八年级数学人教新课标版(最新版)上学期期末试卷
- 格式:doc
- 大小:643.50 KB
- 文档页数:9
人教版2022-2023学年八年级上学期期末练习试题1学校:___________姓名:___________班级:___________考号:___________一、选择题1.若(a ﹣3)0有意义,则a 的取值范围是( ) A .a >3B .a <3C .a ≠0D .a ≠32.下列图标中是轴对称图形的是( )A .B .C .D .3.计算()233x y 的结果是( ) A .329x y B .629x yC .326x yD .626x y4.分式31x x +-的值为0,则x 的值是( ) A .﹣3B .0C .1D .35.下列说法正确的是( ) A .三角形的角平分线是射线B .过三角形的顶点,且过对边中点的直线是三角形的一条中线C .锐角三角形的三条高交于一点D .三角形的高、中线、角平分线一定在三角形的内部 6.计算(﹣0.25)2019•42020的结果为( )A .4B .﹣4C .14-D .147.如下图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站M ,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).A .B .C .D .8.如图,ABC 中,65B C ∠=∠=︒,BD CE =,BE CF =,若50A ∠=︒,则DEF ∠的度数是( )A .75︒B .70︒C .65︒D .60︒9.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,BC =10,DE =3,则△BCE 的面积为( )A .16B .15C .14D .1310.如图,点B ,E ,C ,F 共线,A D ∠=∠,AB DE =,添加一个条件,不能..判定ABC DEF ≅△△的是( )A .B DEF ∠=∠B .AC DF =C .AC DF ∥D .BE CF =11.如图,AD ,BE 是△ABC 的高线,AD 与BE 相交于点F .若AD =BD =6,且△ACD 的面积为12,则AF 的长度为( )A .4B .3C .2D .1.512.已知,关于x 的分式方程3344x m mx x++=--有增根,且2226110ma b ma b ++-+=,则a b +的值是( ) A .1B .2C .3D .4二、填空题13.人体中红细胞的直径约为0.000075m ,将0.000075用科学记数法表示为_____________. 14.如图,小强利用全等三角形的知识测量池塘两段M N 、的距离.如果30m OP ON OQ OM PQ ===,,,则池塘两段M N 、的距离为________.15.如图,已知等边ABC 的周长为24,点D 在BC 边上,点E 是AB 边上一点,连接ED ,将BDE △沿着DE 翻折得到DEF ,EF 交AC 于点G ,DF 交AC 于点O ,若OG OD =,则OGF 的周长为 _____.16.已知xy =2,x ﹣y =﹣4,则x 2+xy+y 2=_____.17.若x =3m+2,y =27m﹣8,则用x 的代数式表示y 为_____.18.如图,在ABC 中,BA BC =,D ,E 分别是边BC ,AB 上的点,且3AE BD =.以DE 为边向右作DEF ,使得DE DF =,EDF B ∠=∠,连接CF ,若1BD =,则线段CF 长度的取值范围是________.三、解答题19.将下列各式分解因式: (1)24ab a -; (2)32232a b a b ab -+. 20.计算:(1)2()(2)a b a b a +-+; (2)2211(2)m m m m+--÷. 21.符号a b c d称为二阶行列式,规定它的运算法则为a bc d=ad ﹣bc .请你根据上述法则求等式321111x x x x ++=-1中x 的值.22.如图,在ABC 中,AB BC =,点M 在线段AC 上运动(M 不与A ,C 重合),连接BM ,作BMN C ∠=∠,MN 交线段AB 于N .(1)若CM AN =,求证:BCM MAN ≌△△; (2)若30C ∠=,点M 在运动过程中,存在BMN 是等腰三角形,求此时CBM ∠的度数. 23.如图,在平面直角坐标系xOy 中,网格中小正方形的边长为1,ABC 的顶点都在格点上.(1)画出ABC 关于y 轴的对称图形111A B C △,并写出1A 、1B 、1C 的坐标; (2)在x 轴上找到一点P ,使得BP CP +的值最小(保留作图痕迹); (3)求出ABC 的面积.24.某某公司决定将一批生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等. (1)求甲、乙两种货车每辆车可装多少箱生姜?(2)如果这批生姜有1535箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了55箱,其它装满,求甲、乙两种货车各有多少辆?25.已知,7张如图1的长为a ,宽为b (其中a >b )的小长方形纸片,按图2方式不重叠地放在长方形ABCD 内,长方形ABCD 的长AD=m ,未被覆盖的部分的长方形MNPD 的面积记作S 1,长方形BEFG 的面积记作S 2.(1)用含m ,a ,b 的式子表示S 1和S 2;(2)若S 1-S 2的值与m 的取值无关,求a ,b 满足的数量关系.26.如图1和图2,矩形ABCD 中,E 是AD 的中点,P 是BC 上一点,AF //PD ,FPE DPE ∠=∠.(1)作射线PE 交直线AF 于点G ,如图1. ①求证:AG DP =;②若点F 在AD 下方,2AF =,7PF =,求DP 的长.(2)若点F 在AD 上方,如图2,写出PD ,AF ,PF 的等量关系,并证明你的结论.参考答案:1.【考点】零指数幂有意义的条件【分析】根据零指数幂的底数不等于0,列出不等式,即可求解. 解:∵(a ﹣3)0有意义, ∴a ﹣3≠0, ∴a ≠3, 故选D .【点评】本题主要考查零指数幂有意义的条件,掌握零指数幂的底数不等于0,是解题的关键. 2.【考点】轴对称图形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A ,C ,D 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形; 故选:B .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.【考点】积的乘方和幂的乘方【分析】根据积的乘方和幂的乘方法则计算即可. 解:()236239x y x y =,故选:B .【点评】本题考查了积的乘方和幂的乘方,幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 4.【考点】分式的值为零的条件【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题. 解:∵分式31x x +-的值为0, ∴x+3=0且x ﹣1≠0, 解得:x =﹣3, 故选:A .【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.5.【考点】三角形的角平分线、中线和高线【分析】根据三角形角平分线,中线,高线的概念,对各选项分析判断利用排除法求解. 解:A. 三角形的角平分线是线段,故本选项不符合题意;B. 过三角形的顶点,且过对边中点的线段是三角形的一条中线,故本选项不符合题意;C. 锐角三角形的三条高交于一点,正确,故此选项符合题意;D. 三角形的内部三角形的中线、角平分线一定在三角形的内部,高线不一定在三角形的内部,故本选项不符合题意. 故选:C .【点评】本题考查了三角形的角平分线、中线和高线,是基础题,熟记概念是解题的关键. 6.【考点】同底数幂的乘法,积的乘方【分析】根据同底数幂的乘法和积的乘方的法则计算即可. 解:()201920200.254⋅-=()9192012040.254⨯⨯- =()20190.2544⨯⨯-=4- 故选B .【点评】本题考查了同底数幂的乘法和积的乘方,解题的关键是掌握运算法则的逆用. 7.【考点】轴对称-最短路径问题【分析】利用轴对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离,从而可得答案.解:如图,作点P 关于直线l 的对称点P',连接QP'交直线l 于M .则,PM MQ P M MQ P Q ''+=+=根据两点之间,线段最短,可知选项D 修建的管道,则所需管道最短. 故选:D .【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别. 8.【考点】全等三角形的判定和性质,三角形内角和定理【分析】根据已知条件证明DBE ≌ECF △,则可得BDE CEF ∠=∠,又因为65B C ∠=∠=︒,所以18065115BDE BED ∠+∠=︒-︒=︒,即可推出115BED CEF ∠+∠=︒,由此即可得出DEF ∠的度数.解:在DBE 和ECF △中, BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴DBE ≌ECF △()SAS , ∴BDE CEF ∠=∠,∵180********BDE BED B ∠+∠=︒-∠=︒-︒=︒, ∴115BED CEF ∠+∠=︒,∴180()18011565DEF BED CEF ∠=︒-∠+∠=︒-︒=︒, 故选C .【点评】本题考查了全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 9.【考点】角平分线的性质【分析】作EH ⊥BC 于点H ,根据角平分线的性质得出EH=DE ,最后根据三角形的面积公式进行求解. 解:如图,作EH ⊥BC 于点H ,∵BE 平分∠ABC ,CD 是AB 边上的高,EH ⊥BC , ∴EH=DE=3, ∴111031522BCE S BC EH =⋅=⨯⨯=△. 故选B .【点评】本题考查角平分线的性质,三角形面积,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.【考点】全等三角形的判定【分析】根据全等三角形的判定方法对各选项进行一一判断即可.解:A 、A D ∠=∠,AB DE =,添加B DEF ∠=∠,根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、A D ∠=∠,AB DE =,添加AC DF =,根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意. C 、AD ∠=∠,AB DE =,添加AC DF ∥,利用平行线性质可得∠ACB =∠DFE , 根据AAS ,可以推出△ABC ≌△DEF ,本选项符不符合题意.D 、A D ∠=∠,AB DE =,添加BE CF =,可得BC=EF ,但SSA ,不能判定三角形全等,本选项符合题意. 故选:D .【点评】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;AAS ,ASA ,SAS ,SSS ,HL ,应注意SSA 与AAA 都不能判断两个三角形全等. 11.【考点】全等三角形的判定与性质【分析】利用ASA 证明△ACD ≌△BFD ,得DF =DC ,再根据三角形面积可得CD 的长,从而可得答案. ∵AD ,BE 是△ABC 的高线, ∴∠ADB =∠ADC =∠AEB =90°, ∵∠BFD =∠AFE , ∴∠DBF =∠CAD , 在△ACD 和△BFD 中,DBF CAD BD ADBDF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACD ≌△BFD (ASA ), ∴DF =DC ,∵△ACD 的面积为12, ∴16122CD ⨯⨯=, ∴CD =4, ∴DF =4, ∴AF =AD ﹣DF =2, 故选:C .【点评】本题主要考查了全等三角形的判定与性质,三角形的面积等知识,熟练掌握全等三角形的判定与性质是解题的关键. 12.【考点】分式方程的增根【分析】首先解分式方程,用含有字母m 的式子表示x ,再根据方程有增根求出m 的值,然后将m 的值代入得出关于a ,b 的等式,再配方根据完全平方公式的非负性求出a 和b 的值,即可得出答案. 3344x m mx x++=--, 解得=6x m -. ∵分式方程有增根, ∴x-4=0, 即x=4, ∴6-m=4, 解得m=2.当m=2时,22246110a b a b ++-+=, 即222(1)(3)0a b ++-=, 解得a=-1,b=3. 则a+b=-1+3=2. 故选:B .【点评】本题主要考查了分式方程的增根,根据完全平方公式的非负性求字母的值,求出m 的值是解题的关键.13.【考点】科学记数法【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 解:0.000075=7.5×10-5, 故答案为:7.5×10-5.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 14.【考点】全等三角形的应用【分析】根据全等三角形判定定理证明(SAS)PQO NMO ≌,根据全等三角形的性质可结果. 解:∵在PQO 和NMO △中,OP ON POQ NOM OQ OM =⎧⎪∠=∠⎨⎪=⎩, ∴(SAS)PQO NMO ≌, ∴30m MN QP ==, 故答案为:30m .【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起. 15.【考点】全等三角形的判定和性质,折叠的性质,等边三角形的性质【分析】由折叠可知,B F C ∠=∠=∠,BD FD =,易证()GOF DOC AAS ≌,所以GF DC =,所以OGF 的周长为OG OF GF OD OF DC BC ++=++=,再由等边三角形的周长为24,可得8BC =,由此可得出结论.解:∵等边ABC 的周长为24, ∴60B C ∠=∠=︒,8AB BC AC ===, ∵BDE △沿着DE 翻折得到FDE , ∴B F ∠=∠,BD FD =, ∴60F C ∠=∠=︒, 在GOF △和DOC △中, F C GOF DOC OG OD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()GOF DOC AAS ≌∴OGF的周长为:++OG OF GF=++OD OF DC=+DF DC=+BD DC=BC=,8∴OGF的周长为8.故答案为:8.【点评】本题主要考查全等三角形的判定和性质,折叠的性质,等边三角形的性质,三角形的周长等相关知识.判定三角形全等是解题关键.16.【考点】代数式求值,完全平方公式【分析】根据完全平方公式的变形公式,直接代入求解即可.解:∵xy=2,x﹣y=﹣4,∴x2+xy+y2=( x﹣y)2+3xy=(﹣4)2+3×2=22,故答案是:22.【点评】本题主要考查代数式求值,掌握完全平方公式的变形公式,是解题的关键17.【考点】幂的乘方【分析】利用等式的性质求得3m=x﹣2,然后再利用把3m用x代换即可得解.解:∵x=3m+2,∴3m=x﹣2,∴y=(x﹣2)3﹣8.故答案为:(x﹣2)3﹣8.【点评】本题主要考查了幂的乘方逆向运用及整体思想,解题的关键是把27m化为(3m)3, 再把3m用x 代换.18.【考点】等腰三角形的定义,三角形的三边关系【分析】根据题意利用线段间的数量关系可得CD-BE=2,再由三角形三边关系进行求解即可得出结果.解:由图可得:CD=BC-BD,∵BC=BA,∴BE=BA-AE,∴BE=BA-3BD=BC-3BD , ∴CD-BE=BC-BD-BC+3BD=2BD=2, ∵CF 在∆CDF 中,∴CD-DE=CD-DF<CF<CD+DF=CD+DE , ∵DE<BD+BE ,∴CD-DE>CD-BE-BD=2-1=1,CD+DE>CD+BD-BE=2+1=3, ∴1<CF<3, 故答案为:1<CF<3.【点评】题目主要考查等腰三角形的定义,三角形的三边关系等,理解题意,找准线段间的数量关系是解题关键. 19.【考点】因式分解【分析】(1)先提公因式,再利用平方差公式进行因式分解; (2)先提公因式,再利用完全平方公式进行因式分解.解:(1)()()()222244ab a a b a b b -=-+-=(2)()()322222322a b a b ab a ab b b a a b a b -+=+=--【点评】本题考查因式分解,有公因式一定要先提公因式.熟练掌握平方差和完全平方公式的结构特点是解题的关键.20.【考点】整式的混合运算,分式的化简求值【分析】(1)先利用完全平方公式与单项式乘以多项式计算整式的乘法,再合并同类项即可; (2)先计算括号内的分式的减法,再把除法转化为乘法运算,约分后可得答案. (1)解:2()(2)a b a b a +-+ 22222a ab b ab a =++-- 2b =.(2)2211(2)m m m m +--÷ 22121m m mm m +-=-()()()2111m m m -=+- 11m m -=+.【点评】本题考查的是整式的混合运算,分式的化简求值,掌握“完全平方公式的含义及分式的混合运算的运算顺序”是解本题的关键. 21.【考点】定义新运算,解分式方程 【分析】先根据题意得出方程321111xx x x ,解这个分式方程即可得解.解:∵3211111x x x x ++=-,∴321111x x x x ,∴32111x x x x x ,∴332211xx x x x x x ,∴3311x x x , 解得2x =,经检验2x =是原方程的解, ∴x 的值为2.【点评】本题考查了新定义和解分式方程,解题的关键是读懂题意,将问题转化为解分式方程. 22.【考点】等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理【分析】(1)ANM 的外角NMC A ANM BMN BMC ∠=∠+∠=∠+∠,A C BMN ∠=∠=∠,由此可知ANM BMC ∠=∠,且CM AN =,A C ∠=∠,由此即可求解;(2)30C ∠=,BMN 是等腰三角形,分类讨论:第一种情况,MB MN =;第二种情况,NB NM =;第三种情况,BN BM =.根据三角形的内角和定理,等腰三角形的性质即可求解. 解:(1)∵AB BC =,BMN C ∠=∠, ∴A C BMN ∠=∠=∠,∵ANM 的外角NMC A ANM BMN BMC ∠=∠+∠=∠+∠, ∴ANM BMC ∠=∠, ∵CM AN =,A C ∠=∠, ∴(ASA)BCM MAN ≌△△.(2)第一种情况,如图所示, MB MN =,∵30A C ∠=∠=︒,且30BMN C ∠=∠=︒,∴1803030120ABC ∠=︒-︒-︒=︒,1(18030)752MNB MBN ∠=∠=⨯︒-︒=︒,∴1207545MBC ∠=︒-︒=︒; 第二种情况,如图所示,NB NM =,∴30NMB NBM C ∠=∠=∠=︒,且1803030120ABC ∠=︒-︒-︒=︒, ∴1203090MBC ∠=︒-︒=︒;第三种情况,BN BM =,则30BMN BNM C ∠=∠=∠=︒,此时点M 与点C 重合, 又∵点M 在线段AC 上运动时,M 不与A ,C 重合, ∴不符合题意,综上所述,BMN 是等腰三角形时,CBM ∠的度数为45︒或90︒.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的综合应用,解决问题的关键是运用分类思想进行分类讨论. 23.【考点】作轴对称图形【分析】(1)根据轴对称的性质作图,根据图写出点1A 、1B 、1C 的坐标即可. (2)过点B 作关于x 轴对称的对称点B ',连接B C ',与x 轴交于点P 即可. (3)利用割补法求三角形的面积即可. (1)解:如图,111A B C △即为所要求画三角形.由图可得:()13,4A -,()11,2B -,()15,1C -. (2)解:如图,点P 即为所找的点.(3)解:111434122235222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=,答:ABC 的面积为5.【点评】本题考查作轴对称图形,利用轴对称的性质解决最短距离问题,利用网格求图形面积问题,熟练掌握会用轴对称的性质作轴对称图形是解题的关键. 24.【考点】分式方程的应用,一元一次方程的应用【分析】(1)设乙种货车每辆车可装x 箱生姜,则甲种货车每辆可装(x+20)箱生姜,根据甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等,即可得出关于x 的分式方程,解之经检验后即可求出每辆乙种货车的装载量,再将其代入(x+20)中即可求出每辆甲种货车的装载量;(2)设甲种货车有m 辆,则乙种货车有(16-m )辆,根据“甲种车辆刚好装满,乙种车辆最后一辆只装了55箱,且这批生姜共1535箱”,即可得出关于m 的一元一次方程,解之即可求出甲种货车的数量,再将其代入(16-x )中即可求出乙种货车的数量.解:(1)设乙种货车每辆车可装x 箱生姜,则甲种货车每辆可装(x+20)箱生姜, 依题意得:100080020x x=+, 解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+20=80+20=100.答:甲种货车每辆可装100箱生姜,乙种货车每辆可装80箱生姜.(2)设甲种货车有m辆,则乙种货车有(16-m)辆,依题意得:100m+80(16-m-1)+55=1535,解得:m=14,∴16-m=16-14=2.答:甲种货车有14辆,乙种货车有2辆.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次方程.25.【考点】列代数式,及整式的混合运算【分析】(1)根据图形可得出长方形MNPD的长MD的长MD为m-3b,宽MN为a,即可得出S1的面积,长方形BEFG的长EF为m-a,宽FG为4a,即可得出S2的面积;(2)根据(1)计算S1-S2的值与m的取值无关,即a-4b=0,即可得出答案.解:(1)∵MD=AD-AM=m-3b;MN=a,∴S1=MD•MN=(m-3b)•a=ma-3ab,∵EF=EP-FP=m-a,FG=4b,∴S2=EF•FG=(m-a)•4b=4bm-4ab;(2)S1-S2=ma-3ab-4bm+4ab=ab+ma-4bm=ab+m(a-4b),∵S1-S2的值与m的取值关,∴a-4b=0,即a=4b,所以a,b满足的数量关系a=4b.【点评】本题主要考查了列代数式,及整式的混合运算,根据题意列出代数式再根据法则进行计算是解决本题的关键.26.【考点】平行线的性质,角平分线的定义,全等三角形的判定和性质,等腰三角形的判定和性质【分析】(1)①根据平行线的性质得到∠GAE=∠PDE,∠G=∠DPE.根据全等三角形的性质即可得到结论;②等量代换得到∠G=∠FPE.求得GF=PF=7,根据线段的和差即可得到结论;(2)如图2,根据平行线的性质得到∠G=∠DPE,等量代换得到∠G=∠FPG,求得PF=FG,根据全等三角形的性质得到AG=PD,根据线段的和差即可得到结论.解:(1)①证明:∵AF∥PD,∴∠GAE=∠PDE,∠G=∠DPE.∵E是AD的中点,∴AE=DE.∴△AEG≌△DEP(AAS).∴AG=DP;②解:∵∠FPE=∠DPE,∠G=∠DPE,∴∠G=∠FPE.∴GF=PF=7,∵AF=2,∴AG=5.由①知AG=DP,∴DP=5;(2)PD=AF+PF,证明:如图2,∵AF∥PD,∴∠G=∠DPE,∵∠FPE=∠DPE,∴∠G=∠FPG,∴PF=FG,∵∠AEG=∠DEP,AE=DE,∴△AEG≌△DEP(AAS),∴AG=PD,∵AG=AF+FG,∴PD=AF+PF.【点评】本题是四边形的综合题,考查了平行线的性质,角平分线的定义,全等三角形的判定和性质,等腰三角形的判定和性质,正确的识别图形是解题的关键.。
最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。
2.请将所有试题的解答都写在答题卷上。
3.全卷共五个大题,满分150分,时间120分钟。
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。
1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。
B。
C。
D。
2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。
D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
20××-20××学年新人教版八年级(上)期末数学检测卷2一、选择题(每小题3分,共24分)1.(3分)下列图案中不是轴对称图形的是()A.B.C.D.2.(3分)下列运算结果正确的是()A.a3•a4=a12B.(a2)3=a6C.(3a)3=3a3D.a(a+1)=a2+13.(3分)下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有()A.4个B.3个C.2个D.1个4.(3分)下列说法不正确的是()A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角5.(3分)下列条件中,能判定△ABC≌△DEF的是()A.A B=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE6.(3分)下列分解因式正确的是()A.m3﹣m=m(m﹣1)(m+1)B.x2﹣x﹣6=x(x﹣1)﹣6 C.2a2+ab+a=a(2a+b)D.x2﹣y2=(x﹣y)2 7.(3分)对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有()A.3个B.2个C.1个D.0个8.(3分)(20×ו齐齐哈尔)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)9.(3分)(20×ו鞍山一模)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为_________.10.(3分)化简:(a2b)﹣2(a﹣1b﹣2)﹣3=_________.11.(3分)(20×ו青羊区一模)如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为_________.12.(3分)如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为_________.13.(3分)如果(a+b)2=19,a2+b2=14,则(a﹣b)2=_________.14.(3分)如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=_________.15.(3分)(20×ו海门市二模)如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是_________.16.(3分)(20×ו襄阳)关于x的分式方程的解为正数,则m的取值范围是_________.三、解答题(其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分)17.(9分)已知2x+y=4,求代数式[(x+y)2﹣(x﹣y)2﹣2y(x﹣y)]÷4y的值.18.(9分)(1)计算:÷(a﹣).(2)解方程:+=.19.(10分)(20×ו德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)20.(12分)如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.21.(10分)(20×ו河北)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?22.(10分)(20×ו日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.23.(8分)某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?24.(10分)一块原边长分别为a,b(a>1,b>1)的长方形,一边增加1,另一边减少1.(1)当a=b时,变化后的面积是增加还是减少?(2)当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.25.(14分)(20×ו黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN (1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.26.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).(1)∠EBF=_________.(2)探究线段BE与FD的数量关系,并加以证明.20××-20××学年新人教版八年级(上)期末数学检测卷2参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列图案中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列运算结果正确的是()A.a3•a4=a12B.(a2)3=a6C.(3a)3=3a3D.a(a+1)=a2+1考点:单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方.分析:同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式的法则分别进行计算即可.解答:解:A、a3•a4=a7,故本选项错误;B、(a2)3=a6,故本选项正确;C、(3a)3=27a3,故本选项错误;D、a(a+1)=a2+a,故本选项错误;故选B.点评:此题考查了同底数幂的乘法、幂的乘方、积的乘方,单项式乘多项式,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.(3分)下列说法中:①三条线段组成的图形叫做三角形;②三角形的角平分线是射线;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;④三角形的三条中线相交于一点,且这点一定在三角形的内部.其中正确的有()A.4个B.3个C.2个D.1个考点:三角形的角平分线、中线和高.分析:根据三角形的定义,三角形的角平分线、高线、中线对各选项分析判断后利用排除法求解.解答:解:①应为三条线段首尾顺次相接组成的图形叫做三角形,故本小题错误;②三角形的角平分线是线段,故本小题错误;③三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部,也有可能是直角三角形的直角顶点,故本小题错误;④三角形的三条中线相交于一点,且这点一定在三角形的内部正确,综上所述,正确的有④共1个.故选D.点评:本题考查了三角形的定义,以及三角形的角平分线、高线、中线,是基础题,需熟记.4.(3分)下列说法不正确的是()A.在锐角三角形中,最大的锐角x的取值范围是60°≤x<90°B.在△ABC中,锐角的个数最多C.在△ABC中三个内角α:β:γ=1:3:5,这个三角形是直角三角形D.一个三角形中至多有一个角是锐角考点:三角形内角和定理.分析:根据三角形内角和定理可以进行判断.解答:解:A、正确;B、在△ABC中,至少有2个锐角,故正确;C、在△ABC中三个内角α:β:γ=1:3:5,则α+β<γ,γ是钝角,因而是钝角三角形.故错误;D、一个三角形中至多有两个角是锐角,故错误.故选C.点评:本题考查了三角形内角和定理,一个三角形中至多有两个角是锐角,最多有一个直角或一个钝角.5.(3分)下列条件中,能判定△ABC≌△DEF的是()A.A B=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,看看已知是否符合条件,即可得出答案.解答:解:A、根据AB=DE,BC=EF和∠A=∠D不能判定两三角形全等,故本选项错误;B、根据∠A=∠D,∠C=∠F,AC=DF才能得出两三角形全等,故本选项错误;C、根据∠B=∠E,∠A=∠D,AC=DF才能得出两三角形全等,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故本选项正确;故选D.点评:本题考查了全等三角形的判定定理,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②应对应相等,符合条件才能得出两三角形全等.6.(3分)下列分解因式正确的是()A.m3﹣m=m(m﹣1)(m+1)B.x2﹣x﹣6=x(x﹣1)﹣6 C.2a2+ab+a=a(2a+b)D.x2﹣y2=(x﹣y)2考点:提公因式法与公式法的综合运用.分析:根据提公因式法和公式法分别分解因式,从而可判断求解.解答:解:A、m3﹣m=m(m2﹣1)=m(m﹣1)(m+1),故此选项正确;B、x2﹣x﹣6=(x﹣3)(x+2),故此选项错误;C、2a2+ab+a=a(2a+b+1),故此选项错误;D、x2﹣y2=(x﹣y)(x+y),故此选项错误;故选:A.点评:本题主要考查提公因式法与公式法分解因式综合运用,能熟练地运用提公因式法分解因式是解此题的关键.7.(3分)对于分式,当x=﹣时,下列说法中:①分式值一定为0;②分式一定有意义;③当a=﹣时,分式无意义.其中正确的个数有()A.3个B.2个C.1个D.0个考点:分式的值为零的条件;分式有意义的条件.分析:分式有意义:分母不等于零;分式无意义:分式等于零;分式的值等于零:分子等于零,且分母不等于零.解答:解:当x=﹣时,分子2x+a=0,当x=时,分母3x﹣1=0,当﹣=,即a=﹣时,分母3x﹣1=0.综上所述,正确的说法是③.故选C.点评:本题考查了分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.(3分)(20×ו齐齐哈尔)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个考点:翻折变换(折叠问题);全等三角形的判定与性质;锐角三角函数的定义.专题:几何综合题;压轴题.分析:根据折叠的知识,锐角正切值的定义,全等三角形的判定,面积的计算判断所给选项是否正确即可.解答:解:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°﹣45°﹣67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;正确的有3个,故选C.点评:综合考查了有折叠得到的相关问题;注意由对称也可得到一对三角形全等;用到的知识点为:三角形的中线把三角形分成面积相等的2部分;两条平行线间的距离相等.二、填空题(每小题3分,共24分)9.(3分)(20×ו鞍山一模)已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为40°或100°.考点:等腰三角形的性质;三角形内角和定理.专题:计算题;分类讨论.分析:首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解答:解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.点评:本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.10.(3分)化简:(a2b)﹣2(a﹣1b﹣2)﹣3=.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=•a3b6=.故答案为:.点评:本题考查的是负整数指数幂,熟知负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.11.(3分)(20×ו青羊区一模)如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.考点:线段垂直平分线的性质.专题:计算题.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.点评:本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.12.(3分)如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12.考点:线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大13.(3分)如果(a+b)2=19,a2+b2=14,则(a﹣b)2=9.考点:完全平方公式.专题:计算题.分析:先根据完全平方公式得到a2+2ab+b2=19,则2ab=5,再根据完全平方公式得(a﹣b)2=a2﹣2ab+b2,把a2+b2=14,2ab=5代入计算即可.解答:解:∵(a+b)2=19,即a2+2ab+b2=19,而a2+b2=14,∴14+2ab=19,∴2ab=5,∴(a﹣b)2=a2﹣2ab+b2=14﹣5=9.故答案为9.点评:本题考查了完全平方公式:a2±2ab+b2=(a±b)2,也考查了代数式的变形能力以及整体思想的运用.14.(3分)如图,在△ABC中,AB=a,AC=b,∠BAC=150°,则S△ABC=ab.考点:含30度角的直角三角形.分析:作CD⊥AB于点D,在直角三角形ACD中利用直角三角形的性质定理求得CD的长,然后根据三角形的面积公式即可求解.解答:解:作CD⊥AB于点D.∵在直角三角形ACD中,∠CAD=180°﹣∠BAC=30°,∴CD=AC=b,则S△ABC=AB•CD=a•b=ab.故答案是:ab.点评:本题考查了直角三角形的性质:30度的锐角所对的直角边等于斜边的一半,正确作出辅助线是关键.15.(3分)(20×ו海门市二模)如图,在△ABC中,AD为BC边上的中线.已知AC=5,AD=4,则AB的取值范围是3<AB<13.考点:三角形三边关系;全等三角形的判定与性质.分析:延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得CE=AB,然后根据三角形的任意两边之和大于第三边,两边之差小于第三边解答.解答:解:延长AD到E,使DE=AD,连接CE,则AE=2AD=2×4=8,∵AD是BC边上的中线,∴BD=CD,∵在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB,又∵AC=5,∴5+8=13,8﹣5=3,∴3<CE<13,即AB的取值范围是:3<AB<13.故答案为:3<AB<13.点评:本题考查了全等三角形的判定与性质,“遇中线加倍延”作辅助线构造出全等三角形是解题的关键.16.(3分)(20×ו襄阳)关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.考点:分式方程的解.专题:计算题;压轴题.分析:方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.解答:解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.点评:本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.三、解答题(其中17,18题各9分,19,21,22,24,26题各10分,20题12分,23题8分,25题14分,共102分)17.(9分)已知2x+y=4,求代数式[(x+y)2﹣(x﹣y)2﹣2y(x﹣y)]÷4y的值.考点:整式的混合运算—化简求值.分析:先根据整式混合运算的法则把原式进行化简,再把2x+y=4代入进行计算即可.解答:解:原式=[x2+y2+2xy﹣x2﹣y2+2xy﹣2xy+y2]÷4y=(2xy+y2)÷4y=(2x+y)=×4=1.点评:本题考查的是整式的混合运算,熟知整式混合运算的法则是解答此题的关键.18.(9分)(1)计算:÷(a﹣).(2)解方程:+=.考点:解分式方程;分式的混合运算.专题:计算题.分析:(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果;(2)方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=•=;(2)去分母得:2(3x﹣1)+3x=1,去括号得:6x﹣2+3x=1,解得:x=,经检验x=是增根,原分式方程无解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(10分)(20×ו德州)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)考点:作图—应用与设计作图.分析:根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.解答:解:作图如下:C1,C2就是所求的位置.注:本题学生能正确得出一个点的位置得(6分),得出两个点的位置得(8分).点评:此题考查了作图﹣应用与设计作图,本题的关键是:①对角平分线、线段垂直平分线作法的运用,②对题意的正确理解.20.(12分)如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BD=CE,∠DEF=∠B.图中是否存在和△BDE全等的三角形?说明理由.考点:全等三角形的判定;等腰三角形的性质.分析:根据已知得出∠BDE=∠CEF,再得出∠B=∠C,利用角边角得出三角形全等.解答:解:△CEF≌△BDE.(1分)理由如下:∵∠DEF=∠B,∠DEC=∠B+∠BDE=∠DEF+∠CEF,(已知)(三角形外角的性质)(等量代换),∴∠BDE=∠CEF.(等式的性质)(3分),在△ABC中,∵AB=AC,(已知),∴∠B=∠C.(等边对等角)(4分)在△CEF和△BDE中,,(5分)∴△CEF≌△BDE.(角边角)(6分)点评:此题主要考查了三角形的全等判定,根据题意得出∠BDE=∠CEF是解决问题的关键.21.(10分)(20×ו河北)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?考点:分式方程的应用;一元一次不等式的应用.专题:应用题.分析:(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.解答:解:(1)设乙单独整理x分钟完工,根据题意得:,解得x=80,经检验x=80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y分钟完工,根据题意,得,解得:y≥25,答:甲至少整理25分钟完工.点评:分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.22.(10分)(20×ו日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.考点:全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形.专题:证明题;压轴题.分析:(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC(AAS),∴ME=AD=BD.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等边三角形的判定与性质的等知识点,难易程度适中,是一道很典型的题目.23.(8分)某种产品的原料降价,因而厂家决定对产品进行降价.现有两种方案:方案1:第一次降价p%,第二次降价q%.方案2:第一、二次降价均为%.其中p,q是不相等且使此情境有意义的正数,两种方案哪种降价最多?考点:整式的混合运算.专题:应用题.分析:设该产品原价为a元,根据题意列出两种方案的价格,利用作差法比较大小即可.解答:解:设该产品的原价是a元,根据题意得:方案1的价格为:a(1﹣p%)(1﹣q%),方案2的价格为:a(1﹣%)2,则a(1﹣p%)(1﹣q%)﹣a(1﹣%)2=﹣(q%﹣p%)2,∵p≠q,∴﹣(q%﹣p%)2<0,则方案1降价多.点评:此题考查了整式的混合运算,弄清题意是解本题的关键.24.(10分)一块原边长分别为a,b(a>1,b>1)的长方形,一边增加1,另一边减少1.(1)当a=b时,变化后的面积是增加还是减少?(2)当a>b时,有两种方案,第一种方案如图1,第二种方案如图2.请你比较这两种方案,确定哪一种方案变化后的面积比较大.考点:整式的混合运算.分析:(1)根据题意得出算式,求出两式的差,再判断即可;(2)求出两种方案的算式,求出两式的差,再判断即可.解答:解:(1)设原来长方形的面积是S1,变化后的长方形的面积是S2,根据题意得:S=ab,S2=(a+1)(b﹣1)=ab+b﹣a﹣1,∴S2﹣S1=ab+b﹣a﹣1﹣ab=b﹣a﹣1,∵a=b,∴b﹣a﹣1=﹣1<0,∴S2<S1,∴变化后面积减小了.(2)方案1,S1=(a+1)(b﹣1)=ab﹣a+b﹣1,方案2,S2=(a﹣1)(b+1)=ab+a﹣b﹣1,∴S1﹣S2=﹣2a+2b=﹣2(a﹣b),∵a>b,∴S1﹣S2<0,∴方案2变化后面积大.点评:本题考查了整式的混合运算的应用,关键是能根据题意列出算式.25.(14分)(20×ו黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.考点:旋转的性质;全等三角形的判定与性质;正方形的性质;梯形.专题:几何综合题.分析:(1)先判定梯形ABCD是等腰梯形,根据等腰梯形的性质可得∠A+∠BCD=180°,再把△ABM绕点B顺时针旋转90°,点A与点C重合,点M到达点M′,根据旋转变换的性质,△ABM和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,根据全等三角形对应角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后证明M′、C、N三点共线,再利用“边角边”证明△BMN和△BM′N全等,然后根据全等三角形对应边相等即可得证;(2)在∠CBN内部作∠CBM′=∠ABM交CN于点M′,然后证明∠C=∠BAM,再利用“角边角”证明△ABM 和△CBM′全等,根据全等三角形对应边相等可得AM=CM′,BM=BM′,再证明∠MBN=∠M′BN,利用“边角边”证明△MBN和△M′BN全等,根据全等三角形对应边相等可得MN=M′N,从而得到MN=CN﹣AM.解答:解:(1)MN=AM+CN.理由如下:如图,∵BC∥AD,AB=BC=CD,∴梯形ABCD是等腰梯形,∴∠A+∠BCD=180°,把△ABM绕点B顺时针旋转90°到△CBM′,则△ABM≌△CBM′,∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,∴∠BCM′+∠BCD=180°,∴点M′、C、N三点共线,∵∠MBN=∠ABC,∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△BMN和△BM′N中,∵,∴△BMN≌△BM′N(SAS),∴MN=M′N,又∵M′N=CM′+CN=AM+CN,∴MN=AM+CN;(2)MN=CN﹣AM.理由如下:如图,作∠CBM′=∠ABM交CN于点M′,∵∠ABC+∠ADC=180°,∴∠BAD+∠C=360°﹣180°=180°,又∵∠BAD+∠BAM=180°,∴∠C=∠BAM,在△ABM和△CBM′中,,∴△ABM≌△CBM′(ASA),∴AM=CM′,BM=BM′,∵∠MBN=∠ABC,∴∠M′BN=∠ABC﹣(∠ABN+∠CBM′)=∠ABC﹣(∠ABN+∠ABM)=∠ABC﹣∠MBN=∠ABC,∴∠MBN=∠M′BN,在△MBN和△M′BN中,∵,∴△MBN≌△M′BN(SAS),∴MN=M′N,∵M′N=CN﹣CM′=CN﹣AM,∴MN=CN﹣AM.点评:本题考查了旋转的性质,全等三角形的判定与性质,等腰梯形的两底角互补,利用旋转变换作辅助线,构造出全等三角形,把MN、AM、CN通过等量转化到两个全等三角形的对应边是解题的关键,本题灵活性较强,对同学们的能力要求较高.26.(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).(1)∠EBF=22.5°.(2)探究线段BE与FD的数量关系,并加以证明.考点:全等三角形的判定与性质.专题:计算题.分析:(1)作DH⊥AB于H,根据等腰直角三角形的性质得∠ABC=∠C=45°,则∠EDB=∠C=22.5°,所以∠EBD=90°﹣22.5°=67.5°,然后根据∠EBF=∠EBD﹣∠ABC进行计算;(2)BE与DH的延长线交于G点,由DH∥AC得到∠BDH=45°,则△HBD为等腰直角三角形,于是HB=HD,由∠EBF=22.5°得到DE平分∠BDG,根据等腰三角形性质得BE=GE,即BE=BG,然后根据“AAS”证明△BGH≌△DFH,则BG=DF,所以BE=FD.解答:解:(1)作DH⊥AB于H,如图,∵∠A=90°,AB=AC,∴∠ABC=∠C=45°,∴∠EDB=∠C=22.5°,∵BE⊥DE,∴∠E=90°,∴∠EBD=90°﹣22.5°=67.5°,∴∠EBF=∠EBD﹣∠ABC=22.5°.(2)BE=FD.理由如下:BE与DH的延长线交于G点,如图,∵DH∥AC,∴∠BDH=∠C=45°,∴△HBD为等腰直角三角形∴HB=HD,而∠EBF=22.5°,∵∠EDB=∠C=22.5°,∴DE平分∠BDG,而DE⊥BG,∴BE=GE,即BE=BG,∵∠DFH+∠FDH=∠G+∠FDH=90°,∴∠DFH=∠G,∵∠GBH=90°﹣∠G,∠FDH=90°﹣∠G,∴∠GBH=∠FDH在△BGH和△DFH中,,∴△BGH≌△DFH(AAS),∴BG=DF,∴BE=FD.故答案为22.5°.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.第20页,共20页。
2023-2024学年(上)八年级期末试卷数学(人教版)注意事项:1.本试卷共8页,三个大题,满分120分,考试时间90分钟.请用黑色水笔直接答在答题卷上.2.答卷前将答题卷密封线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案前的代号字母填涂在答题卷上指定位置.1.中国传统建筑的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中不是轴对称图形的是()A .B .C .D .2.下列计算正确的是()A .B .C .D .3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰是“倍长三角形”,底边长为3,则腰的长为()A .1.5B .3C .6D .1.5或64.如图,中,是的中点,下列结论不正确的是()A .B .C .平分D .5.正六边形的外角和为()A .B .C .D .6.将一副三角板按如图方式重叠,则的度数为()A .B .C .D.()339a a =3412a a a ⋅=235a a a +=623a a a ÷=ABC △BC AB ABC △,AB AC D =BC B C∠=∠AD BC ⊥AD BAC ∠2AB BC =180︒360︒540︒720︒1∠60︒65︒70︒75︒7.下列因式分解正确的是()A .B .C .D .8.如图,将一张长方形纸片按图中所示的方式进行折叠,若,则重叠部分的面积是()A .6B .7.5C .10D .209.如图,都是等边三角形,那么以下结论不一定成立的是()A .B .C .D .10.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运,甲搬运所用的时间与乙搬运所用的时间相等,求甲、乙两人每小时分别搬运多少货物.设甲每小时搬运货物,则可列方程为()A.B .C .D .二、填空题(每小题3分,共15分)11.分解因式:______.12.华为公司今年发布了一款自家的5G 芯片,这款芯片集成了49亿个晶体管,那么10个这样的芯片上共有多少个晶体管,请将这个数用科学记数法表示______.13.如图,点在一条直线上,,要使,只需添加一个条件,则这个条件可以是______.222()a b a b +=+2222()a ab b a b ++=-()21a a a a -=+()()22a b a b a b -=+-ABCD 3,4,5AE AB BE ===ABD AEC △、△DC BE =60DFB ∠=︒ADC ABN ∠=∠ADM ABN△≌△600kg 5000kg 8000kg kg kg x 50008000600x x=-50008000600x x =+50008000600x x =+50008000600x x =-23x y y -=,,,B F C E ,AB ED AC FD ∥∥ABC DEF △≌△14.已知非零实数满足,则的值等于______.15.如图,在中,平分交于点,点是上的动点,是上动点,则的最小值为______.三、解答题(本大题共8题,共75分)16.(10分)(1)计算(2)分解因式:17.(9分)先化简,再选取一个合适的值代入求值.18.(9分)如图,.求证:.19.(9分)如图所示,在平面直角坐标系中,三个顶点的坐标分别为.,x y 1x y x =+3x y xy xy-+Rt ABC △90,30,6,BAC C AC BD ∠=︒∠=︒=ABC ∠AC D E AB F BD AF EF +23333(2)x x x x x ⋅+--÷22363ax axy ay ++x 22111x x x x x+-⎛⎫-÷ ⎪-⎝⎭,,OA OC OB OD AOD COB ==∠=∠AB CD =xOy ABC △()()()1,1,4,2,2,3A B C(1)在图中画出三角形关于轴对称的图形;(2)在图中,若与点关于一条直线成轴对称,则这条对称轴是______,此时点关于这条直线的对称点的坐标为______.(3)在轴上寻找一点,使的面积与面积相等.请直接写出点的坐标:______.20.(9分)“双十一”某网店开展促销活动,其商品一律按6折销售,促销期间用450元在该网店购得某商品的数量较打折前多出2件.该商品打折前每件多少元?21.(9分)(1)请写出仍平分线的性质定理,并给予证明.(2)如图,在中,平分交于点,于点,若,则的面积为______.22.(10分)(1)已知.则______.(2)如图,点是线段上一点,以为边分别向两边作正方形和正方形,设,两正方形的面积和,求图中阴影部分的面积.ABC △y 111A B C △()24,2B -B C 2C x P APB △ABC △P ABC △BD ABC ∠AC D DE BC ⊥E 60,45,3ABC C DE ∠=︒∠=︒=ABD △2()6,3x y xy -==22x y +=C AB AC BC 、ACDE BCFG 8AB =1236S S +=23.(10分)在数学课上,老师给出了如下问题:如图,为的中线.点在上,交于点.求证.经过探索,小航同学得到一种思路:如图1,添加辅助线后,依据可证得,再利用可以进一步证得,从而证明结论.(1)请你写出他的证明过程.(2)请写出另外一种不同的辅助线作法(要求:只写出辅助线的作法,画出图形,不需要写出证明过程).2023-2024学年(上)八年级期末试卷数学参考答案及评分标准(人教版)一、选择题1.B2.A3.C4.D5.B6.D7.D8.C9.D10.B二、填空题11. 12. 13.(任取其一即可) 14.4 15.3三、解答题16.解:(1)原式(2)原式.AD ABC △E AC BE AD ,F AE EF =AC BF =SAS ADC GDB △≌△AE EF =G FAE AFE BFG ∠=∠=∠=∠()()y x y x y +-104.910⨯AB DE AC DF BC EF BF EC ====、、、()333338x x x -=+--305x x =--351x =--()2232a x xy y =++23()a x y =+17.解:由题意可得,当时,原式18.证明:即.在和中.19.解:(1)如图所示,即为所求(2)x 轴(或横轴),.(3)(直接写出坐标即得分,可以不划线)20.解:设该商品打折前每件元,则打折后每件元,22111x x x x x+-⎛⎫-÷ ⎪-⎝⎭()()()1111x x x x xx x x +-+⎛⎫=-÷ ⎪-⎝⎭11x x x =-⋅+11x =-+0,1x ≠±2x =11213=-=-+AOD COB∠=∠ AOD BOD COB BOD∴∠-∠=∠-∠AOB COD ∠=∠AOB △OCD △OA OC AOB CODOB OD =⎧⎪∠=∠⎨⎪=⎩()SAS AOB COD ∴△≌△AB CD ∴=111A B C △()22,3C -()3,0P x 0.6x根据题意得,,解得,检验:经检验,是原方程的解.答:该商品打折前每件150元.21.解:(1)角平分线上的点到角的两边的距离相等.已知:如图,是的平分线.点是上任意一点,.垂足分别为.求证:.证明:,.在和中,.6分.(2)9.22.解:(1)12(2)解:设.阴影部分的面积为7.45045020.6x x+=150x =150x =OC AOB ∠P OC ,PD OA PE OB ⊥⊥D E 、PD PE =,PD OA PE OB ⊥⊥ 90PDO PEO ∴∠=∠=︒PDO △PEO △PDO PEO AOC BOCOP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS PDO PEO ∴△≌△PD PE ∴=,AC x BC y==22128,368,36AB S S x y x y =+=∴+=+= ()()22212xy x y x y ⎡⎤∴=+-+⎣⎦()164362=-14=11472S ∴=⨯=阴影∴23.解:(1)证明:延长至点,使,连接;为的中线.,在和中,.,(2)过点作,交的延长线于.(答案不唯一)AD G DG AD =BG AD ABC △BD CD ∴=ADC △GDB △AD GD ADC GDBCD BD =⎧⎪∠=∠⎨⎪=⎩()SAS ADC GDB ∴△≌△,G CAD BG AC ∴∠=∠=AE EF = CAD EFA∴∠=∠BFG EFA∠=∠ G BFG∴∠=∠BG BF∴=AC BF∴=B BG AC ∥AD G。
2023—2024学年最新人教新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图形是轴对称图形的是()A.B.C.D.2、北京2022年冬奥会上的“雪花”图案向世界展现了一起向未来的美好愿景.单个“雪花”的质量约为0.00000024千克.将0.00000024用科学记数法表示正确的是()A.﹣2.4×108B.2.4×10﹣7C.﹣2.4×107D.2.4×10﹣83、下列长度的三根小木棒能构成三角形的是()A.7cm,4cm,2cm B.5cm,5cm,6cmC.3cm,4cm,8cm D.2cm,3cm,5cm4、如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.不变D.扩大6倍5、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形6、若(x+a)(x﹣6)的积中不含有x的一次项,则a的值为()A.0B.6C.﹣6D.﹣6或07、如图,AC和BD相交于O点,若OA=OD,不能证明△AOB≌△DOC的是()A.AB=DC B.OB=OC C.∠A=∠D D.∠B=∠C8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm9、已知,则分式的值为()A.8B.C.D.410、如图,已知在等边△ABC中,AD⊥BC,AB=8,若点P在线段AD上运动,当AP+BP有最小值时,最小值为()A.B.C.10D.12第7题图第8题图第10题图二、填空题(每小题3分,满分18分)11、因式分解:2a2﹣8=.12、一个正多边形的每个内角为135°,则这个正多边形的边数为.13、在平面直角坐标系中,点A(a﹣2,2a+3)到y轴的距离为4,则a的值为.14、已知a m=2,a n=3(m,n为正整数),则a3m+n=.15、若关于x的分式方程+2的解为正数,则m的取值范围是.16、如图所示,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=10cm,AB=7cm,那么DE的长度为cm.最新人教新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、先化简,再求值:,其中x=2.19、已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.20、如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1B1C1(3)求△ABC的面积.21、已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.22、甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过 5.2万元,甲工程队至少修路多少天?23、如图,在等腰Rt△ABC中,∠C=90°,BC=AC=8,点F是AB边上的中点,点D、E分别在线段AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中.(1)求证:△DFE是等腰三角形;(2)求证:∠DFE=90°;(3)在点D、E运动的过程中,四边形CDFE的面积是否为定值,如果是,请求出这个定值,如果不是,请说明理由.24、我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+e2﹣ab﹣bc﹣ac+2t的最小值.25、如图,在平面直角坐标系中,已知点A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD,CE平分∠OCD.(1)A点的坐标为;∠OAB的度数为.(2)如图1,若点C在第四象限,试判断OC与OD的数量关系与位置关系,并说明理由.(3)如图2,连接CD,CE平分∠OCD,若点C的坐标为(4,3),连接AC 交BD于点E,AC与OD交于点F.①求D点的坐标;②试判断DE与CF的数量关系,并说明理由.。
2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。
7. 下列函数中,其图像是抛物线的是__________。
8. 下列图形中,属于中心对称图形的是__________。
9. 下列关于圆的命题中,错误的是__________。
10. 下列关于角的命题中,错误的是__________。
三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。
12. 解不等式:3x 2 < 2x + 5。
13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。
14. 解圆的方程:x² + y² 6x 8y + 9 = 0。
四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。
16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。
新人教版八年级数学上册期末测试卷带答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.下列各数中, , 无理数的个数有()A. 1个B. 2个C. 3个D. 4个3. 如果线段AB=3cm, BC=1cm, 那么A.C两点的距离d的长度为()A. 4cmB. 2cmC. 4cm或2cmD. 小于或等于4cm, 且大于或等于2cm4.若关于x的方程=3的解为正数, 则m的取值范围是()A. m<B. m<且m≠C. m>﹣D. m>﹣且m≠﹣5.已知一个多边形的内角和为1080°, 则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形6. 菱形不具备的性质是()A. 四条边都相等B. 对角线一定相等C. 是轴对称图形D. 是中心对称图形7. 在平面直角坐标系中, 一次函数y=kx+b的图象如图所示, 则k和b的取值范围是()A. k>0, b>0B. k>0, b<0C. k<0, b>0D. k<0, b<08.如图所示, 点A.B分别是∠NOP、∠MOP平分线上的点, AB⊥OP于点E, BC ⊥MN于点C, AD⊥MN于点D, 下列结论错误的是()A. AD+BC=ABB. 与∠CBO互余的角有两个C. ∠AOB=90°D. 点O是CD的中点9.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.10.如图, AB∥EF, CD⊥EF, ∠BAC=50°, 则∠ACD=()A. 120°B. 130°C. 140°D. 150°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是__________.2. 若二次根式有意义, 则x的取值范围是▲ .3. 在△ABC中, AB=15, AC=13, 高AD=12, 则的周长为____________. 4.如图, 在中, 点A的坐标为, 点B的坐标为, 点C的坐标为, 点D 在第二象限, 且与全等, 点D的坐标是______.5. 如图, 正方形纸片的边长为12, 是边上一点, 连接. 折叠该纸片, 使点落在上的点, 并使折痕经过点, 得到折痕, 点在上. 若, 则的长为__________.6. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.三、解答题(本大题共6小题, 共72分)1. 解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2. 先化简, 再从﹣1.2.3.4中选一个合适的数作为x的值代入求值. .3. 已知关于x的一元二次方程.(1)求证: 方程有两个不相等的实数根;(2)如果方程的两实根为, , 且, 求m的值.4. 已知: 如图所示△ACB和△DCE都是等腰直角三角形, ∠ACB=∠DCE=90°, 连接AE, BD. 求证: AE=BD.5. 如图, 矩形的顶点, 分别在菱形的边, 上, 顶点、在菱形的对角线上.(1)求证: ;(2)若为中点, , 求菱形的周长.6. 在我市某一城市美化工程招标时, 有甲、乙两个工程队投标, 经测算: 甲队单独完成这项工程需要60天, 若由甲队先做20天, 剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天, 需付工程款 3.5万元, 乙队施工一天需付工程款2万元.若该工程计划在70天内完成, 在不超过计划天数的前提下, 是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、D4、B5、B6、B7、C8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、-22、x1.3.32或424、(-4, 2)或(-4, 3)5、49 136.40°三、解答题(本大题共6小题, 共72分)1.(1)x=2;(2)2、x+2;当时, 原式=1.3.(1)略(2)1或24、略.5.(1)略;(2)8.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下, 由甲、乙合作完成最省钱.。
人教版八年级上学期数学期末测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共15小题)1.4的平方根是( )A. 2B. 16C. ±2D. ±2.下列各数:3.1415926,﹣11712π,4.217,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有( )A 4个 B. 3个 C. 2个 D. 1个3.下列计算,正确的是( )A. a 2•a 2=2a 2B. a 2+a 2=a 4C. (﹣a 2)2=a 4D. (a+1)2=a 2+1 4.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( )A. 3xyB. -3xyC. -1D. 15.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( )A. ①②B. ①③C. ②③D. ②④6.若(2x ﹣y )2+M =4x 2+y 2,则整式M 为( )A. ﹣4xyB. 2xyC. ﹣2xyD. 4xy7.若4x 2+kxy +9y 2是一个完全平方式,则k 的值是( )A. 12B. 72C. ±36D. ±128.下列等式从左到右的变形,属于因式分解的是( )A. a (x -y )=ax -ayB. x 2+2x +1=x (x +2)+1C. (x +1)(x +3)=x 2+4x +3D. x 3-x =x (x +1)(x -1)9.下列命题是真命题是( )A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是010. 如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是A ∠A=∠C B. AD=CB C. BE=DF D. AD ∥BC11.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS12.如图,在Rt △ABC 中,∠ACB =90°,若△ACD 的周长为50,DE 为AB 的垂直平分线,则AC +BC =( )A. 25cmB. 45cmC. 50cmD. 55cm 13.下列几组数中,为勾股数的是( ) A. 4,5,6B. 12,16,18C. 7,24,25D. 0.8,1.5,1.7 14.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于( )A. 4.1米B. 4.0米C. 3.9米D. 3.8米15.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是( )A. (12)n•75° B. (12)n﹣1•65°C. (12)n﹣1•75° D. (12)n•85°二.填空题(共10小题)16.若264x ,则3x=______.17.若2x=3,4y=5,则2x﹣2y+1的值为_____.18.把命题”在同一平面内,垂直于同一条直线的两条直线平行”改写成”如果……那么……”的形式为____________________________________________________.19.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.20.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是_____.21.小亮是位足球爱好者,某次在练习罚点球时,他在10分钟之间罚球20次,共罚进15次,则小亮点罚进的频数是____________. 频率是____________.22.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;23.若代数式x2+6x+8可化为(x+h)2+k的形式,则h=_____,k=_____.24.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.25.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.三.解答题(共8小题)26.计算:()()20382232019π-+-----. 27.计算:(x +3)(x ﹣4)﹣x (x +2)﹣528.因式分解: (1)﹣2x 2﹣8y 2+8xy ;(2)(p +q )2﹣(p ﹣q )229.先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.30.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m ,当他把绳子下端拉开4m 后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?31.如图,在△ABC 中,∠A =30°,∠B =60°(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE ,求证:△ADE ≌△BDE .32.”安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与”防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题: (1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中”家长和学生都未参与”的人数.33.问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?答案与解析一.选择题(共15小题)1.4的平方根是( )A. 2B. 16C. ±2D. ± 【答案】C【解析】【分析】根据平方根的概念:如果一个数x 的平方等于a ,即2x a = ,那么这个数x 叫做a 的平方根,即可得出答案.【详解】2(2)4±= ,∴4的平方根是2± ,故选:C .【点睛】本题主要考查平方根的概念,掌握平方根的概念是解题的关键.2.下列各数:3.1415926,﹣11712π,4.217,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有( )A. 4个B. 3个C. 2个D. 1个 【答案】B【解析】【分析】根据无理数的定义逐个判断即可.【详解】解:无理数有12π,2.1010010001…(相邻两个1之间依次增加1个0),共3个, 故选:B .【点睛】本题考查无理数的定义,属于基础题型,解题的关键是掌握无理数的三种主要形式:①开方开不尽的数;②无限不循环的小数;③含有π的数.3.下列计算,正确的是( )A. a 2•a 2=2a 2B. a 2+a 2=a 4C. (﹣a 2)2=a 4D. (a+1)2=a 2+1 【答案】C【解析】【详解】解:A.224 .a a a ⋅=故错误;B.2222.a a a += 故错误;C.正确;D.()2212 1.a a a +=++故选C .【点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.4.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( )A. 3xyB. -3xyC. -1D. 1 【答案】A【解析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .5.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( )A. ①②B. ①③C. ②③D. ②④ 【答案】A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b )(a ﹣b )的形式,由此即可得出结论.解:①(x ﹣2y )(2y+x )=(x ﹣2y )(x+2y )=x 2﹣4y 2;②(x ﹣2y )(﹣x ﹣2y )=﹣(x ﹣2y )(x+2y )=4y 2﹣x 2;③(﹣x ﹣2y )(x+2y )=﹣(x+2y )(x+2y )=﹣(x+2y )2;④(x ﹣2y )(﹣x+2y )=﹣(x ﹣2y )(x ﹣2y )=﹣(x ﹣2y )2;∴能用平方差公式计算的是①②.故选A .点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.6.若(2x ﹣y )2+M =4x 2+y 2,则整式M 为( )A. ﹣4xyB. 2xyC. ﹣2xyD. 4xy【答案】D【解析】【分析】根据完全平方公式,即可解答.【详解】解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式的概念:两数和(或差)的平方,等于它们的平方和,再加上(或减去)它们积的2倍.7.若4x2+kxy+9y2是一个完全平方式,则k的值是()A. 12B. 72C. ±36D. ±12【答案】D【解析】【分析】根据完全平方公式可知,这里首末两项是2x和3y的平方,那么中间项为加上或减去2x和3y的乘积的2倍.【详解】解:∵4x2+kxy+9y2是完全平方式,∴kxy=±2×2x•3y,解得k=±12.故选:D.【点睛】本题考查完全平方公式的知识,解题的关键是能够理解并灵活应用完全平方公式.8.下列等式从左到右的变形,属于因式分解的是()A. a(x-y)=ax-ayB. x2+2x+1=x(x+2)+1C. (x+1)(x+3)=x2+4x+3D. x3-x=x(x+1)(x-1)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式,又叫做因式分解,解答即可.【详解】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,叫做分解因式,又叫做因式分解,由此判断A、B、C仍是多项式的和或差,只有D选项符合因式分解的定义.【点睛】本题考查因式分解的定义,熟练理解因式分解的定义是解决本题的关键.9.下列命题是真命题的是()A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10. 如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是A. ∠A=∠CB. AD=CBC. BE=DFD. AD∥BC【答案】B【解析】试题分析:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.∵在△ADF和△CBE中,A C{AF CEAFD CEB∠=∠=∠=∠,∴△ADF≌△CBE(ASA),正确,故本选项错误.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确.C .∵在△ADF 和△CBE 中,AF CE{AFD CEB DF BE=∠=∠=,∴△ADF ≌△CBE (SAS ),正确,故本选项错误.D .∵AD ∥BC ,∴∠A=∠C .由A 选项可知,△ADF ≌△CBE (ASA ),正确,故本选项错误.故选B .11.如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【解析】【分析】 我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.【详解】解:作图的步骤:①以O 为圆心,任意长为半径画弧,分别交OA 、OB 于点C 、D ;②任意作一点O ',作射线O A '',以O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以C '为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.12.如图,在Rt △ABC 中,∠ACB =90°,若△ACD 的周长为50,DE 为AB 的垂直平分线,则AC +BC =( )A. 25cmB. 45cmC. 50cmD. 55cm【答案】C【解析】【分析】 由垂直平分线的性质可求得AD =BD ,则△ACD 的周长可化为AC +CD +BD ,即AC +BC ,可求得答案.【详解】解:∵DE 为AB 的垂直平分线,∴AD =BD ,∴AC +CD +AD =AC +CD +BD =AC +BC =50,故选:C .【点睛】本题考查线段垂直平分线的知识,解题的关键是掌握线段垂直平分线的性质:线段垂直平分线上的点到这条线段两端点的距离相等.13.下列几组数中,为勾股数的是( )A. 4,5,6B. 12,16,18C. 7,24,25D. 0.8,1.5,1.7【答案】C【解析】【分析】根据勾股数的定义:满足222a b c +=的三个正整数,称为勾股数解答即可.【详解】解:A 、42+52≠62,不是勾股数;B 、122+162≠182,不是勾股数;C 、72+242=252,是勾股数;D 、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C . 【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义,特别注意这三个数除了要满足222a b c +=,还要是正整数.14.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于( )A. 4.1米B. 4.0米C. 3.9米D. 3.8米【答案】A【解析】【分析】根据题意欲通过如图的隧道,只要比较距厂门中线1.2米处的高度比车高即可,根据勾股定理得出CD的长,进而得出CH的长,即可得出答案.【详解】车宽2.4米,∴欲通过如图的隧道,只要比较距厂门中线1.2米处的高度与车高,在Rt OCD△中,由勾股定理可得:22222 1.2 1.6CD OC OD=-=-=(m),1.62.5 4.1CH CD DH=+=+=米,∴卡车的外形高必须低于4.1米.故选:A.【点睛】此题主要考查了垂径定理和勾股定理的应用,根据题意得出CD的长是解题关键.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是()A. (12)n•75° B. (12)n﹣1•65°C. (12)n﹣1•75° D. (12)n•85°【答案】C 【解析】【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的底角度数.【详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C=1802B︒-∠=75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×75°;同理可得,∠EA3A2=(12)2×75°,∠FA4A3=(12)3×75°,∴第n个三角形中以A n为顶点的底角度数是(12)n﹣1×75°.故选:C.【点睛】本题考查等腰三角形的性质和三角形外角的性质,解题的关键是根据这两个性质求出∠DA2A1,∠EA3A2及∠FA4A3的度数,探索其规律.二.填空题(共10小题)16.若264x==______.【答案】±2【解析】由264x=可得x=±8=22=- 2.17.若2x=3,4y=5,则2x﹣2y+1的值为_____.【答案】65【解析】【分析】直接利用同底数幂的乘除运算法则将原式变形进而计算即可.详解】解:∵2x=3,4y=22y=5,∴2x﹣2y+1=2x÷22y×2=3÷5×2=65.故答案为:65.【点睛】本题考查同底数幂的乘、除法法则,解题的关键是熟练理解:一个幂的指数是相加(或相减)的形式,那么可以分解为同底数幂相乘(或相除)的形式.18.把命题”在同一平面内,垂直于同一条直线的两条直线平行”改写成”如果……那么……”的形式为____________________________________________________.【答案】”在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”【解析】【分析】命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行.【详解】”在同一平面内,垂直于同一条直线的两条直线互相平行”改写成”如果−−−,那么−−−”的形式为:”在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.故答案为在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.19.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.【答案】63°或27°.【解析】试题分析:等腰三角形分锐角和钝角两种情况,求出每种情况的顶角的度数,再利用等边对等角的性质(两底角相等)和三角形的内角和定理,即可求出底角的度数:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=12×(180°-54°)=63°.(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,∵∠HFE=36°,∴∠HEF=90°-36°=54°,∴∠FEG=180°-54°=126°.∵EF=EG,∴∠EFG=∠G=12×(180°-126°),=27°.考点:1.等腰三角形的性质;2.三角形内角和定理;分类思想的应用.20.三条公路将A 、B 、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是_____.【答案】∠A 、∠B 、∠C 的角平分线的交点处【解析】【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A 、∠B 、∠C 的角平分线的交点处.故答案为:∠A 、∠B 、∠C 的角平分线的交点处.【点睛】本题考查三角形三条角平分线交点的性质,解题的关键是理解掌握三角形三条角平分线交点的性质.21.小亮是位足球爱好者,某次在练习罚点球时,他在10分钟之间罚球20次,共罚进15次,则小亮点罚进的频数是____________. 频率是____________.【答案】 (1). 15 (2). 0.75【解析】根据频数的定义,知小亮点球罚进的频数为15,罚球的总数为20,根据频率=频数÷总数可得频率为1520=0.75. 故答案为15;0.75.22.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;【答案】25或7【解析】 试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:22437-=;②长为3、4的边都是直角边时:第三边长的平方为:224325.+=综上,第三边长的平方为:25或7.故答案为25或7.23.若代数式x 2+6x +8可化为(x +h )2+k 的形式,则h =_____,k =_____.【答案】 (1). 3, (2). ﹣1.【解析】【分析】二次项系数为1,则常数项是一次项系数的一半的平方即可求解.【详解】解:x 2+6x +8=x 2+6x +9﹣1=(x +3)2﹣1,则h =3,k =﹣1.故答案为:3,﹣1.【点睛】本题考查配方法的应用,解题的关键是掌握配方的方法和完全平方公式的结构.24.如图,在一根长90cm 的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm ,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为__.【答案】150cm【解析】试题解析:如图,彩色丝带的总长度为2290120+=150cm.25.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.【答案】1或7【解析】【分析】分点P 在线段BC 上和点P 在线段AD 上两种情况解答即可.【详解】设点P 的运动时间为t 秒,则BP=2t ,当点P 在线段BC 上时,∵四边形ABCD 为长方形,∴AB=CD ,∠B=∠DCE=90°,此时有△ABP ≌△DCE ,∴BP=CE ,即2t=2,解得t=1;当点P 在线段AD 上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16-2t ,此时有△ABP ≌△CDE ,∴AP=CE ,即16-2t=2,解得t=7;综上可知当t 为1秒或7秒时,△ABP 和△CDE 全等.故答案为1或7.【点睛】本题考查了全等三角形的判定,判定三角形全等方法有:ASA 、SAS 、AAS 、SSS 、HL .解决本题时注意分情况讨论,不要漏解.三.解答题(共8小题)26.计算()022019π+----.【答案】4-【解析】【分析】根据实数运算的法则化简计算即可.【详解】解:原式=2231-+-4-【点睛】本题考查实数的混合运算,解题的关键是掌握实数混合运算的顺序:先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的,同级运算按从左往右的顺序进行.27.计算:(x +3)(x ﹣4)﹣x (x +2)﹣5【答案】﹣3x ﹣17.【解析】【分析】先根据整式的乘法法则算乘法,再合并同类项即可.【详解】解:原式=22431225x x x x x +-----=317x --. 【点睛】本题考查整式的混合运算,解题的关键是熟练掌握混合运算顺序以及相关运算法则. 28.因式分解:(1)﹣2x 2﹣8y 2+8xy ;(2)(p +q )2﹣(p ﹣q )2【答案】(1)()222x y --;(2)4pq 【解析】【分析】 (1)先提取公因数﹣2,再利用完全平方公式进行分解即可;(2)先利用平方差公式进行分解,再对括号内的式子进行合并即可.【详解】解:(1)原式=()2224x y xy -+-4=()222x y --(2)原式=()()p q p q p q p q ++-+-+=4pq【点睛】本题考查因式分解,解题的关键是熟练运用完全平方公式和平方差公式.29.先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.【答案】5y +x ,3.【解析】【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=2222445x y xy x y xy y +++⎡⎤-⎣⎦÷-=()25y xy y +÷=5y x +, 当21x y =-,=时, 原式=523-=【点睛】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式. 30.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m ,当他把绳子下端拉开4m 后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?【答案】旗杆的高度为9.6 m ,见解析.【解析】【分析】设旗杆高为x 米,那么绳长为()08x +.米,由勾股定理得()222408x x ++=.,解方程即可; 【详解】解:设旗杆高为x 米,那么绳长为()08x +.米, 由勾股定理得()222408x x ++=.,解得9.6x =.答:旗杆的高度为9.6 m .【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方,即222a b c +=.31.如图,在△ABC 中,∠A =30°,∠B =60°(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE ,求证:△ADE ≌△BDE .【答案】(1)作图见解析;(2)证明见解析.【解析】【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于12FN长为半径画弧,两弧交于点M,过B、M作射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于12AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【详解】解:(1)作图如下:(2)证明:∵∠ABD=12×60°=30°,∠A=30°∴∠ABD=∠A.∴AD=BD又∵AE=BE,∴△ADE≌△BDE(SAS)32.”安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与”防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中”家长和学生都未参与”的人数.【答案】(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中”家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×60400=54°;(3)估计该校2000名学生中”家长和学生都未参与”的人数为2000×20400=100人.点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.33.问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?【答案】(1)见解析;(2)见解析;(3)6.【解析】【分析】(1)求出∠BDA=∠AFC=90°,∠ABD=∠CAF ,根据AAS 证△ABD ≌△CAF 即可;(2)根据题意和三角形外角性质求出∠ABE=∠CAF ,∠BAE=∠FCA ,根据ASA 证△BAE ≌△CAF 即可; (3)求出△ABD 的面积,根据△ABE ≌△CAF 得出△ACF 与△BDE 的面积之和等于△ABD 的面积,即可得出答案.【详解】(1)证明:如图②,∵CF ⊥AE ,BD ⊥AE ,∠MAN =90°,∴∠BDA =∠AFC =90°,∴∠ABD +∠BAD =90°,∠BAD +∠CAF =90°,∴∠ABD =∠CAF ,在△ABD 和△CAF 中,ADB CFA ABD CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAF (AAS );(2)证明:如图③,∵∠1=∠2=∠BAC ,∠1=∠BAE +∠ABE ,∠BAC =∠BAE +∠CAF ,∠2=∠FCA +∠CAF ,∴∠ABE =∠CAF ,∠BAE =∠FCA ,在△BAE 和△CAF 中,ABE CAF AB ACBAE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAE ≌△CAF (ASA );(3)如图④,∵△ABC 的面积为18,CD =2BD ,∴△ABD的面积1186 3=⨯=,由(2)可得△BAE≌△CAF,即△BAE的面积=△ACF的面积,∴△ACF与△BDE的面积之和等于△BAE与△BDE的面积之和,即△ACF与△BDE的面积之和等于△ABD的面积6.【点睛】本题主要考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,具备较强的分析问题和解决问题的能力是关键,题目比较典型,证明过程有类似之处.。
最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)八年级数学上册第一单元测试一、选择题(24分)1.用尺规作已知角的平分线的理论依据是()A.SASB.AASC.SSSD.ASA2.三角形中到三边距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,则A′C′等于()A.5B.6C.7D.84.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°AEMCADFENBCBDF4题图5题图6题图5.如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△CAN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④6.如图,△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,有下面四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B,C两点的距离相等;④到AE,AF的距离相等的点到DE,DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个7.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离是()A.2cmB.3cmC.4cmD.6cm8.下列说法:①角的内部任意一点到角的两边的距离相等;②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC中∠BAC的平分线上任意一点到三角形的三边的距离相等,其中正确的()A.1个B.2个C.3个D.4个二、填空题(30分)29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm,AB=20cm,AC=8cm,则DE的长为_________cm.10.已知△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是__________,∠ACB的对应角是__________.11.如图所示,把△ABC沿直线BC翻折180°到△DBC,那么△ABC和△DBC______全等图形(填“是”或“不是”);若△ABC的面积为2,那么△BDC的面积为__________.12.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=__________°.AEFCBD9题图11题图12题图13.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.13题图14题图15题图14.如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.15.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是__________(只要求写一个条件).16.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为.17.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.18.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=_____cm.17题图18题图三、解答题19.(6分)已知:如图,∠1=∠2,∠C=∠D,求证:AC=AD.2CA12BD20.(8分)如图,四边形ABCD的对角线AC与BD相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.B31AC2O4D21.(8分)如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AD=BD.(1)求证:AC=BE;(2)求∠B的度数。
2022-2023学年初中八年级上数学期末试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:125 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 每到春天,许多地方柳絮如雪花般漫天飞舞,据测定,柳絮纤维的直径约为0.0000105m ,把0.0000105写成a ×10n (1 a <10,n 为整数)的形式,则n 为( )A.4B.−4C.5D.−52. 对于任意三角形的高,下列说法不正确的是( )A.锐角三角形的三条高交于一点B.直角三角形只有一条高C.三角形三条高的交点不一定在三角形内D.钝角三角形有两条高在三角形的外部3. 下列运算正确的是 ( )A.a ⋅a 3=a 4B.a 6÷a 3=a 2C.2a 3−a 3=2D.(3a 3)2=6a 64. 如图所示,右边图形与左边图形成轴对称的是( ) A. B.0.0000105m0.0000105a ×10n 1 a <10n n ()4−45−5a ⋅=a 3a 4÷=a 6a 3a 22−=2a 3a 3=6(3)a 32a 6C. D.5. 用五根木棒钉成如下四个图形,具有稳定性的有( )A.1个B.2个C.3个D.4个6. 如图,为了测量池塘东西两边A 、B 之间的宽度,小明同学先从A 点向南走到点O 处,再继续向南走相同的距离到达点C ,然后从点C 开始向西走到与O 、B 两点共线的点D 处,测量C 、D 间的距离就是A ,B 间的距离.这里判断△OCD ≅△OAB 的直接依据是( )A.SSSB.SSAC.SASD.ASA7. 下列不能用平方差公式运算的是( )A.(x +1)(x −1)B.(−x +1)(−x −1)C.(x +1)(−x +1)D.(x +1)(−x −1)8. 一块三角形玻璃样板不慎被小强同学碰破,成了四片完整的碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或2、4或3、4去均可1234A B A O C C O B D C D A BD.带1、4或3、4去就可以了9. 设A ,B 都是整式,若AB 表示分式,则 ( )A.A ,B 都必须含有字母B.A 必须含有字母C.B 必须含有字母D.A ,B 都必须含有字母10. 已知:如图,∠AOB 内一点P ,P 1,P 2分别是P 关于OA ,OB 的对称点,P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长是( )A.3cmB.4cmC.5cmD.6cm卷II (非选择题)二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )11. 若(x −3)−2 无意义,则 x =________.12. 若分式a 2−9a +3=0,则a =________.13. 已知(m−n)2=6,(m+n)2=2,则mn = m 2+n 2=14. 如图,⊙O 与正五边形ABCDE 的两边AE ,CD 分别相切于A 、C 两点,则∠AOC 的度数为________.15. 等腰三角形中一个角是100∘,则底角为________∘.16. 若等腰三角形的三边长分别为a ,2a −1,5a −3,则这个等腰三角形的腰长是________.17. 如图, △ABC 中, AB =AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若 △ABC 与 △EBC 的周长分别是 40cm ,24cm ,则 BC =________cm .18. 如图,点A ,C ,D ,E 在Rt △MON 的边上,∠MON =90∘,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,BH ⊥ON 于点H , DF ⊥ON 于点F , OE =a ,BH =b ,DF =c ,图中阴影部分的面积为________(用含a ,b ,c 的代数式表示).三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )19.(1)计算:(2x −1)2−(2x −3)(2x +3);(2)如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a +3b)米,宽为(2a +3b)米的长方形草坪上修建两条宽为b 米的通道.问剩余草坪的面积是多少平方米?20. 上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:⋅y 2x 2−xy −y 2−x 2x 2−2xy +y 2=xx −y .(1)聪明的你请求出盖住部分化简后的结果;(2)当x =2时,y 等于何值时,xx −y 值为5. 21. 在边长为1的正方形网格中建立如图所示的平面直角坐标系,点A 、点B 的坐标分别为(2,1),(5,0).(1)画出△OAB 关于x 轴对称图形;(2)在平面直角坐标系内找一点D (不与点B 重合),使△OAD 与△OAB 全等,请直接写出所有可能的点D 的坐标.22. 在△ABC 中,∠BAC =90∘,AB =AC ,D 为直线BC 上一动点(点D 不与B ,C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC−CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其它条件不变:①请直接写出CF,BC,CD三条线段之间的关系.②若连接正方形对角线AE,DF,交点为O,连OC AOC形ABEF和ADGH24. 为了响应打赢“蓝天保卫战”的号召,张老师上下班的交通方式由驾车改为骑自行车,张老师的家距学校的路程是8千米;在相同的路线上,驾车的平均速度是骑自行车平均速度的3倍,这样,张老师每天上班要比开车早出发小时,才能按原驾车时间到达学校.(1)求张老师骑自行车的平均速度;(2)据测算,张老师的汽车在上下班行驶过程中平均每小时碳排放量约为12千克,这样张老师一天(按一个往返计算)可以减少碳排放量多少千克.25. 某风景区改建时,需测量湖两岸游船码头A,B间的距离,于是工作人员在AB的垂线AF上取两点E,D,使ED=AE.再过点D作出AF的垂线OD,并在OD上找一点C,使B,E,C在同一直线上,这时测得CD的长就是AB的距离,请说明理由.参考答案与试题解析2022-2023学年初中八年级上数学期末试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】科学记数法--表示较小的数【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:柳絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为1.05×10−5.所以n 为−5.故选D.2.【答案】B【考点】三角形的高【解析】根据三角形的高的概念,通过具体作高,发现:任意一个三角形都有三条高,其中锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,据此解答即可.【解答】解:A 、锐角三角形的三条高交于一点,说法正确,故本选项不符合题意;B 、直角三角形有三条高,说法错误,故本选项符合题意;C 、三角形三条高的交点不一定在三角形内,说法正确,故本选项不符合题意;D 、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B .3.【答案】A【考点】幂的乘方与积的乘方同底数幂的除法同底数幂的乘法【解答】解:A.a ⋅a 3=a 4,故A 正确;B.a 6÷a 3=a 3 ,故B 错误;C.2a 3−a 3=a 3,故C 错误;D.(3a 3)2=9a 6,故D 错误.故选A.4.【答案】B【考点】轴对称图形【解析】【解答】解:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.由定义得B 为轴对称图形.故选B.5.【答案】D【考点】三角形的稳定性【解析】试题分析:根据三角形具有稳定性对各图形分析后解答.解:第一个图形分成两个三角形,具有稳定性,第二个图形根据三角形具有稳定性,左边与上边的木棒稳定,所以,另两根也稳定;第三个图形,根据三角形具有稳定性,左边与上边的木棒稳定,所以,另两根也稳定;第四个图形,根据三角形具有稳定性,右边与下边的木棒稳定,所以,另两根也稳定,所以具有稳定性的有4个.故选D .【解答】此题暂无解答6.【答案】D【考点】全等三角形的应用由题意知AO =CO ,根据∠BAO =∠DCO =90∘和∠AOB =∠COD 即可证明△OCD ≅△OAB .【解答】在△OCD 与△OAB 中,,∴△OCD ≅△OAB(ASA),7.【答案】D【考点】平方差公式【解析】根据平方差公式(a +b)(a −b)=a 2−b 2r 的特征逐项判定即可.【解答】解:A ,(x +1)(x −1)=x 2−1,能用平方差公式计算,故A 不符合题意;B ,(−x +1)(−x −1)=−(1−x)(1+x)=−(1−x 2)=x 2−1,能用平方差公式计算,故B 不符合题意;C ,(x +1)(−x +1)=(1+x)(1−x)=1−x 2,能用平方差公式计算,故C 不符合题意;D ,(x +1)(−x −1)=−(x +1)2,不能用平方差公式计算,故D 符合题意.故选D.8.【答案】C【考点】全等三角形的应用【解析】②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②、④可以延长还原出原三角形.故选C .9.【答案】C【考点】列代数式(分式)如果一个式子是分式,那么该式子的分母必须含有字母,可据此进行判断.【解答】解:若AB 表示分式,则B 必须含有字母.故选C .10.【答案】C【考点】线段垂直平分线的性质轴对称的性质【解析】由P 与P 1关于OA 对称,得到OA 为线段PP 1的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得MP =MP 1,同理可得NP =NP 2,由P 1P 2=P 1M +MN +NP 2=5,等量代换可求得三角形PMN 的周长.【解答】解:∵P 与P 1关于OA 对称,∴OA 为线段PP 1的垂直平分线,∴MP =MP 1,同理,P 与P 2关于OB 对称,∴OB 为线段PP 2的垂直平分线,∴NP =NP 2,∴P 1P 2=P 1M +MN +NP 2=MP +MN +NP =5cm ,则△PMN 的周长为5cm .故选C.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )11.【答案】3【考点】零指数幂、负整数指数幂【解析】【解答】解:(x −3)−2=1(x −3)2,∴当x −3=0 ,即x =3时,式子无意义.故答案为:3.12.【答案】3【考点】分式值为零的条件【解析】根据分式的值为0的条件列出关于a 的不等式组,求出a 的值即可.【解答】解:∵分式a 2−9a +3的值为0,∴{a 2−9=0,a +3≠0.解得a =3.故答案为:3.13.【答案】−1;4【考点】完全平方公式列代数式求值【解析】直接利用完全平方公式展开得到m 2+n 2−2mn =6①,m 2+n 2+2mn =2②,然后分别将两个式子相加减即可原式变形得出答案.【解答】解:∵(m−n)2=6,(m+n)2=2,∴m 2+n 2−2mn =6①,m 2+n 2+2mn =2②,∴①−②得:−4mn =4,即mn =−1,∴①+②得:2m 2+2n 2=8,即m 2+n 2=4.故答案为:−1;4.14.【答案】144∘.【考点】多边形的内角和【解析】本题主要考查了正多边形的内角和公式的应用.【解答】解:∵AE 、CD 切⊙O 于点A 、C ,∴∠OAE =90∘,∠OCD =90∘,正五边形ABCDE 的每个内角的度数为(5−2)×180∘5=108∘,∴∠AOC =540∘−90∘−90∘−108∘−108∘=144∘,故答案为:144∘.15.【答案】40【考点】等腰三角形的性质【解析】因为三角形的内角和为180∘,所以100∘只能为顶角,从而可求出底角.【解答】∵100∘为三角形的顶角,∴底角为:(180∘−100∘)÷2=40∘.16.【答案】34【考点】等腰三角形的性质三角形三边关系【解析】直接讨论边长关系,即可得出答案.【解答】解:若a=2a−1时,此时a=1,此时三边为1,1,2,不能构成三角形;若a=5a−3时,此时a=34,此时三边为34,12,34,能构成三角形;若2a−1=5a−3时,此时a=23,此时三边为23,13,13,不能构成三角形,故只有a=34成立,此时腰长为34.故答案为:34.17.【答案】8【考点】等腰三角形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】解:∵DE 是AB 的垂直平分线,∴AE =BE ;∵△ABC 的周长=AB +AC +BC ,△EBC 的周长=BE +EC +BC=AE +EC +BC =AC +BC ,∴△ABC 的周长−△EBC 的周长=AB ,∴AB =40−24=16,∴BC =40−16×2=8.故答案为:8.18.【答案】12a 2+12c 2+ac【考点】全等三角形的性质与判定三角形的面积整式的混合运算——化简求值【解析】易证△AEO ≅△BAH ,△BCH ≅△CDF 即可求得AO =BH ,AH =EO ,CH =DF ,BH =CF 即可求得梯形DEOF 的面积和△AEO ,△ABH ,△BCH ,△CDF 的面积,即可解题.【解答】解:∵∠EAO +∠BAH =90∘, ∠EAO +∠AEO =90∘,∴∠BAH =∠AEO.在△AEO 和△BAH 中,∵{∠AEO =∠BAH ,∠O =∠BHA =90∘,AE =AB ,∴△AEO ≅△BAH(AAS),同理可得,△BCH ≅△CDF(AAS),∴AO =BH =b ,AH =EO =a ,CH =DF =c ,BH =CF =b.∵梯形DEOF 的面积为12(EO +DF)⋅OF=12(a +c)(a +2b +c),S △AEO =S △ABH =12AO ×OE =12ab ,S △BCH =S △CDF =12CH ⋅BH =12bc ,∴S 阴影=12(a +c)(a +2b +c)−2×12ab −2×12bc=12a 2+12c 2+ac.故答案为:12a 2+12c 2+ac.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )19.【答案】解:(1)原式=4x 2−4x +1−(4x 2−9)=−4x +10;(2)由题意知,(4a +3b −b)(2a +3b −b)=(4a +2b)(2a +2b)=8a 2+12ab +4b 2,答:剩余草坪的面积是(8a 2+12ab +4b 2)平方米.【考点】整式的混合运算平方差公式完全平方公式多项式乘多项式【解析】【解答】解:(1)原式=4x 2−4x +1−(4x 2−9)=−4x +10;(2)由题意知,(4a +3b −b)(2a +3b −b)=(4a +2b)(2a +2b)=8a 2+12ab +4b 2,答:剩余草坪的面积是(8a 2+12ab +4b 2)平方米.20.【答案】解:(1)∵(xx −y +y 2−x 2x 2−2xy +y2)÷y 2x 2−xy=[xx −y +(y +x)(y −x)(x −y)2]×x(x −y)y2=−yx −y ×x(x −y)y2=−xy ,∴盖住部分化简后的结果为−xy .(2)∵x =2时,原分式的值为5,即22−y =5,∴10−5y =2,解得y =85,经检验,y =85是原方程的解,∴当x =2,y =85时,原分式的值为5.【考点】分式的混合运算解分式方程——可化为一元一次方程【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:(1)∵(xx−y+y2−x2x2−2xy+y2)÷y2x2−xy=[xx−y+(y+x)(y−x)(x−y)2]×x(x−y)y22=−yx−y×x(x−y)y=−xy,∴盖住部分化简后的结果为−xy.(2)∵x=2时,原分式的值为5,即22−y=5,∴10−5y=2,解得y=85,经检验,y=85是原方程的解,∴当x=2,y=85时,原分式的值为5.21.【答案】如图所示,△OA′B即为所求;如图所示,△OAD′,△OAD″,△OAD′″即为所求,其中点D的坐标为(−1,3)或(3,4)或(−3,1).【考点】作图-相似变换作图-轴对称变换全等三角形的判定作图-位似变换【解析】(1)作出点A关于x轴的对称点,再与点O、B首尾顺次连接即可得;(2)根据全等三角形的判定求解可得.【解答】如图所示,△OA′B即为所求;如图所示,△OAD′,△OAD″,△OAD′″即为所求,其中点D的坐标为(−1,3)或(3,4)或(−3,1).22.【答案】(1)证明:①∵∠BAC=90∘,AB=AC,∴∠ABC=∠ACB=45∘.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90∘.∵∠BAC=∠BAD+∠DAC=90∘,∠DAF=∠CAF+∠DAC=90∘,∴∠BAD=∠CAF.在△BAD和△CAF中,{AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≅△CAF(SAS),∴∠ACF=∠ABD=45∘,∴∠ACF+∠ACB=90∘,∴BD⊥CF;②由①△BAD≅△CAF可得BD=CF,∵BD=BC−CD,∴CF=BC−CD.(2)解:与(1)同理可得△BAD≅△CAF,∴BD=CF,∴CF=BC+CD.(3)解:①与(1)同理可得,△BAD≅△CAF,∴BD=CF,∴CF=CD−BC;②△AOC是等腰三角形,理由如下:∵∠BAC=90∘,AB=AC,∴∠ABC=∠ACB=45∘,则∠ABD=180∘−45∘=135∘.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90∘.∵∠BAC=∠BAF+∠CAF=90∘,∠DAF=∠BAD+∠BAF=90∘,∴∠BAD=∠CAF,在△BAD和△CAF中,{AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≅△CAF(SAS),∴∠ACF=∠ABD=180∘−45∘=135∘,∴∠FCD=∠ACF−∠ACB=90∘,则△FCD为直角三角形.∵正方形ADEF中,O为DF中点,∴OC=12DF.∵在正方形ADEF中,OA=12AE,AE=DF,∴OC=OA,∴△AOC是等腰三角形.【考点】正方形的性质等腰直角三角形全等三角形的性质与判定直角三角形斜边上的中线等腰三角形的判定【解析】(1)①根据等腰直角三角形的性质可得∠ABC=∠ACB=45∘,再根据正方形的性质可得AD=AF,∠DAF=90∘,然后利用同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD和△CAF全等,根据全等三角形对应角相等可得∠ACF=∠ABD,再求出∠ACF+∠ACB=90∘,从而得证;②根据全等三角形对应边相等可得BD=CF,从而求出CF=BC−CD;【解答】(1)证明:①∵∠BAC=90∘,AB=AC,∴∠ABC=∠ACB=45∘.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90∘.∵∠BAC=∠BAD+∠DAC=90∘,∠DAF=∠CAF+∠DAC=90∘,∴∠BAD=∠CAF.在△BAD和△CAF中,{AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≅△CAF(SAS),∴∠ACF=∠ABD=45∘,∴∠ACF+∠ACB=90∘,∴BD⊥CF;②由①△BAD≅△CAF可得BD=CF,∵BD=BC−CD,∴CF=BC−CD.(2)解:与(1)同理可得△BAD≅△CAF,∴BD=CF,∴CF=BC+CD.(3)解:①与(1)同理可得,△BAD≅△CAF,∴BD=CF,∴CF=CD−BC;②△AOC是等腰三角形,理由如下:∵∠BAC=90∘,AB=AC,∴∠ABC=∠ACB=45∘,则∠ABD=180∘−45∘=135∘.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90∘.∵∠BAC=∠BAF+∠CAF=90∘,∠DAF=∠BAD+∠BAF=90∘,∴∠BAD=∠CAF,在△BAD和△CAF中,{AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≅△CAF(SAS),∴∠ACF=∠ABD=180∘−45∘=135∘,∴∠FCD=∠ACF−∠ACB=90∘,则△FCD为直角三角形.∵正方形ADEF中,O为DF中点,∴OC=12DF.∵在正方形ADEF中,OA=12AE,AE=DF,∴△AOC 是等腰三角形.23.【答案】设AB =x ,AD =y ,根据题意,得{x 2+y 2=682(x +y)=20由②得:x +y =10,由①,得(x +y)2−2xy =68,100−2xy =68,∴2xy =100−68=32,∴xy =16.矩形ABCD 的面积是16cm 2.【考点】完全平方公式的几何背景【解析】设出矩形的长与宽分别为x 、y ,根据两正方形的面积和矩形的周长列出方程,然后结合完全平方公式求出xy 的值,也就是矩形的面积.【解答】设AB =x ,AD =y ,根据题意,得{x 2+y 2=682(x +y)=20由②得:x +y =10,由①,得(x +y)2−2xy =68,100−2xy =68,∴2xy =100−68=32,∴xy =16.矩形ABCD 的面积是16cm 2.24.【答案】设张老师骑自行车的平均速度为x 千米/小时,依题意有,-=,解得x =16,经检验,x =16是原方程的解.故张老师骑自行车的平均速度为16千米/小时,由(1)可得张老师开车的平均速度为16×6=48(千米/小时),×2×12=4(千克).故可以减少碳排放量4千克.【考点】分式方程的应用【解析】此题暂无解析【解答】25.【答案】证明:∵AB⊥AD,CD⊥AD,∴∠A=∠CDE=90∘,又∵ED=AE,∠AEB=∠CED,∴△ABE≅△CED(ASA),所以AB=CD.【考点】全等三角形的性质与判定全等三角形的应用【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【解答】证明:∵AB⊥AD,CD⊥AD,∴∠A=∠CDE=90∘,又∵ED=AE,∠AEB=∠CED,∴△ABE≅△CED(ASA),所以AB=CD.。
新人教版八年级数学上册数学期末测试卷含答案(精选四套)(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--选择题(每小题3分,共计30分)1、数—2,,722,2,—∏中,无理数的个数是( ) A 、2个; B 、3个 C 、4个; D 、5个2、计算6x 5÷3x 2·2x 3的正确结果是 ( ) A 、1; B 、x C 、4x 6; D 、x 43、一次函数 12+-=x y 的图象经过点 ( ) A .(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有 ( ) ①1))((122--+=--y x y x y x ②)1(23+=+x x x x ③2222)(y xy x y x +-=- ④)3)(3(922y x y x y x -+=-A .1个B .2 个C .3个D .4个5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A 、三条中线的交点;B 、三边垂直平分线的交点;C 、三条高的交战;D 、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是 ( )7、如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥ACC .∠E=∠ABCD .AB ∥DE8、下列图案中,是轴对称图形的是 ( )A DB CAF ECD9.一次函数y=mx-n 的图象如图所示,则下面结论正确的是( )A .m<0,n<0B .m<0,n>0C .m>0,n>0D .m>0,n<010.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个二、填空题(每小题3分,共计30分) 11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。
O xy O xy O xy O xy A .B .C .D .初二上学期数学期末试题及答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.16的算术平方根是A .4B .±4C .2D .±2 2.方程组⎩⎨⎧-=-=+13y x y x 的解是A .⎩⎨⎧==21y x B .⎩⎨⎧-==21y x C .⎩⎨⎧==12y x D .⎩⎨⎧-==10y x3.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是 A .21 B .31 C .41 D .61 4.下列函数中,y 是x 的一次函数的是 ① y =x -6 ② y =x 2 ③ y =8x④ y =7-x A .① ② ③ B .① ③ ④ C . ① ② ③ ④ D .② ③ ④5. 在同一平面直角坐标系中,图形M 向右平移3单位得到图形N ,如果图形M 上某点A 的坐标为(5,-6 ),那么图形N 上与点A 对应的点A '的坐标是A .(5,-9 )B .(5,-3 )C .(2,-6 )D . (8,-6 )6.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点(1 2)--,,“馬”位于点(2 2)-,,则“兵”位于点( )A .(1 1)-,B .(2 1)--,C .(12)-,D .(3 1)-,7.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y=kx -k 的图像大致是(第15题图)(第6题图)O O O Ox /时y /件 A .B .C .D .y /件x /时x /时y /件y /件x /时8.某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y (件)与时间t (时)关系图为( )9.已知代数式15x a -1y 3与-5x b y a +b 是同类项,则a 与b 的值分别是( )A .⎩⎨⎧-==12b aB .⎩⎨⎧-=-=12b aC .⎩⎨⎧==12b aD .⎩⎨⎧=-=12b a10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间t (时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的解析式为y =10t ;④第1.5小时,甲跑了12千米.其中正确的说法有A .1 个B .2 个C .3 个D . 4个二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.已知方程3x +2y =6,用含x 的代数式表示y ,则y = . 12. 若点P (a +3, a -1)在x 轴上,则点P 的坐标为 .13.请写出一个同时具备:①y 随x 的增大而减小;②过点(0,-5)两条件的一次函数的表达式. 14.直线y =-21x +3向下平移5个单位长度,得到新的直线的解析式是 . 15.如图l 1的解析式为y =k 1x +b 1 , l 2的解析式为y =k 2x +b 2, 则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为 .(第15题图)Oxy l1l 23-122(第10题图)Oy /件t /时581015200.511.52甲乙三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分,每小题2分) 计算:(1).4+3125-.(2).21.1+64.0. 17.(本题满分4分)解方程组: ⎩⎨⎧=+=+.134,1632y x y x18.(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(4-,5),(1-,3). ⑴请在如图所示的网格平面内画出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标.19.(本题满分5分)木工师傅做一个人字形屋梁,如图所示,上弦AB =AC =5m ,跨度BC 为6m ,现有一根木料打算做中柱AD (AD 是△ABC 的中线),②①CB A(第18题)请你通过计算说明中柱AD 的长度 . (只考虑长度、不计损耗)20.(本题满分5分) 列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇. 甲、乙两人每小时各走多少千米?21. (本题满分5分)小明和小亮想去看周末的一场足球比赛,但只有一张入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九张卡片上分别写上1,2,3,4,5,6,7,8,9这九个数字,将它们背面朝上洗匀后,任意抽出一张,若抽出的卡片为奇数,小明去;否则,小亮去.你认为这个游戏公平吗?用数据(第19题)ABDC说明你的观点.22 错误!未找到引用源。