠ABC=40°,∴∠AOC=80°,∴劣弧的长==π,故选:C.【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9.(4分)如图,Rt△ABC中,∠ACB=Rt∠,BC=2AC.正方形DEFG如图放置,点D,G分别在AC,BC上,E,F都在边AB上,若AB=14,则EF的长为()A.2B.4C.2D.8【分析】作CH⊥AB于H,交DG于K.设EF=x,则DG=DE=FG=x.三心两意勾股定理求出AC,BC,利用面积法求出CH,根据△CDG∽△CAB,可得=,由此构建方程即可解决问题.【解答】解:作CH⊥AB于H,交DG于K.设EF=x,则DG=DE=FG=x.在Rt△ACB中,∵∠ACB=90°,BC=2AC,AB=14,∴AC=,BC=,∴CH===,∵DG∥AB,∴△CDG∽△CAB,∴=,∴=,解得x=4,∴EF=4,故选:B.【点评】本题考查相似三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.10.(4分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为()A.6B.2C.5D.【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【解答】解:由勾股定理得,AC2+BC2=AB2,∵S1+S2=7,∴×π×()2+×π×()2+×AC×BC﹣×π×()2=7,∴AC×BC=14,AB===6,故选:A.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二、填空题(本题有6小题.每小题5分,共30分)11.(5分)二次函数y=(x﹣1)2+4的最小值是4.【分析】由解析式为顶点式,根据其解析式即可直接求的二次函数解析式.【解答】解:由于(x﹣1)2为非负数,所以可将当x=1时,二次函数即可取得最小值4.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.(5分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为20.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:根据题意,得:=0.2,解得:m=20,故答案为:20.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.13.(5分)如图,在△ABC中,DE∥BC,BD=2AD,AE=3,则AC的长是9.【分析】利用平行线分线段成比例定理即可解决问题.【解答】解:∵DE∥BC,BD=2AD,∴==,∵AE=3,∴EC=6,∴AC=AE+EC=9,故答案为9.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(5分)在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是6 cm.【分析】连接OA,作OC⊥AB于C,如图,根据垂径定理得到AC=BC=AB=8,然后根据勾股定理计算OC的长即可.【解答】解:连接OA,作OC⊥AB于C,如图,∵OC⊥AB,∴AC=BC=AB=8,在Rt△AOC中,OC===6,即点O到弦AB的距离为6cm.故答案为6.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(5分)如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连结AE,若AE=4,则四边形ABCD的面积为8.【分析】如图,连接AC,BD.由△ABC≌△ADE(SAS),推出∠BAC=∠DAE,AC=AE=4,S△ABC =S△ADE,推出S四边形ABCD=S△ACE,由此即可解决问题;【解答】解:如图,连接AC,BD.∵∠BCD =90°,∴BD 是⊙O 的直径,∴∠BAD =90°,∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE ,∵AB =AD ,BC =DE ,∴△ABC ≌△ADE (SAS ),∴∠BAC =∠DAE ,AC =AE =4,S △ABC =S △ADE ,∴∠CAE =∠BAD =90°,∴S 四边形ABCD =S △ACE =×4×4=8.故答案为8.【点评】本题考查圆内接四边形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型. 16.(5分)如图,已知二次函数y =﹣x 2+2x +3的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB ⊥AP 交x 轴于点B ,过A 作AC ⊥MN 于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使∠QAC =∠PBA ,则点Q 的横坐标为 或 .【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明△AOB与△ACP相似,得到∠ABP=∠AOC,再证△QDA与△CAO相似,设出点Q的坐标,通过相似比即可求出点Q坐标.【解答】解:如图1,连接CO,过点Q作AC的垂线交AC延长线于点D,∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴对称轴为x=1,与y轴交点A坐标(0,3)∴OC=1,∵AP⊥AB,AC⊥MN,∴∠BAP=∠OAC=90°,∴∠BAP﹣∠OAP=∠OAC﹣∠OAP,即∠BAO=∠PAC,又∵∠AOB=∠ACP=90°,∴△AOB∽△ACP,∴,∴,又∵∠BAP=∠OAC,∴△BAP∽△OAC,∴∠ABP=∠AOC,∵∠QAC=∠ABP,∴∠AOC=∠QAC,∵∠QDA=∠CAO=90°,∴△QDA∽△CAO,∴,设Q(a,﹣a2+2a+3),则QD=﹣a2+2a,AD=a,∴,解得a1=0(舍去),a2=,∴Q(,),∴点Q的横坐标为;如图2,设点E是点Q关于直线AC的对称点,∵Q(,),y A=3,∴E(,),设直线y AE=kx+3,将点E(,)代入,得,k=﹣,∴y AE=﹣x+3,解方程﹣x2+2x+3=﹣x+3,得,x1=0(舍去),x2=,∴Q'(,),∴点Q'的横坐标为;故答案为或.【点评】本题考查了抛物线与坐标轴交点坐标,二次函数图象上点的坐标特征,重点考查了三角形的相似,解答本题的关键是对三角形相似的判定要掌握牢固.三、解答题(本题有8小题,共80分)17.(8分)已知二次函数y=ax2+bx+c的图象过点(2,﹣6),顶点坐标为(4,﹣8).(1)求这个二次函数的表达式;(2)求这个函数图象与x轴的交点的坐标.【分析】(1)根据题意设抛物线的解析式为y═a(x﹣4)2﹣8,然后代入点(2,﹣6),根据待定系数法即可求得;(2)令y=0,解得x的值,可得出函数图象与x轴的交点横坐标.【解答】解:(1)设抛物线的解析式为y═a(x﹣4)2﹣8(a≠0).把点(2,﹣6)代入,得a(2﹣4)2﹣8=﹣6,解得a=,所以该二次函数的表达式是:y═(x﹣4)2﹣8;(2)令y=0得(x﹣4)2﹣8=0,解得x=0或8,∴函数图象与x轴的交点坐标为(0,0)和(8,0).【点评】本题主要考查抛物线与x轴的交点,二次函数的性质,待定系数法确定函数解析式等知识点,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.18.(8分)规定:每个顶点都在格点的三角形叫做格点三角形(如格点△ABC如图①所示),要求在图②、图③中分别以DE为边画出两个不同的三角形,并且都与图①中的△ABC相似(注:若所画的两个三角形全等,视为同一种).【分析】直接利用相似图形的性质以及相似三角形的判定方法分析得出答案.【解答】解:如图②,图③即为所求..【点评】此题主要考查了相似变换,正确得出对应边的比是解题关键.19.(8分)某校团委计划在元且期间组织优秀团员到敬老院去服务,现选出了10名优秀团员参加服务,其中男生6人,女生4人.(1)若从这10人中随机选一人当队长,求选中女生当队长的概率;(2)现决定从甲、乙中选一人当队长,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则选甲为队长;否则,选乙为队长.试问这个游戏公平吗?请用树状图或列表法说明理由.【分析】(1)直接利用概率公式求出即可;(2)利用列表法表示出所有可能进而利用概率公式求出即可.【解答】解:(1)∵现有10名优秀团员到敬老院去服务,其中男生6人,女生4人,∴从这10人中随机选一人当队长,选到女生的概率为=;(2)列树状图如图所示,牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9共12种.∴甲参加的概率为:P (和为偶数)==,乙参加的概率为:P (和为奇数)==,因为≠,所以游戏不公平.【点评】此题主要考查了游戏公平性以及概率公式应用,正确列出表格得出所有等可能结果及概率公式的应用是解题关键.20.(10分)如图,点C 在以AB 为直径的半圆⊙O 上,AC =BC .以B 为圆心,以BC 的长为半径画圆弧交AB 于点D .(1)求∠ABC 的度数;(2)若AB =2,求阴影部分的面积.【分析】(1)根据圆周角定理得到∠ACB =90°,根据等腰三角形的性质即可得到结论;(2)根据扇形的面积公式即可得到结论.【解答】解:(1)∵AB 为半圆⊙O 的直径,∴∠ACB =90°,∵AC =BC ,∴∠ABC =45°;(2)∵AB =2,∴阴影部分的面积=2×1﹣=1﹣.【点评】本题考查了扇形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.21.(10分)如图,Rt △ABC 中,∠ACB =90°,AB 的中垂线交边BC 于点E ,交AC 的延长线于点F ,连结AE .(1)求证:△ADE∽△FDA;(2)若DE=EF=1,求AE的长.【分析】(1)想办法证明∠DAE=∠F即可解决问题;(2)理由相似三角形的性质求出AD,再利用勾股定理求出AE即可.【解答】(1)证明:∵DF垂直平分线段AB,∴EA=EB,∴∠B=∠EAB,∵∠EDB=∠ECF=90°,∠DEB=∠CEF,∴∠B=∠F,∴∠DAE=∠F,∵∠ADE=∠FDA,∴△ADE∽FDA.(2)∵△ADE∽FDA,∴=,∴AD2=DE•DF=1×2=2,∵AD>0,∴AD=,在Rt△ADE中,AE===.【点评】本题考查相似三角形的判定和性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形相似的条件,属于中考常考题型.22.(10分)如图,Rt△OAB中,∠OAB=90°,以OA为半径的⊙O交BO于点C,交BO延长线于点D.在⊙O上取一点E,且=,延长DE与BA交于点F.(1)求证:△BDF是直角三角形;(2)连接AC,AC=2,OC=2BC,求AF的长.【分析】(1)如图连接EC交OA于H.首先证明DF∥OA,由OA⊥BF推出DF⊥BF 即可;(2)由EC∥FB,推出==2,推出OH=2AH,设AH=m,则OH=2m,OC=3m,由CH2=OC2﹣OH2=AC2﹣AH2,构建方程方程求出m即可解决问题;【解答】(1)证明:如图连接EC交OA于H.∵=,∴OA⊥EC,∵CD是⊙O的直径,∴∠DEC=90°,∴DF⊥EC,∴OA∥DF,∵BF是⊙O的切线,∴OA⊥BF,∴DF⊥BF,∴∠F=90°,∴△DFB是直角三角形.(2)解:∵∠DEC=∠F=90°,∴EC∥FB,∴==2,∴OH =2AH ,设AH =m ,则OH =2m ,OC =3m , ∵CH 2=OC 2﹣OH 2=AC 2﹣AH 2, ∴9m 2﹣4m 2=40﹣m 2,∴m =(负根已经舍弃),∴CH =,∵OA ⊥EC ,∴EH =HC =,∵∠F =∠FAH =∠AHE =90°, ∴四边形AFEH 是矩形,∴AF =EH =.【点评】本题考查垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(12分)某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿(补偿额=(批发价﹣生产成本价)×销售量).大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =﹣10x +500.已知这种节能灯批发价为每件12元,设 它的生产成本价为每件m 元(m <12) (1)当m =10时.①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元? ②设所获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)物价部门规定,这种节能灯的销售单价不得超过30元.今年三月小明获得赢利,此时政府给该企业补偿了920元,若m ,x 都是正整数,求m 的值.【分析】(1)①把x =20代入y =﹣10x +500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;②由总利润=销售量•每件纯赚利润,得w =(x ﹣10)(﹣10x +500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(2)根据题意列出关于m 和x 的方程,再从两个未知数取值条件求得结果.【解答】解:(1)①当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,答:第一个月政府要给该企业补偿600元.②由题意得,小明每月的利润为w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.答:当销售单价定为30元时,小明每月可获得最大利润4000元.(2)由题意得,(12﹣m)(﹣10x+500)=920,∴m=,∵12≤x≤30,x为整数,∴﹣38≤x﹣50≤﹣20,且x﹣50为整数,∵m<12,且m为整数,∴x﹣50=﹣23,∴m=.【点评】本题主要考查了二次函数的应用,一次函数的应用,解不定方程的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,第(2)小题较难,突破的方法是根据两个未知的取值范围和整数条件限制,得出不定方程的有限解.24.(14分)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=4,点P是射线BA上的一个动点,以BP为半径的⊙P交射线BC于点D,直线PD交直线AC于点E,点P关于直线AC的对称点为点P′,连结P′A,P′E,设直线P′E与直线BC交于点F.(1)当点P在线段BA上时,①求证:PE=PA;②连结P'P,当BF=2PB时,求P′P的长;(2)连结AD,AF,当△ADF恰为等边三角形时,求此时四边形PAP′E的面积;(3)当四边形PAP′E在⊙P内部时,请直接写出BP的取值范围.【分析】(1)①欲证明PA=PE,利用等角的余角相等证明∠BAC=∠AEB即可;②如图2中,作PH⊥BD于H,连接PP′交AC于点J.设PB=x,则BF=2x.易知CD=CF=2x﹣4,根据BD+CD=4,可得x+2x﹣4=4,推出x=,由PJ∥BC,可得=,由此即可解决问题;(2)分两种情形分别求解即可:①如图3中,当点D在BC上时.②如图4中,当点D 在BC的延长线上时,分别求解即可;(3)如图4中,当点P在线段AB上,点P′在⊙P上时,设PB=m则AP=5﹣m,构建方程求出m的值,再求出点P在AB的延长线上,P′在⊙P上时的m的值,即可判断.【解答】(1)①证明:如图1中,∵∠ACB=∠DCE=90°,∴∠BAC+∠ABC=90°,∠CDE+∠AEB=90°,∵PB=PD,∴∠PBD=∠PDB=∠CDE,∴∠BAC=∠AEB,∴PA=PE.②如图2中,作PH⊥BD于H,连接PP′交AC于点J.设PB=x,则BF=2x.在Rt△ABC中,∵∠ACB=90°,AB=5,BC=4,∴AC==3,∵PH∥AC,∴=,∴=,∴BH=x,∵PB=PD,PH⊥BD,∴BH=HD=x,∵PA=PE=P′A=P′E,∴四边形PAP′E是菱形,∴∠CEF=∠CED,PJ=JP′,∵∠CEF+∠CFE=90°,∠CDE+∠CED=90°,∴∠CDE=∠CFE,∴EF=ED,∴CD=CF=2x﹣4,∵BD+CD=4,∴x+2x﹣4=4,∴x=,∵PJ∥BC,∴=,∴=,∴PJ =,∴PP ′=.(2)①如图3中,当点D 在BC 上时,连接AD ,AF ,作PH ⊥BC 于H ,连接PP ′交AC 于点J .∵△ADF 是等边三角形,AC ⊥DF ,AC =3, ∴∠DAC =30°,∴CD =,BD =4﹣,∴BH =DH =,∵四边形PJCH 是矩形,∴PJ =CH =,∴AJ =JE =×,∴S 四边形PAP ′E =•(4+)••(4+)=.②如图4中,当点D 在BC 的延长线上时,连接AD ,AF ,当△ADF 是等边三角形时,作PH ⊥BC 于H ,连接PP ′交AC 于点J .同法可得:CH =PJ =,AJ =JE =×,∴S 四边形PAP ′E =•(4﹣)•(4﹣)=.(3)如图4中,当点P ′在⊙P 上时,设PB =m 则AP =5﹣m∵PJ =JP ′=(5﹣m )×,∴PP ′=(5﹣m ), ∵PB =PP ′,∴m =(5﹣m ),∴m=,如图5中,当点P在AB的延长线上时,P′在⊙P上,设PB=m则AP=m﹣5.∵PJ=JP′=(m﹣5)×,∴PP′=(m﹣5),∵PB=PP′,∴m=(m﹣5),∴m=,观察图象可知:当四边形PAP′E在⊙P内部时,BP的取值范围为<PB<5或5<m<.【点评】本题属于圆综合题,考查了轴对称变换,等边三角形的判定和性质,解直角三角形,等腰三角形的判定和性质,矩形的判定和性质,菱形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.。