复合材料-第七章水泥基复合材料
- 格式:ppt
- 大小:6.34 MB
- 文档页数:76
水泥基复合材料水泥基复合材料是以硅酸盐水泥为基体,以耐碱玻璃纤维、通用合成纤维、各种陶瓷纤维、碳和芳纶等高性能纤维、金属丝以及天然植物纤维和矿物纤维为增强体,加入填料、化学助剂和水经复合工艺构成的复合材料。
水泥基复合材料可以分为水泥基和增强体两部分,目前比较热门的水泥基复合材料是纤维水泥基复合材料,它通常是指以水泥净浆,砂浆为基体,以非连续短纤维或连续长纤维为增强材料所组成的复合材料,也叫纤维混泥土。
在混泥土中加入纤维,可以强化水泥砂浆,提高水泥基复合材料拉伸、弯曲及冲击强度,控制裂纹的扩展,改善失效模式和成型时材料的流动性,是改善其性能的最有效途径。
纤维在水泥基体中至少有以下三个主要的作用:1,提高基体开裂的应力水平,即使水泥基体能承受更高的应力;2,改善基体的应变能力或延展性,从而增加它吸收能量的能力或提高它的韧性,纤维对基体韧性的改善往往比较显著,甚至在它对基体的增强作用小的情况下也是如此;3,能够阻止裂纹的扩展或改变裂纹前进的方向,减少裂纹的宽度和平均断裂空间。
其次纳米水泥基复合材料,水泥硬化浆体是由众多的纳米级粒子和众多的纳米级孔和毛细孔以及尺寸较大的结晶型水化产物所组成的。
采用纳米技术改善水泥硬化浆体的结构,可望在纳米矿粉---超细矿粉---高效减水剂---水溶性聚合物---水泥系统中,制的性能优异,高性能的水泥硬化--纳米复合水泥结构材料,并广泛应用于高性能或超高性能的水泥基涂料、砂浆和混泥土材料中,在不远的将来,继超细矿粉之后,纳米矿粉将有可能成为高性能混泥土材料的又一重要组分,这也是传统水泥材料的改进和又一次革命。
水泥基复合吸波材料,隐形技术是一种通过控制和降低武器系统和其他军事目标的特征信号,使其难以发现、识别、跟踪和攻击的综合性技术,通过对水泥基复合材料进行改性,使其能够吸收电磁波,从而达到对雷达的隐身性能,既得到所谓的水泥基复合吸波材料。
水泥基吸波材料是在水泥或混泥土中移入吸波剂而具有吸收电磁波功能的一类新型材料。
绪论一、简述混凝土的应用随着社会经济的发展,土木建筑事业也迅速发展,对混凝土的需求也日益增大。
目前,混凝土的应用已从一般的工业与民用建筑、港口码头、道路桥梁、水利工程等领域扩展到了海上浮动领域、海底建筑、地下城市建筑、高压储罐、核电站等领域,已成为世界上用量最大的人造石才。
二、混凝土的定义由胶结材(无机的、有机的或无机有机复合的)、颗粒状材料以及必要时加入化学外加剂和矿物掺合料等组分合理组成的混合料经硬化后形成具有堆聚结构的复合材料称为混凝土(这类混凝土的组织结构类似干某些天然岩石,故又称为人造石)。
三、混凝土的分类(一)按胶结材分1.无机胶结材混凝土(1)水泥混凝土:各种水泥为胶结材(2)石灰—硅质胶结材混凝土:石灰和各种合硅原料(砂及工业废渣等)以水热合成方法来产生水化矿物胶凝物质(3)石膏混凝土:以各种仓膏为胶结材制成(4)水玻璃—氟硅酸钠混凝土:木玻璃为胶结材,以氟硅酸钠为促硬剂制成2.有机胶结材混凝土(1)沥青混凝土:以沥青为胶结材制成,主要用于道路工程(2)聚合物胶结混凝土:以纯聚合物为胶结材制成3.无机有机复合胶结材混凝土(1)聚合物水泥混凝土:在水泥混凝土混合料中掺入聚合物或者用掺有聚合物的水泥制成(2)聚合物浸渍混凝:以水泥混凝土为基材,用有机单体液浸谈和聚合制成(二)按混凝土的结构分1.普通结构混凝土:它由粗、细集料和胶结材制成。
(碎石或卵石、砂和水泥制成者,即是普通混凝土。
)2.细粒混凝土:细集料和胶结材制成3.大孔混凝土:仅由粗集料和胶结材制成4.多孔混凝土:既无粗集料、也无细集料全由磨细的胶结材和其他粉料加水拌成的料浆用机械方法或化学方法位之形成许多微小的气泡后再经硬化制成(三)按容重分1.特重混凝土2.重混凝土3.轻混凝土4.特轻混凝土(四)按用途分结构用混凝土、隔热瘟凝土、装饰混凝土、耐酸混凝土、耐碱混凝土、耐火混凝土、道路混凝土、大坝混凝土、收缩补偿混凝土、海洋混凝土、防护混凝土等等。
《水泥基复合材料》总结无机非09-1班赵学伟23水泥基复合材料是以硅酸盐水泥为基体,以耐碱玻璃纤维、通用合成纤维、各种陶瓷纤维、碳和芳纶等高性能纤维、金属丝以及天然植物纤维和矿物纤维为增强体,加入填料、化学助剂和水经复合工艺构成的复合材料。
它比一般混凝土性能有所提高。
以短切的耐碱玻璃纤维约3%~10%含量的复合材料为例,其密度为1600~2500kg/m3,抗冲强度8.0~24.5N·mm/mm2,压缩强度48~83MPa,热膨胀系数为(11~16)×10-6K-1。
性能随所用原材料、配比、工艺和养护条件而异。
水泥基复合材料基本上用于制造建筑构件,如内、外墙板、天花板等。
主要分为混凝土,纤维增强水泥基复合材料及聚合物改性混凝土三大类。
今天主要介绍下纤维增强水泥基复合材料和聚合物改性混凝土材料。
一纤维增强水泥基复合材料国际上对碳纤维、聚丙烯腈纤维混凝土结构的研究日趋活跃,有关论文明显增多。
由于碳纤维是高科技纤维中发展最快的品种之一,它具有高强度、高弹模、高抗腐蚀的众多优点,因此把碳纤维应用于土木工程及建筑工程是许多科技人员长久的梦想。
决定碳纤维能否推广使用于土木工程的关键是其价格。
随着工业技术的进步,最近几年碳纤维价格逐年下降,为推广使用提供了条件。
国外将高性能纤维材料用于土木工程的领域己非常广阔,主要有以下几个途径:1)将短碳纤维、聚丙烯腈纤维加入新混凝土中,制成高性能纤维混凝土新结构,现已有一定的工程实例,目前主要用于薄壳结构、耐腐蚀结构、喷射混凝土及道路工程等。
2)将碳纤维长丝制成棒材,在新混凝土结构中替代钢筋或预应力钢筋,用于新建混凝土结构,主要用于海洋工程、大跨度桥梁及需电磁透过的工程结构,或将棒材用于结构加固,国外的工程实例已较多。
3)将碳纤维加工成束状或绳状,用于大跨度桥梁的拉素或大跨度空间结构的悬索、拉索等。
4)将碳纤维棒材与混凝土一起制成预制混凝土梁、板、屋架,或用纤维棒制作网架等,这些新结构具有质量轻、强度高和耐腐蚀等优点。
纤维增强水泥基复合材料综述学号:079024444 姓名:王柳班级:无机072水泥基复合材料概述:最早的、最常见的水泥基复合材料其实就是我们所熟悉的混凝土。
自八十年代美国将混凝土定义为水泥基复合材料以来,这个称法已逐渐地被各国学者认同。
该定义赋予了水泥更多科技内涵,也为水泥研究提供了新的方法,将复合材料的研究方法引入水泥领域,将大大推动水泥科学的发展。
复合材料是指由两种或两种以上异质、异形、异性的材料复合形成的新型材料,一般由基体组元与增强体或功能组元所组成。
混凝土其实就是采用复合材料中的颗粒增强手段来提高性能。
混凝土中的水泥将砂、石等增强体胶结在一起,这就大大提高了单个材料的性能,这也是复合材料的优势!但是单纯的将沙石等颗粒材料胶结在一起形成的混凝土抗压但是不抗拉,其抗拉强度较低,韧性较差。
所以后来人们才混凝土中加入钢筋,钢筋混凝土类似我们在复合材料中所学的纤维增强,只不过钢筋比较粗还不能称作纤维,钢筋在混凝土中钢筋主要承受拉应力,这样混凝土的抗拉强度就得到了很大的提高,于是就出现了钢筋混凝土,我们现在大量运用的我其实就是这种!纤维增强水泥基复合材料的组成:一、水泥水泥在纤维增强水泥基复合材料中是一种胶结材料,与水拌合形成水泥浆,以其很高的粘结力将砂、石和钢纤维胶结成一整体。
目前,在纤维增强水泥基复合材料中常用的水泥强度主要为等级为32.5和42.5的普通硅酸盐水泥。
二、砂砂又称细骨料,用于填充碎石或砾石等粗骨料的空隙,并共同组成纤维增强水泥基复合材料的骨架。
砂的粗细程度用砂的细度模数表示用细度模数大的砂,即粗砂进行拌制容易产生离析和泌水现象。
用细度模数小的砂,即细砂进行拌制,则水泥用量较大!需要较多的水泥浆包裹在砂的表面。
因此,砂的细度模数应适中。
三、石又称粗骨料,是组成纤维增强水泥基复合材料的骨架材料,通常为碎石。
纤维增强水泥基复合材料的粗骨料的粒径不宜大于20mm,若骨料粒径过大,将削弱纤维的增强作用,且纤维集中于大骨料周围,不便于纤维的分散。
水泥基复合材料概论水泥基复合材料z09016123柴亚春水泥基为材料既不像是钢材那样厚实,也不像是钢材那样坚毅,而沦为应用领域最广为的材料的三个主要原因就是其具备较好的耐水性、出色的可以加工性和明显的经济性。
因此,水泥基为材料仍然就是当今应用领域最为广为的建筑材料。
然而,水泥基为材料属脆性材料,它的的抗拉、抗弯强度高,音速快速反应大,抗冲强度高,脆性小,极易脱落,存有着轻微的耐久性问题,往往引起突发性的且难以掌控的建筑物的毁坏,造成了非常大的经济损失,并轻微污染环境,因此,做为一种结构材料在应用领域中受非常大管制。
通过纤维进一步增强水泥和纤维进一步增强混凝土复合材料,就是加强与韧化的水泥和混凝土、进一步提高了其阻裂能力和耐久性,就是赢得高性能水泥和混凝土的有效途径。
1.国内外发展概况自1990年提出高性能混凝土以来,高性能混凝土的内涵已经有了一个不断完善和发展的过程。
美国十分强调高强度和高耐久性;日本学者更关注施工性。
我国吴中伟院士则综合了各种论点提出了较为全面的高性能混凝土的定义,他认为高性能混凝土时一种新型的高技术混凝土,是在大幅度提高常规混凝土性能的基础上,采用现代混凝土技术,选用优质原材料,在妥善的质量控制制成的具有耐久性高、抗阻裂能力强、工作性良好、实用性强、提及稳定性好以及经济合理的水泥基复合材料。
邓家才[4]等用压缩韧性指数衡量了碳纤维对水泥基复合材料韧性的增强作用,发现碳纤维水泥基复合材料的压缩韧性指数明显大于基准水泥基复合材料(增加59%~110%),并且随着碳纤维掺量的增加,变形能力和承载能力增强。
罗建林,段中东以改性巴基管(cnts)为增强材料,制成了巴基管水泥基材料。
2021年大连理工大学徐世r科研团队的高淑龄博士配制得到了拉应变能力为0.7%的pva纤维水泥基复合材料。
对水泥基为材料的音速抗拉强度和音速应变能力都获得了明显提升。
2.一些新型的高韧性水泥基复合材料(一)碳纳米管水泥基复合材料碳纳米管就是日本科学家在1991年辨认出的一种碳纳米晶体纤维材料。
水泥基复合材料
水泥基复合材料是一种由水泥、骨料、掺合料和添加剂等原材料组成的新型建
筑材料,具有优异的力学性能、耐久性和耐腐蚀性能。
它是在水泥基体中加入特定的骨料和掺合料,经过一定的工艺方法制成的一种新型复合材料。
水泥基复合材料具有优良的抗压、抗弯、抗冻融和耐化学腐蚀等性能,广泛应用于建筑工程、道路工程、水利工程等领域。
首先,水泥基复合材料具有优异的力学性能。
由于在水泥基体中加入了特定的
骨料和掺合料,使得水泥基复合材料的力学性能得到了显著提高。
其抗压强度、抗折强度和抗冻融性能均远远优于传统的混凝土材料,可以满足各种工程的使用要求。
其次,水泥基复合材料具有优异的耐久性能。
水泥基复合材料在制备过程中,
采用了特殊的配比和工艺方法,使得其具有良好的耐久性能。
在各种恶劣的环境下,如潮湿、高温、酸碱等条件下,水泥基复合材料都能够保持稳定的性能,不易受到外界环境的影响。
此外,水泥基复合材料还具有良好的耐腐蚀性能。
传统的混凝土材料在受到化
学腐蚀时往往会出现表面起砂、龟裂等现象,影响使用寿命。
而水泥基复合材料由于添加了特定的掺合料和添加剂,使得其具有较强的抗化学腐蚀能力,能够在酸碱环境下长期稳定使用。
总的来说,水泥基复合材料作为一种新型的建筑材料,具有优异的力学性能、
耐久性和耐腐蚀性能,广泛应用于建筑工程、道路工程、水利工程等领域。
随着科技的不断进步和材料工艺的不断改进,相信水泥基复合材料将会在未来得到更广泛的应用和推广,为各种工程提供更加可靠、耐久的建筑材料。
水泥基复合材料水泥基复合材料是一种以水泥为基础材料,在其中添加各种复合材料进行改性的新型材料。
由于水泥基材料的强度和耐久性相对较低,加入复合材料能够显著提高其性能,使其具备更好的力学性能、耐久性和可塑性。
水泥基复合材料主要由水泥基体和复合材料组成。
水泥基体是指水泥基材料中的主体,一般为水泥混凝土或者水泥砂浆。
而复合材料是指在水泥基体中添加的改性材料,如纤维、颗粒、胶凝材料等。
常见的复合材料有玻璃纤维增强材料、碳纤维增强材料、聚合物纳米复合材料等。
水泥基复合材料相比传统的水泥材料,具有以下优点:首先,水泥基复合材料具有更好的强度和耐久性。
由于添加了各种复合材料,水泥基体的力学性能得到了显著提升。
在应力作用下,复合材料能够有效地抵抗拉伸、压缩、弯曲等不同形式的力,从而增强了材料的整体强度。
同时,复合材料还可以提高材料的抗裂性能和抗热震性能,延长材料的使用寿命。
其次,水泥基复合材料具有更好的抗渗透性和抗化学侵蚀性。
由于复合材料具有较好的致密性和耐腐蚀性,能够有效地阻止水分和化学物质的渗透,从而减少材料的老化和腐蚀。
这使得水泥基复合材料在潮湿环境和酸碱腐蚀环境中具有更好的性能,适用于海洋工程、化工工程等特殊环境。
最后,水泥基复合材料具有更好的可塑性和施工性能。
由于复合材料的添加,水泥基材料的流动性和可塑性得到了改善,能够更好地适应各种复杂的施工要求。
同时,水泥基复合材料在施工过程中可与钢筋和其他结构材料良好结合,在工程中的适用性更广。
总之,水泥基复合材料的研发和应用,为水泥材料的改性提供了一种新的思路和方法。
通过合理选择和添加不同的复合材料,可以达到对水泥基材料性能的全面提高,增强其力学性能、耐久性和可塑性,从而拓宽了水泥材料的应用领域,也为建筑工程的可持续发展提供了新的解决方案。
水泥基复合材料讲义绪论一、简述混凝土的应用随着社会经济的发展,土木建筑事业也迅速发展,对混凝土的需求也日益增大。
目前,混凝土的应用已从一般的工业与民用建筑、港口码头、道路桥梁、水利工程等领域扩展到了海上浮动领域、海底建筑、地下城市建筑、高压储罐、核电站等领域,已成为世界上用量最大的人造石才。
二、混凝土的定义由胶结材(无机的、有机的或无机有机复合的)、颗粒状材料以及必要时加入化学外加剂和矿物掺合料等组分合理组成的混合料经硬化后形成具有堆聚结构的复合材料称为混凝土(这类混凝土的组织结构类似干某些天然岩石,故又称为人造石)。
三、混凝土的分类(一)按胶结材分1.无机胶结材混凝土(1)水泥混凝土:各种水泥为胶结材(2)石灰—硅质胶结材混凝土:石灰和各种合硅原料(砂及工业废渣等)以水热合成方法来产生水化矿物胶凝物质(3)石膏混凝土:以各种仓膏为胶结材制成(4)水玻璃—氟硅酸钠混凝土:木玻璃为胶结材,以氟硅酸钠为促硬剂制成2.有机胶结材混凝土(1)沥青混凝土:以沥青为胶结材制成,主要用于道路工程(2)聚合物胶结混凝土:以纯聚合物为胶结材制成3.无机有机复合胶结材混凝土(1)聚合物水泥混凝土:在水泥混凝土混合料中掺入聚合物或者用掺有聚合物的水泥制成(2)聚合物浸渍混凝:以水泥混凝土为基材,用有机单体液浸谈和聚合制成(二)按混凝土的结构分1.普通结构混凝土:它由粗、细集料和胶结材制成。
(碎石或卵石、砂和水泥制成者,即是普通混凝土。
)2.细粒混凝土:细集料和胶结材制成3.大孔混凝土:仅由粗集料和胶结材制成4.多孔混凝土:既无粗集料、也无细集料全由磨细的胶结材和其他粉料加水拌成的料浆用机械方法或化学方法位之形成许多微小的气泡后再经硬化制成(三)按容重分1.特重混凝土2.重混凝土3.轻混凝土4.特轻混凝土(四)按用途分结构用混凝土、隔热瘟凝土、装饰混凝土、耐酸混凝土、耐碱混凝土、耐火混凝土、道路混凝土、大坝混凝土、收缩补偿混凝土、海洋混凝土、防护混凝土等等。
水泥基复合材料一:凡是细磨成粉末状,加入适量水后成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石等散粒或纤维材料牢固的交接在一起的水硬性胶凝材料,通称为水泥。
由于水泥具有高抗压强度、低廉的价格、使用方便、耐久性良好等优点,故水泥是目前地球上使用最广泛、最大宗的结构材料,但其脆性是制约水泥无限应用的致命弱点,如何通过复合改性提高水泥的韧性成为水泥基复合材料研究的重要方向之一。
二:(1)材料背景开始利用材料复合的方式来解决水泥基材料的脆性问题,钢筋混凝土就是很好的例子,钢筋混凝土已具备现代材料复合工艺的雏形。
大体看来,水泥基复合材料的增韧措施主要可以分为三大类:一是对水泥自身进行调节来增强水泥基体的韧性,这类方法主要有加入聚合物,制得聚合物水泥,调节水泥的矿物组成,减少脆性矿相含量,加入外加剂来改善界面、提高抗拉强度等;另一类是引入高抗拉强度的增强体,如引入钢筋、秸杆、纤维等,这类方法能显著改善水泥基复合材料的韧性,这也是目前研究的热点;还有一类就是通过适当工艺处理来增强水泥基复合材料的韧性,用的较多的就是预应力法;各种方法相互渗透,在实际工程中往往是多种方法同时使用以达到最佳的增韧效果。
(2)加工工艺1 喷射法是目前最常用的成型方法,将水泥、砂子、水搅拌成砂浆,与耐碱短切玻璃纤维短时间混合后形成预混料,振动模浇铸成型后养护。
[2] 喷射脱水法:砂浆和玻璃纤维同时往模具上喷射的机理与直接喷射法相同。
但它是把玻璃纤维增强水泥喷射到一个常有减压装置的开孔台上,开孔台铺有滤布。
喷射完后进行减压,通过滤纸或滤布,把玻璃纤维增强水泥的剩余水分脱掉。
这种方法是成型水灰比低的高强度板状玻璃纤维增强水泥的方法。
[3] 预混料浇铸法:水泥、砂子、水、外加剂和切成适当长度的耐碱玻璃纤维(短切纤维)在搅拌机中混合成预混料,然后不断地注入到振动着的模具里进行成型。
[4] 压力法:预混料注入到模具里后,加压除去剩余水分,即使脱模,可以提高生产率,并能获得良好的表面尺寸精度。
⽔泥基复合材料⽔泥基复合材料艾ai青摘要: 本⽂论述了⽔泥基材料改性⽤聚合物种类、聚合物改性机理、聚合物改性⽔泥基材料研究进展和发展趋势。
加⼊了聚合物材料后,⽔泥基材料的性能,如强度、变形能⼒、粘结性能、防⽔性能、耐久性能等都会有所改善,改善的程度与聚灰⽐、聚合物的品种和性能有很⼤关系。
但也存在不⾜之处,如抗压强度提⾼不⼤,有时还降低,最⾼使⽤温度不如普通混凝⼟等。
笔者认为,研究如何⼤幅度提⾼聚合物改性⽔泥基材料的抗压强度和最⾼使⽤温度很有意义。
关键词: 关键词聚合物改性⽔泥基材料进展机理性能1.引⾔普通混凝⼟因抗压⽐低,⼲缩变形⼤,抗渗性、抗裂性、耐腐蚀性差,密度⼤,其使⽤范围受到很⼤限制。
随着⼯业的发展,出现了钢筋混凝⼟、⾃应⼒混凝⼟和纤维混凝⼟。
但在这些改进中,胶结材料⽔泥的性能没有发⽣改变,因此也限制了混凝⼟性能的提⾼。
⽔泥混凝⼟(砂浆)的⼀个新动向就是⽔泥混凝⼟(砂浆)与有机⾼分⼦材料复合,这样可以有效地改善混凝⼟(砂浆)的性能。
因为有机⾼分⼦聚合物的长分⼦链结构以及⼤分⼦中的键节或链段的⾃旋转性,决定其具有与⽆机⾮⾦属材料不同的性质—弹性和塑性[1]。
所以在⽔泥混凝⼟(砂浆)中加⼊少量有机⾼分⼦聚合物,既可以使混凝⼟获得⾼密实度,⼜不⾄于使混凝⼟(砂浆)的脆性加⼤,这样便可制得⾼强度、⾼抗渗和⾼耐腐蚀性的混凝⼟。
如今,聚合物改性砂浆和混凝⼟不仅在混凝⼟结构的修补和维护⽅⾯成为⼀种⾮常重要的材料,就是在新的建筑中也获得越来越⼴泛的应⽤,尤其是在桥⾯、停车场、码头、瓷砖和⽯材粘结、建筑防⽔、防腐等⼯程领域。
2. 聚合物改性⽔泥基复合材料1.1. 改性⽤聚合物种类聚合物改性⽔泥基复合材料是指在⽔泥混合时加⼊了分散在⽔中或者可以在⽔中分散的聚合物材料,包括掺和不掺⾻料的复合材料、⽔泥浆、砂浆和混凝⼟。
⽤于⽔泥混凝⼟(砂浆)改性的聚合物有四类,即⽔溶性聚合物、聚合物乳液(或分散体)、可再分散的粉料和液体聚合物。