罗氏电化学发光项目介绍
- 格式:ppt
- 大小:16.51 MB
- 文档页数:121
4.罗氏电化学发光原理罗氏电化学发光原理电化学发光免疫分析原理杨明忠 12/____罗氏电化学发光原理免疫检测技术的发展电化学发光系统及其原理电化学发光技术的优势罗氏电化学发光原理免疫检测技术的发展电化学发光系统及其原理电化学发光技术的优势罗氏电化学发光原理技术创新领先的免疫检测新技术-ECL电化学发光放免酶免荧光免疫化学发光1960‘S1970_80‘S____‘S1,抗体技术的革命,从使用多克隆抗体向使用单克隆抗体转变 2,从手工操作向全自动分析仪的转变 3,从液相放射免疫技术向均相和固相免疫分析技术的转变罗氏电化学发光原理放射免疫测定法1959年Berson和Yalow建立了放射免疫分析方法(RIA),大大提高了免疫测定的敏感度,这种标记免疫测定开拓了医学检验的新领域。
缺点半衰期短,试剂货架期不长。
标记物不断变化,试剂批间、批内变化大,标准曲线不能保存。
反应时间长,操作步骤很难自动化。
使用放射性核素,对人体有一定的危害性。
分析的限度为 10 mol/ml 或 10 g/ml。
在一定时期内曾被采用,正在被逐步取代。
罗氏电化学发光原理酶免疫测定法1971年Engvall和Perlman建立了固相酶免疫测定方法(ELISA),这种非放射标记免疫测定在临床检验,特别是感染性疾病的诊断中取得了广泛应用。
缺点试剂制备困难。
操作步骤复杂,耗时长。
影响因素多,质量控制难以保证。
最后测定的是颜色的光密度,其精密度和敏感性不如发光免疫技术。
各实验室操作不规范,质量难以保证。
有学者认为ELISA 技术已逐步走向退化,可能会逐步退出临床实验室。
罗氏电化学发光原理化学发光免疫测定法化学发光免疫测定法出现于20世纪90年代初。
由于最后测定的是光子的量,不但对检测者无害,其敏感度和精密度均优于RIA,而且试剂较稳定,并可进行全自动分析。
缺点采用标记催化酶(如辣根过氧化物酶)或化学发光分子(如鲁米诺)的方法,其化学反应一般不稳定,为间断的、闪烁性发光,而且在反应过程中易发生裂变,导致反应结果不稳定。
⼀⽂解读罗⽒、雅培、贝克曼、西门⼦、梅⾥埃等8⼤国际巨头化学发光篇!4. 化学发光跨国巨头的沧海桑⽥跨国巨头的发光产品从21世纪初进⼊中国,四⼤家(RABS)以不同的节奏进⼊中国,2003年西门⼦最早进⼊中国市场,随后贝克曼,雅培等企业纷⾄沓来,2006年罗⽒的电化学发光进⼊中国,进⼝品牌迅速扩张领⼟。
注:以上数据以拿到CFDA注册证为依据2003-2013,短短的10年时间,化学发光的市场容量到达百亿,随着可检测项⽬的逐步丰富和开发,发光市场仍然以2年翻⼀倍的速度在不断扩张。
化学发光在全球体外诊断细分中增速保持前三,⽽从地理区域的维度来看,中国是发展最为迅速的市场,2011-2016年复合增速为30%,RABS的年度报告中都可以看到,中国区域成为了增长区域最快的市场,未来3年仍将处于⾼速发展中。
由于化学发光的多品牌并⾏现象,各⼤品牌都能保持很⾼的增速。
2011-2016年期间,进⼝品牌都保持25%以上的复合增速,未来3年也将保持20-15%的平均增速。
4.1. 罗⽒(Roche)综合实⼒强劲,稳居IVD头把交椅罗⽒1896 年于瑞⼠成⽴,2015年罗⽒全球475亿美⾦,药品占78%,诊断占22%。
罗⽒优秀的产品和积极的销售策略,使得他各条产品线表现都⾮常优秀,综合实⼒在体外诊断领域排全球第⼀。
免疫领域,罗⽒以电化学发光为其核⼼产品,该产品是由宝灵曼1996年研发⽽成,具有核⼼专利保护,被称为第四代化学发光。
罗⽒公司1997年收购宝灵曼公司后,产品不断升级换代,⽬前以170 T/H的E170和86T/H的E411为主要产品。
2016年罗⽒电化学发光专利正式过期。
⽬前罗⽒化学发光项⽬共有105个,项⽬范围涵盖齐全,包括甲状腺功能、激素、过敏、唐⽒综合征、糖尿病、贫⾎、先兆⼦痫、肿瘤标志物、⼼肌标志物、浓毒⾎症、移植药物、传染性疾病、传染性疾病、⾻标志物和⾃⾝免疫等15⼤类菜单。
罗⽒拳头套餐为肿瘤标志物,其菜单也在不断的完善中,市场推⼴以学术推⼴为主要风格、样本量达到⼀定数量的医院⼚家派⼈驻点直销,由于罗⽒除了诊断产品,还有药品和病理产品,所以在临床的推⼴可以⼀体化推⼴。
罗氏电化学发光免疫剖析技术是罗氏企业开发的,但全自动机械制造却由日本的日立企业肩负,所以仪器上还有Hitachi的标记。
这个仪器让大家惊讶的一大原由就在于向来在实验室研究的电致化学发光竟然已经真实地家产化了,此中我们向来没法解决的诸多问题(特别是重现性均已获得解答,看来罗氏确实花了许多心血开发这款仪器。
罗氏电化学发光免疫剖析技术的性能特色——创新的技术,独出心裁一、最初进的检测原理电化学发光免疫测定,是当前最初进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定此后的新一代标记免疫测定技术,拥有敏感、快速和稳固的特色,在固相标记免疫测定中技术上居当先地位。
电化学发光(ECL是一种在电极表面由电化学引起的特异性化学发光反响,实质上是电化学和化学发光两个过程的完满联合。
电化学发光与一般化学发光的主要差别在于前者是电启动发光反响,循环及多次发光,后者是经过化合物混淆启动发光反响,是单次瞬时发光。
所以ECL反响易精准控制,重复性极好。
电化学发光免疫测定是电化学发光(ECL和免疫测定相联合的产物,直接以[Ru(bpy3]2+标记抗体,反响时标记物直接发光。
且[Ru(bpy3]2+在电极表面的反响过程能够循环往复进行,产生很多光子,使光信号得以加强。
二、专利的包被技术链霉亲和素(streptoavidin,SA和生物素(biotin,B是拥有很强的非共价互相作用的一对化合物,特异性强且联合密切。
一分子SA可与四分子B相联合,增大了抗体联合量,达到放大成效。
在ECL的试剂中,SA经过特别的蛋白联合物平均坚固地包被在磁性微粒上,形成通用的能与B联合的固相载体,另一试剂为活化的B衍生物化合的抗原或抗体。
两种试剂混淆时,抗原或抗体即包被在磁性微粒上。
三、独到的载体ECL中采纳的固相载体是带有磁性的直径约2.8m的聚苯乙烯微粒。
其特色是反响面踊跃大,比板式扩大20-30倍,使反响在近乎液相中进行,反响速度大大加速,利用氧化铁的磁性,使用电磁场分别联合态和游离态,方便快速,实现了精准的全自动化。
罗氏电化学发光项目介绍
罗氏电化学发光(Roche Electrochemiluminescence,ECL)是一种
高灵敏度、高选择性的电化学发光技术,适用于生物分析领域。
该
技术利用电化学激发发光反应,通过电化学电位的调节,使标记在
生物分析物上的激发粒子释放出能量并产生发光。
罗氏电化学发光技术的主要步骤包括样本处理、标记物的添加、电
池的组装以及丰富分析物等。
在样本处理过程中,可以使用多种方法,如离心、洗涤和预处理,以提取和纯化样品中的目标分子。
接
下来,将标记物添加到样品中,通常通过特异性结合或酶反应进行
标记。
在电池组装过程中,需要组装特定的电极系统以产生电化学发光反应。
通常,电极系统由工作电极、反应电极和参考电极组成。
工作
电极是发生反应并生成电流的电极,反应电极用于触发电化学反应,而参考电极则用于测量电流。
1
丰富分析物是指通过改变电化学条件或添加特定的试剂来提高分析
物的测量灵敏度和特异性。
例如,通过改变电极电位或添加酶反应
底物来增强发光信号。
罗氏电化学发光技术在生物分析中具有许多优点。
首先,它具有高
灵敏度和高特异性,可以检测到极低浓度的目标分子。
其次,该技
术的操作简单,结果可靠,且具有广泛的应用范围,包括分子诊断、药物筛选、基因表达分析等。
总之,罗氏电化学发光技术是一种高灵敏度、高选择性的电化学发
光技术,适用于生物分析领域,可用于检测低浓度的目标分子,并
在医学诊断、药物筛选等领域有广泛应用。
2。
引言:罗氏电化学发光(Electrochemiluminescence,简称ECL)是一种基于化学电致发光的分析技术,由瑞士公司Roche首次开发并应用于临床诊断中。
ECL技术具有高灵敏度、高选择性、宽线性范围和低检测极限等优点,因此在生物医学研究、生物芯片检测、生化分析等领域得到了广泛的应用。
本文将从ECL的原理、仪器设备、应用领域、优缺点以及未来发展方向等五个大点来详细阐述罗氏电化学发光技术的相关内容。
概述罗氏电化学发光(ECL)是一种特殊的电化学发光分析技术,通过电化学反应激发分析介质中的发光物质产生发光。
与传统的化学发光技术相比,ECL技术具有较高的灵敏度、较宽的线性范围和更低的检测极限。
ECL技术近年来在生物医学研究、药物研发、环境分析等领域得到了广泛的应用。
下面将分别介绍ECL的原理、仪器设备、应用领域以及其优缺点及未来发展方向。
正文内容一、ECL的原理1. 化学电致发光原理:ECL技术基于电化学反应和化学发光原理,通过在电极表面引发可逆氧化还原反应来激发发光物质的发光。
2. ECL机制:罗氏电化学发光的机制主要包括金属配合物的降解、电荷转移发光和共发光机制等。
3. 发光物质:介绍ECL中常用的发光物质,如三恶唑(Tz)、氧化铼(Ru(bpy)32+)等。
二、ECL的仪器设备1. ECL系统组成:介绍ECL分析所需的核心设备和仪器,包括电化学工作站、荧光光谱仪、样品处理系统等。
2. 电极选择和修饰:讨论ECL中常用的电极材料和修饰技术,如玻碳电极、金电极、纳米颗粒修饰等。
3. 仪器调试和操作:介绍ECL系统的调试方法和操作步骤,以及常见的误差来源和校正方法。
三、ECL的应用领域1. 生物医学研究:罗氏电化学发光技术在生物医学研究中广泛应用于蛋白质检测、基因分析、细胞信号传导等方面,如免疫检测、核酸检测等。
2. 药物研发:ECL技术在药物研发中具有灵敏度高、样品处理简便等优势,可用于药物代谢、药物安全性评估等方面的研究。
电化学发光免疫测定(Electrochemiluminescence immunoassay,ECLI)是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,是电化学发光(ECL)和免疫测定相结合的产物。
它的标记物的发光原理与一般的化学发光(CL)不同,是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光二个过程。
ECL与CL的差异在于ECL是电启动发光反应,而CL是通过化合物混合启动发光反应。
ECL 不仅可以应用于所有的免疫测定,而且还可用于DNA/RNA探针检测。
其检测原理(以TSH检测为例):第一步:结合了活化的三联吡啶钌衍生物即[Ru(bpy)3]2++ N 羟基琥珀酰胺酯(NHS)的TSH抗体和结合了生物素的TSH抗体与待测血清同时加入一个反应杯中孵育9分钟。
第二步:将被链霉亲和素包被的磁珠加入反应杯中,再次孵育9分钟,使生物素通过与亲和素的结合将磁珠、TSH抗体连接为一体,形成双抗体夹心法。
下一步,蠕动泵将形成的 [Ru(bpy)3]2+-抗体-抗原-抗体-磁珠复合体吸入流动测量室,此时,磁珠被工作电极下面的磁铁吸附于电极表面。
同时,游离的TSH抗体(与生物素结合的和与[Ru(bpy)3]2+结合的抗体)也被吸出测量室。
紧接着,蠕动泵加入含三丙胺(TPA)的缓冲液,同时电极加电压,启动ECL反应过程。
发光剂 [Ru(bpy)3]2+和电子供体TPA在阳极表面可同时各失去一个电子而发生氧化反应,使二价的[Ru(bpy)3]2+被氧化成三价,后者是一种强氧化剂;另一方面,TPA 被氧化成阳离子自由基TPA+●,后者很不稳定,可自发失去一个质子(H+),形成自由基TPA●,这是一种很强的还原剂,可将一个电子给三价的[Ru(bpy)3]3+,使其形成激发态的[Ru(bpy)3]2+,而TPA自身被氧化成二丙胺和丙醛。
激发态的[Ru(bpy)3]2+通过荧光机制衰减,发射出一个波长620nm的光子,重新生成基态的[Ru(bpy)3]2+。