小学数学应用题常用公式大全讲解学习
- 格式:doc
- 大小:43.51 KB
- 文档页数:8
小学数学解应用题的公式大全!【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
小学数学应用题常用公式大全(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
四年级应用题公式大全口诀以下是四年级应用题公式大全口诀:一、求平均数公式1. 求平均数:总数÷份数=平均数2. 求某项平均值:某项数÷项数=平均值3. 求某项最大或最小值:某项数×(最大值 - 最小值)÷项数=最大或最小值二、倍数关系公式1. 两个数是倍数关系:如果一个数是另一个数的倍数,那么这两个数就叫倍数关系。
2. 求倍数关系:被倍数÷倍数=求倍数关系3. 解决倍数关系应用题的基本步骤:(1) 分析题意,明确两个数是倍数关系;(2) 确定被倍数,计算倍数关系;(3) 根据倍数关系,列出算式,求出解答;(4) 检查解答是否合理,是否符合题意。
三、时间、速度、路程公式1. 相遇问题:速度和×相遇时间=总路程2. 追及问题:速度差×追及时间=总路程3. 过桥问题:路程÷桥长=速度4. 时间=路程÷速度5. 速度=时间÷路程四、三角形面积公式1. 已知三角形底和高,求面积:三角形面积=底×高÷22. 已知三角形两边和其中一边对角线,求面积:三角形面积=两边对角线乘积的一半3. 已知三角形三边长度,求面积:三角形面积=底×高÷2五、分数应用题公式1. 求出总数和份数,然后求出一份数:总数÷份数=一份数2. 已知总数和份数,求出一份数:一份数×份数=总数3. 解决分数应用题的基本步骤:(1) 分析题意,明确题意涉及的分数关系;(2) 确定已知条件和问题,并列出分数关系式;(3) 计算问题所要求的分数,并解应用题;(4) 检查答案是否合理,是否符合题意。
以上是四年级应用题公式大全口诀的详细内容,希望能为小学生提供帮助。
应用题公式大全及题解应用题是指将数学知识应用于实际问题的题目,涉及各个领域的应用题都有相应的公式和解题方法。
下面我将从几个常见的应用题领域,包括几何、代数、概率与统计等,给出一些常用的公式,并附上相应的题解。
1. 几何应用题:长方形的面积公式,面积 = 长× 宽。
三角形的面积公式,面积 = 底边长× 高 / 2。
圆的面积公式,面积= π × 半径²。
三角形的余弦定理,c² = a² + b² 2abcos(C),其中c为斜边,a、b为两边,C为夹角。
直角三角形的勾股定理,c² = a² + b²,其中c为斜边,a、b为两边。
2. 代数应用题:一元二次方程的求解公式,x = (-b ± √(b² 4ac)) / (2a),其中a、b、c为方程的系数。
等比数列的通项公式,an = a1 × r^(n-1),其中a1为首项,r为公比,an为第n项。
等差数列的前n项和公式,Sn = (a1 + an) × n / 2,其中a1为首项,an为第n项,n为项数。
3. 概率与统计应用题:事件的概率公式,P(A) = 事件A发生的次数 / 总次数。
互斥事件的概率公式,P(A或B) = P(A) + P(B)。
独立事件的概率公式,P(A且B) = P(A) × P(B)。
正态分布的概率计算,根据正态分布的性质,可以使用标准正态分布表或计算器进行计算。
以上仅是一些常见的应用题公式,实际问题可能更加复杂,需要根据具体情况选择合适的公式和解题方法。
下面我将给出一个应用题的题解示例:示例题目,一个长方形的长是5cm,宽是3cm,求其面积和周长。
解题过程:面积 = 长× 宽= 5cm × 3cm = 15cm²。
周长= 2 × (长 + 宽) = 2 × (5cm + 3cm) = 2 × 8cm =16cm.所以,该长方形的面积是15cm²,周长是16cm。
『1-6年级数学应用题』1.鸡兔同笼问题鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数) 2.流水问题:顺水速度=船速+水速逆水速度=船速-水速水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷23.火车问题基本数量关系是:火车速度×时间=车长+桥长(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和4.列车过桥问题公式(桥长+列车长)÷速度=过桥时间(桥长+列车长)÷过桥时间=速度『1-6年级数学应用题』5.植树问题间隔数+1=棵数(两端植树)路长÷间隔长+1=棵数间隔数-1=棵数路长÷间隔数=棵数路长÷间隔数=路长÷棵数=每个间隔长每个间隔长×间隔数=每个间隔长×棵数=路长锯的次数=段数-1段数=锯的次数+1A每个角上都摆的情况每边数=总盆数÷边数+1 边数=总盆数÷(每边数-1) B.每个角上都不摆的情况:每边数×边数=总盆数总盆数÷边数=每边数总盆数÷每边数=边数6.剪绳问题一根绳对折N次,从中剪M刀,则被剪成了(2N×M+1)段『1-6年级数学应用题』7.年龄问题两个人的年龄的倍数是发生变化的几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差8.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数9.和差问题公式(和-差)÷2=较小数 (和+差)÷2=较大数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数÷差=大数10.方阵问题1.方阵总人数=最外层每边人数的平方(方阵问题的核心)2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵最外层总人数=(最外层每边人数-1)×411.握手问题共需要(n-1)+(n-2)+(n-3)+....+2+1+0=n(n-1)/2『1-6年级数学应用题』12.等差数列末项=首项+(项数-1)÷公差项数=(末项-首项)÷公差+1总和=(末项+首项)×项数÷213.牛吃草问题1.草的每天生长量不变;2.每头牛每天的食草量不变;3.草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值4.新生的草量=每天生长量×天数①草的生长速度=(对应的牛头数x吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);②原有草量=牛头数×吃的天数-草的生长速度×吃的天数;③吃的天数=原有草量÷(牛头数-草的生长速度);④牛头数=原有草量÷吃的天数+草的生长速度。
★反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
★相遇问题公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间★工程问题公式(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
)★利润与折扣公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣〈1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)★简易方程知识点1、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2长方形的面积公式:s=ab正方形的周长公式:c=4a正方形的面积公式:s=a×a3、x²读作:x的平方,表示:两个x相乘。
小学数学应用题公式:1. 速度×时间=路程2. 单价×数量=总价路程÷速度=时间总价÷单价=数量路程÷时间=速度总价÷数量=单价3. 工作效率×工作时间=工作总量4.正方形的周长=边长×4.用字母表示:C=4a工作总量÷工作效率=工作时间正方形的面积=边长×边长.用字母表示:s=a²工作总量÷工作时间=工作效率5. 正方形的表面积=棱长×棱长×6.用字母表示:S=6a²正方形的棱长总和=(长+宽+高)x4正方形的体积=棱长×棱长×棱长.用字母表示:v= a³6.长方形的表面积=(长×宽+长×高+宽×高)×2长方形的体积=长×宽×高长方形的棱长总和=(长+宽+高)×47.三角形的面积=底×高÷2 用字母表示:s=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高8. 平行四边形的面积=底×高用字母表示:s=ah9.梯形的面积=(上底+下底)×高÷210.C=πd=2πr d=c÷πr=C÷2÷π半圆的周长=πr+2 r=πr+ dS圆=πR²11.路程=速度和×相遇时间相遇时间=路程÷速度和速度和=路程÷相遇时间12. 加法结合律:a + b = b + a乘法交换律:a × b = b × a乘法结合律:a × b × c = a ×(b × c)乘法分配律:a × b + a × c = a ×(b + c)13. 有余数的除法: 被除数=商×除数+余数14.非封闭图形植树问题:(1)两端都栽:距离÷间隔数+1=棵数(2)一端栽:距离÷间隔数=棵数(3)两端都不栽: 距离÷间隔数-1=棵数15.封闭图形植树问题:(1)只栽一端:棵树=间隔数(2)正方形线路上植树: 棵数=(每边的棵数-1)×边数。
精心整理小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
(例略)12、【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
小学数学应用题常用公式常用公式1、长方形:周长=(长+宽)×2C=(a+b)×2面积=长×宽S=ab2、正方形周长=边长×4C=4a面积=边长×边长S=a.a3、三角形面积=底×高÷2S=ah÷24、平行四边形的面积=底×高S=ah5、梯形面积=(上底+下底)×高÷2S=(a+b)h÷26、圆直径=半径×2d=2r周长=圆周率×直径=圆周率×半径×2c=πd=2πr面积=圆周率×半径×半径?=πr7、长方体表面积=(长×宽+长×高+宽×高)×2体积=长×宽×高V=abh8、正方体表面积=棱长×棱长×6S=6a体积=棱长×棱长×棱长V=a.a.a9、圆柱侧面积=底面圆的周长×高S=ch表面积=上下底面面积+侧面积S=2πr+2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch圆柱的体积=底面积×高V=ShV=πrh=π(d÷2)h=π(C÷2÷π)h圆锥的体积=底面积×高÷3V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷310、圆锥体体积=底面积×高÷311、和差问题(和+差)÷2=大数(和-差)÷2=小数12、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)4大常见题型相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%利息=本金×利率×时间精心整理,仅供学习参考。
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
)11、【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。
问:有多少个小朋友和多少个桃子?”(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。
问:有士兵多少人?有子弹多少发?”解(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。
有多少学生和多少本本子?”解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
(例略)12、【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。
它的解法显然可套用上述公式。
)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)13、【植树问题公式】(1)不封闭线路的植树问题:间隔数+1=棵数;(两端植树)路长÷间隔长+1=棵数。
或间隔数-1=棵数;(两端不植)路长÷间隔长-1=棵数;路长÷间隔数=每个间隔长;每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:路长÷间隔数=棵数;路长÷间隔数=路长÷棵数=每个间隔长;每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:占地总面积÷每棵占地面积=棵数14、【求分率、百分率问题的公式】比较数÷标准数=比较数的对应分(百分)率;增长数÷标准数=增长率;减少数÷标准数=减少率。
或者是两数差÷较小数=多几(百)分之几(增);两数差÷较大数=少几(百)分之几(减)。
15、【增减分(百分)率互求公式】增长率÷(1+增长率)=减少率;减少率÷(1-减少率)=增长率。
比甲丘面积少几分之几?”解这是根据增长率求减少率的应用题。
按公式,可解答为百分之几?”解这是由减少率求增长率的应用题,依据公式,可解答为16、【求比较数应用题公式】标准数×分(百分)率=与分率对应的比较数;标准数×增长率=增长数;标准数×减少率=减少数;标准数×(两分率之和)=两个数之和;标准数×(两分率之差)=两个数之差。
17、【求标准数应用题公式】比较数÷与比较数对应的分(百分)率=标准数;增长数÷增长率=标准数;减少数÷减少率=标准数;两数和÷两率和=标准数;两数差÷两率差=标准数;18、【方阵问题公式】(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?解一先看作实心方阵,则总人数有10×10=100(人)再算空心部分的方阵人数。
从外往里,每进一层,每边人数少2,则进到第四层,每边人数是10-2×3=4(人)所以,空心部分方阵人数有4×4=16(人)故这个空心方阵的人数是100-16=84(人)解二直接运用公式。
根据空心方阵总人数公式得(10-3)×3×4=84(人)19、【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。
(1)单利问题:本金×利率×时期=利息;本金×(1+利率×时期)=本利和;本利和÷(1+利率×时期)=本金。
年利率÷12=月利率;月利率×12=年利率。
(2)复利问题:本金×(1+利率)存期期数=本利和。
例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”解(1)用月利率求。