八年级数学上期末考试卷
- 格式:doc
- 大小:102.00 KB
- 文档页数:2
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
八年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和44.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式.10.(3分)当x=时,分式的值为零.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.12.(3分)已知y﹣x=3xy,则代数式的值为.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是.14.(3分)已知=+,则整式A﹣B=.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为cm.16.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1=(2)+=18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(6分)若关于x的方程+2=有增根,求增根和k的值.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF ⊥CD,垂足为F,求证:EF=AP.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.【解答】解:由题意可知:﹣2+=0x2﹣2x(x﹣5)+(x﹣5)(x+1)=0x2﹣2x2+10x+x2﹣4x﹣5=06x=5x=经检验,x=是分式方程的解故选:B.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和4【解答】解:∵数据3,4,x,6,7的平均数是5,∴3+4+x+6+7=5×5解得:x=5,∴中位数为5,方差为s2= [(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故选:B.4.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等【解答】解:A、等边三角形的三个角都是60°,正确;B、平行于同一条直线的两直线平行,正确;C、直线经过外一点有且只有一条直线与已知直线平行,正确;D、两边及一角分别对应相等的两个三角形全等,错误;故选:D.5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°【解答】解:如图,∵m∥n,∴∠1=25°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠2=60°﹣25°=35°,∵l∥m,∴∠α=∠2=35°.故选:C.6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选:D.8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4【解答】解:分式方程去分母得:2x+a=﹣x+2,移项合并得:3x=2﹣a,解得:x=,∵分式方程的解为非负数,∴≥0,且≠2,解得:a≤2,且a≠﹣4.故选:C.二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.10.(3分)当x=3时,分式的值为零.【解答】解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.12.(3分)已知y﹣x=3xy,则代数式的值为4.【解答】解:∵y﹣x=3xy,∴x﹣y=﹣3xy,则原式====4.故答案是:4.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是3.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是(2x1﹣1+2x2﹣1+2x3﹣1+2x4﹣1+2x5﹣1)=3.故答案为:3.14.(3分)已知=+,则整式A﹣B=﹣1.【解答】解:∵=+=,∴3x﹣4=A(x﹣2)+B(x﹣1),整理得出:3x﹣4=(A+B)x﹣2A﹣B,∴,解得:,则整式A﹣B=1﹣2=﹣1,故答案为:﹣1.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为8cm.【解答】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE 的周长是:CD +DE +CE=AE +DE +CD=AD +CD=8,故答案为:8.16.(3分)如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,△ABC 的面积是 42 .【解答】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4,∴△ABC 的面积是:S △AOB +S △AOC +S △OBC =×AB ×OE +×AC ×OF +×BC ×OD=×4×(AB +AC +BC )=×4×21=42,故答案为:42.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1= (2)+=【解答】解:(1)方程两边都乘以2(x+3),得:4x+2(x+3)=7,解得:x=,当x=时,2(x+3)=≠0,所以分式方程的解为x=;(2)方程两边都乘以(1﹣3x)(1+3x),得:(1﹣3x)2﹣(1+3x)2=12,解得:x=﹣1,当x=﹣1时,(1﹣3x)(1+3x)=﹣8≠0,所以分式方程的解为x=﹣1.18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.19.(6分)若关于x的方程+2=有增根,求增根和k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=﹣x+4∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,k=1.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.【解答】解:(1)∵两组数据:3,a,2b,5与a,6,b的平均数都是8,∴,解得:;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6,12出现了3次,最多,即众数为12.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.【解答】(1)证明:过点D作DF∥AC交BC于点F,∴∠ACB=∠DFB,∠FDP=∠E,∵AB=AC(已知),∴∠ACB=∠ABC,∴∠ABC=∠DFB,∴DF=DB;又∵CE=BD(已知),∴CE=DF;又∵∠DPF=∠CPE,∴△ECP≌△DFP,∴PE=PD;(2)解:∵CE=BD,AC=AB,CE:AC=1:5(已知),∴BD:AB=1:5,∵DF∥AC,∴△BDF∽△BAC,∴==;∵BC=10,∴BF=2,FC=8,∵△DFP≌△ECP,∴FP=PC,∴PF=4,则BP=BF+FP=6.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:在线段BC上截取BE=BA,连接DE,如图所示.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.【解答】证明:连接PC,∵四边形ABCD是正方形,∴∠BCD=90°,∠ABD=∠CBD=45°,BA=BC,∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF是矩形,∴PC=EF,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∴AP=EF.。
人教版八年级上册数学期末考试试题一、单选题1.下列所述图形中,不是轴对称图形的是()A .矩形B .平行四边形C .正五边形D .正三角形2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为()A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.若一个多边形的内角和是540°,则该多边形的边数为 ()A .4B .5C .6D .74.下面因式分解错误的是()A .22()()x y x y x y -=+-B .22816(4)x x x -+=-C .2222()x xy x x y -=-D .222()x y x y +=+5.以下列各组线段为边,能组成三角形的是()A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm6.解分式方程22311x x x++=--时,去分母后变形为A .()()2231x x ++=-B .()2231x x -+=-C .()()2231x x -+=-D .()()2231x x -+=-7.下列计算正确的是()A .2a +3b =5abB .x 8÷x 2=x 6C .(ab 3)2=ab 6D .(x +2)2=x 2+48.将0.0000025用科学记数法表示为()A .2.5×10﹣5B .2.5×10﹣6C .25×10﹣7D .1.2×10﹣89.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±210.如图,△ABC 中,AB=5,AC=8,BD 、CD 分别平分∠ABC ,∠ACB ,过点D 作直线平行于BC ,分别交AB 、AC 于E 、F ,则△AEF 的周长为()A.12B.13C.14D.18二、填空题11.计算:|﹣2|﹣20210+(12)﹣1=______________.12.分解因式:xy―x=_____________.13.如图,AC与BD相交于点O,且AB=CD,请添加一个条件_____________,使得△ABO≌△CDO.14.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是__________.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC =7,则△BDC的面积是________.16.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.17.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上动点,则CMD △周长的最小值为______.18.如图,将一个边长为3的正方形纸片进行分割,部分①的面积是边长为3的正方形纸片的一半,部分②的面积是部分①的一半,部分③的面积是部分②的一半,以此类推,n 部分的面积是______.(用含n 的式子表示)三、解答题19.计算:()()()222x y x y x y x +++--20.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x =.21.解方程:28124x x x -=--.22.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.23.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?24.如图,已知ABC 中,10cm AB AC ==,8cm BC =,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BPD △与CQP V 是否全等,请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP V 全等.(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC 三边运动,求经过多长时间点P 与点Q 第一次在ABC 的哪条边上相遇.25.已知:22214816x x x A x x x +-=÷--+,221x m B x -=-(1)化简分式A ;(2)若关于x 的分式方程:1A B +=的解是非负数,求m 的取值范围;(3)当x 取什么整数时,分式A 的值为整数.26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,AB BC CD DA ===,60A ∠=︒,点E ,F 分别为线段AD ,CD 上的动点,且60EBF ∠=︒.(1)当BE AD ⊥时,求证:12AE AD =;(2)连接EF ,判断BEF 的形状,并作证明;(3)当AB 的长度为定值时,四边形BEDF 的面积是否为定值?请说明理由.参考答案1.B【分析】由轴对称图形的定义对选项判断即可.【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确;正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B .【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D.【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.3.B【分析】根据多边形的内角和公式可直接求出多边形的边数.【详解】设这个多边形的边数为n,根据多边形内角和定理得(n-2)×180°=540°,解得n=5;故选:B.【点睛】本题考查了多边形的内角和定理,熟记多边形的内角和为(n-2)×180°是解题的关键.4.D【分析】分别利用完全平方公式、平方差公式以及提公因式法分解因式,进而判断得出答案.【详解】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2﹣8x+16=(x﹣4)2,正确,不合题意;C、2x2﹣2xy=2x(x﹣y),正确,不合题意;D、无法进行因式分解,此选项错误,符合题意.故选:D.【点睛】此题主要考查了公式法以及提取公因式法分解因式,熟练应用乘法公式是解题关键.5.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能够组成三角形;D、2+3=5,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.D【详解】解:方程223 11xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.7.B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.8.B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可.【详解】解:0.0000025=2.5×10-6.故选:B.【点睛】本题考查用科学记数法表示较小的数,注意掌握其一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【详解】由题意可知:24020 xx=⎧-⎨+≠⎩,解得:x=2,故选C.10.B【分析】根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,于是得到ED=EB,FD=FC,即可得到结果.【详解】解:∵EF BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【点睛】此题考查了等腰三角形的判定与性质.此题难度适中,注意证得△BDE与△CDF 是等腰三角形是解此题的关键.11.3【分析】先化简绝对值、零指数幂和负整数指数幂,再算加减即可【详解】解:|﹣2|﹣20210+(12)﹣1=2-1+2=3.故答案为:3.【点睛】本题考查了有理数的意义,熟练掌握绝对值、零指数幂和负整数指数幂的意义是解答本题的关键,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1.12.x(y-1)【详解】试题解析:xy―x=x(y-1)13.∠A=∠C(答案不唯一)【分析】根据全等三角形的判定定理得出即可.【详解】∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.故答案为:∠A=∠C(答案不唯一)考点:1.全等三角形的判定;2.开放型.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.14.22cm【分析】分两种情况讨论:当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,从而可得答案.【详解】解:等腰三角形有两条边长为4cm和9cm,当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,所以三角形的周长为:49922++=(cm),故答案为:22cm【点睛】本题考查的是三角形三边关系的应用,等腰三角形的定义,掌握“等腰三角形的定义及清晰的分类讨论”是解本题的关键.15.7【分析】过点D作DE⊥BC于E,根据角平分线上的点到角的两边距离相等可得DE=AD,然后利用三角形的面积公式列式计算即可得解.【详解】如图,过点D作DE⊥BC于E,∵∠A=90°,BD是∠ABC的平分线,∴DE=AD=2,∴△BDC的面积=12BC•DE=12×7×2=7.故答案为:7【点睛】本题考查角平分线的性质,熟练掌握角平分线上的点到角的两边距离相等的性质是解题关键.16.3【分析】根据题意依据等腰三角形的性质,即可得到BD=12BC,进而分析计算即可得出结论.【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.17.10【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴CM=AM,∴CD+CM+DM=CD+AM+DM,∵AM+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=10.故答案为10.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.92n【分析】根据图形和题意,求出①、②、③、④的面积从而可以推出n 部分的面积;【详解】解:19922=⨯=①面积21199222=⨯⨯=②面积3111992222=⨯⨯⨯=③面积411119922222=⨯⨯⨯⨯=④面积以此类推可知n 部分的面积为92n 故答案为:92n【点睛】本题考查图形的变化规律、有理数的混合运算、列代数式,解答本题的关键是明确题意,求出所求式子的值.19.2xy【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:()()()222x y x y x y x +++--=2222222x xy y x y x +++--=2xy .【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a±b)2=a 2±2ab+b 2;平方差公式是(a+b)(a-b)=a 2-b 2.20.22x +1+.【分析】括号内先进行分式的加减运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.【详解】原式()()()22121x x x x x x +--=⋅--=2x x+,当x =时,原式1=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21.无解【分析】根据解分式方程的步骤去解答:去分母将分式方程化为整式方程、解整式方程、检验、回答.【详解】解:原方程可化为:812(2)(2)x x x x -=-+-.方程两边同时乘以(2)(2)x x +-,得(2)(2)(2)8x x x x +-+-=.化简,得248x +=.解得2x =.检验:2x=时(2)(2)0x x +-=,所以2x =不是原分式方程的解,所以原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的步骤,尤其是检验是解分式方程的重要步骤.22.75°.【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC ≌△ADC ,即可得到答案.【详解】∵25DAC ∠=︒,80D ∠=︒,∴∠DCA=75°,∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC ,∴△ABC ≌△ADC ,∴∠BCA=∠DCA=75°.【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.23.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:312042009x x=-,解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a+35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(1)①BPD CQP V V ≌,理由见解析;②15cm /s 4Q v =;(2)经过80s 3点P 与点Q 第一次在边AB 上相遇【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度;(2)根据题意结合图形分析发现:由于点Q 的速度快,且在点P 的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个腰长.【详解】解:(1)①∵1s t =,∴313cm BP CQ ==⨯=,∵10cm AB =,点D 为AB 的中点,∴5cm BD =.又∵PC BC BP =-,8cm BC =,∴835cm PC =-=,∴PC BD =.又∵AB AC =,∴B C ∠=∠,在BPD △和CQP V 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BPD CQP ≌△△.②∵P Q v v ≠,∴BP CQ≠若BPD CPQ △≌△,B C ∠=∠,则4cm BP PC ==,5cm CQ BD ==,∴点P ,点Q 运动的时间4s 33BP t ==,∴515cm /s 443Q CQ v t ===.(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =.∴点P 共运动了80380cm 3⨯=.ABC 周长为:1010828cm ++=,若是运动了三圈即为:28384cm ⨯=,∵84804cm AB -=<的长度,∵点P 、点Q 在AB 边上相遇,∴经过80s 3点P 与点Q 第一次在边AB 上相遇.【点睛】此题主要是运用了路程=速度×时间的公式,解题的关即使熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.25.(1)241x x x --(2)12m ≥-且2m ≠(3)当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0【分析】(1)将分式的分子、分母分解因式,将除法化为乘法,约分计算即可;(2)将A 、B 的值代入解方程,根据解是非负数,得到21055m +≥,计算即可;(3)将A 利用完全平方公式及整式加减法添括号法则变形为331x x ---,由值为整数得到x 的值,代入计算.(1)解:()()()21114(4)x x x x A x x ++-=÷--()()()()214411x x x x x x +-=⋅-+-241x x x -=-;(2)解:由题意:2242111x x x m A B x x--+=+=--2242111x x x m x x ---=--,22421x x x m x --+=-,2155x m =+.∵解是非负数,∴21055m +≥∴12m ≥-.∵10x -≠即1x ≠,∴25511m +≠,解得2m ≠,∴12m ≥-且2m ≠;(3)解:241x x A x -=-()21211x x x ---=-2111x x x +=---()21311x x x -+=---331x x =---.当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0.【点睛】此题考查了分式的除法运算法则,解分式方程,正确掌握分式的分解,运算法则,完全平方公式是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD △和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.【点睛】本题考查了全等三角形的判定和性质,直角三角形两锐角互余,掌握全等三角形的判定是本题的关键.27.(1)见解析(2)等边三角形,见解析(3)是定值,见解析【分析】(1)连接BD ,可证ABD △是等边三角形,再由等边三角形的三线合一即可得证;(2)由ABD △是等边三角形,可得FBD ABE ∠=∠,由BCD △是等边三角形,可得60BDC ∠=︒.由ASA 可证得ABE △和DBF 全等,从而BE BF =,即可证明BEF 是等边三角形;(3)由ABE DBF △△≌,可得面积相等,故ABD BEDF S S = 四边形,当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.(1)证明:连接BD .∵AB AD =,60A ∠=︒,∴ABD △是等边三角形.∵BE AD ⊥,∴12AE AD =.(2)解:BEF是等边三角形,理由如下:∵ABD △是等边三角形,∴AB BD =,60ABD ∠=︒,∴60ABE EBD ∠+∠=︒.∵60EBF ∠=︒,∴60FBD EBD ∠+∠=︒,∴FBD ABE ∠=∠,∵AB BC CD ==,∴BD BC CD ==,∴BCD △是等边三角形,∴60BDC ∠=︒.在ABE △和DBF 中,60ABE DBFAB DB A BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴ABE DBF △△≌(ASA ).∴BE BF =,∴BEF 是等边三角形.(3)解:四边形BEDF 的面积是定值,理由如下:∵ABE DBF △△≌,∵DBF BED ABE BED ABD BEDF S S S S S S =+=+= 四边形∴当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.。
八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。
八年级上学期期末考试数学试卷(含答案)(满分:120分考试时长:120分钟)一、选择题(本大题共10小题,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0B.a>﹣3C.﹣3<a<0D.a<﹣33.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>24.关于一次函数y=﹣2x+b(b为常数),下列说法正确的是()A.y随x的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=3﹣2x相交于第四象限内一点5.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=36.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>27.在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C =90°中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个8.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为()A.70°B.120°C.125°D.130°9.如图所示的平面直角坐标系中,点A坐标为(4,2),点B坐标为(1,﹣3),在y轴上有一点P使P A+PB 的值最小,则点P坐标为()A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)10.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE =∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4二、填空题(本大题共6小题,共24分)11.函数l1:y1=﹣2x+4与l2:y2=﹣x﹣1的图象如图所示,l1交x轴于点A,现将直线l2平移使得其经过点A,则l2经过平移后的直线与y轴的交点坐标为.12.如图,已知,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB=°.13.如图,△ABC中,DE是AB的垂直平分线,交BC于D,交AB于E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是cm.14.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣2)﹣b>0的解集为.15.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是.16.在学校,每一位同学都对应着一个学籍号.在数学中也有一些对应.现定义一种对应关系f,使得数对(x,y)和数z是对应的,此时把这种关系记作:f(x,y)=z.对于任意的数m,n(m>n),对应关系f由如表给出:(x,y)(n,n)(m,n)(n,m)f(x,y)n m﹣n m+n如:f(1,2)=2+1=3,f(2,1)=2﹣1=1,f(﹣1,﹣1)=﹣1,则使等式f(1+2x,3x)=2成立的x的值是.三、解答题(本大题共7小题,共66分)17.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.18.△ABC的三个顶点的坐标分别为A(0,﹣2),B(4,﹣3),C(2,1).(1)在所给的平面直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出B′的坐标.19.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数.21.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨(x>14),应交水费为y元,请写出y与x之间的函数关系式;22.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析1-5.A CCBB 6-10.B CCDC11.(0,1)12.110 13.1414.x<4 15.9 16.﹣117.解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.18.解:(1)如图所示,△ABC即为所求.(2)如图所示,△A′B′C′即为所求,点B′的坐标为(﹣4,﹣3).19.证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠DFE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.20.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°.21.解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,22.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.23.解:(1)由图可知,A市和B市之间的路程是360km.(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇.(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。
八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。
答案:97. 4的立方是_________。
答案:648. 5的平方根是_________。
答案:±√59. 6的立方根是_________。
答案:∛610. 7的平方根是_________。
答案:±√7三、解答题11. 解方程:2x + 3 = 9。
答案:x = 312. 解方程:3x 2 = 8。
答案:x = 313. 解方程:4x + 5 = 17。
答案:x = 314. 解方程:5x 6 = 19。
答案:x = 515. 解方程:6x + 7 = 23。
答案:x = 216. 解方程:7x 8 = 21。
答案:x = 517. 解方程:8x + 9 = 35。
答案:x = 418. 解方程:9x 10 = 29。
答案:x = 519. 解方程:10x + 11 = 41。
答案:x = 320. 解方程:11x 12 = 39。
答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。
人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。
八年级上册数学期末考试试卷一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.下列英文字母中,是轴对称图形的是()A.B.C.D.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2 4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2 5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×1096.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.411.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③二、填空题(每题3分,共12分)13.分解因式:x2y﹣9y=.14.﹣=.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是cm.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.参考答案一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.2021解:﹣2021的相反数是:2021.故选:D.2.下列英文字母中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故选:D.4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2解:A、a3•a5=a8,故本选项不合题意;B、(﹣a3)2=a6,故本选项符合题意;C、(2y)3=8y3,故本选项不合题意;D、a6÷a3=a3,故本选项不合题意;故选:B.5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×109解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:C.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.解:,由不等式①,得x<2,由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<2,故选:A.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定解:由题意得:=,无法确定,故选:D.8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形解:A、一组对边平行,另一组对边相等的四边形不一定是平行四边形,原命题是假命题;B、有一个角是60°的等腰三角形是等边三角形,是真命题;C、有一组邻边相等的平行四边形是菱形,原命题是假命题;D、对角线相等的平行四边形是矩形.原命题是假命题;故选:B.9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°解:∵∠B=90°,∠A=30°,∴∠ACB=60°.∵∠EDF=90°,∠F=45°,∴∠DEF=45°.∵EF∥BC,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF﹣∠DEF=60°﹣45°=15°.故选:A.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=6.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=6.同理可得DE=DC=6.∴EF=AF+DE﹣AD=6+6﹣10=2.故选:B.11.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故选:D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③解:①∵∠BAC=90°,FA⊥AE,∠DAE=45°,∴∠CAE=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∠FAB=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∴∠FAB=∠EAC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵FB⊥BC,∴∠FBA=45°,∴△AFB≌△AEC,∴CE=BF,故①正确,②:由①中证明△AFB≌△AEC,∴AF=AE,∵∠DAE=45°,FA⊥AE,∴∠FAD=∠DAE=45°,∴△AFD≌△AED,连接FD,∵FB=CE,∴FB2+BD2=FD2=DE2,故②正确,③:如图,设AD与EF的交点为G,∵∠FAD=∠EAD=45°,AF=AE,∴AD⊥EF,EF=2EG,∴S△ADE=•AD•EG==,故③正确,④:∵FB2+BE2=EF2,CE=BF,∴CE2+BE2=EF2,在RT△AEF中,AF=AE,AF2+AE2=EF2,∴EF2=2AE2,∴CE2+BE2=2AE2,故④正确.故选:A.二、填空题(每小题3分,共12分)13.分解因式:x2y﹣9y=y(x+3)(x﹣3).解:原式=y(x2﹣9)=y(x+3)(x﹣3).故答案为:y(x+3)(x﹣3).14.﹣=.解:原式=3﹣2=,故答案为:.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是15cm.解:如图所示:由于圆柱体的底面周长为24cm,则AD=24×=12cm.又因为CD=AB=9cm,所以AC==15cm.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是15cm.故答案为:15.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=22020.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,又∵∠3=60°,∴∠OB1A2=60°+30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,∴a2=2a1=2,同理:a3=4a1=4=22,a4=8a1=8=23,a5=16a1=16=24,…,以此类推:所以a2021=22020.故答案是:22020.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..解:原式=2+2﹣+4﹣1=7﹣.18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.解:原式=÷=•=,当a=﹣1时,原式==﹣6﹣3.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.解:(1)∵a2+b2=13,ab=6,∴(a﹣b)2=a2+b2﹣2ab=13﹣2×6=1,∵a>b,∴a﹣b=1;(2)∵a2+b2+25=6a+8b,∴a2﹣6a+9+b2﹣8b+16=0,∴(a﹣3)2+(b﹣4)2=0,∴a=3,b=4,当4是直角边时,斜边长==5,则Rt△ABC的周长=3+4+5=12,当4是斜边时,另一条直角边长==,则Rt△ABC的周长=3+4+=7+,综上所述,Rt△ABC的周长为12或7+.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了50名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为36°;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?解:(1)这次共抽取了15÷30%=50名学生进行调查统计,故答案为:50;(2)D类有学生:50﹣15﹣22﹣8=5(人),扇形统计图中D类所对应的扇形圆心角的度数是:360°×=36°,故答案为:36°;(3)补全条形统计图如下:(4)估计该校B类学生约有3000×=1320(人).21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.解:(1)CH是从旅游地C到河的最近的路线,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2∴△HBC是直角三角形且∠CHB=90°,∴CH⊥AB,所以CH是从旅游地C到河的最近的路线;(2)设AC=AB=x千米,则AH=(x﹣3)千米,在Rt△ACH中,由已知得AC=x,AH=x﹣3,CH=4,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣3)2+42解这个方程,得x=,答:原来的路线AC的长为千米.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600,答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩;(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤36300,解得:m≥29,答:甲厂房至少生产了29天.23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=2;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)解:(1)Q[A,B]==2,故答案为:2.(2)如图,由题意,点N在直线y=x﹣3上运动,根据垂线段最短可知,当MN⊥直线y=x﹣3时,MN的值最小,此时N(3,0),∵M(1,2),∴Q[M,N]的最小值==2.(3)如图1中,∵m>0,A(0,5m),∴B(8m,﹣m)在第四象限,A在y轴的正半轴上,∴当A,C,B共线时,Q[A.C]+Q[C,B]的值最小,最小值==10m.如图2中,作点B关于x轴的对称点B′,当点C在AB′的延长线上时,Q[A,C]﹣Q[B,C]的值最大,最大值=Q[A,B′]==4m.25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.解:(1)如图1,在矩形ABCO中,B(8,4),∴AB=8,BC=4,设AE=x,则EC=x,BE=8﹣x,Rt△EBC中,由勾股定理得:EB2+BC2=EC2,∴(8﹣x)2+42=x2,∴x=5,即AE=5,∴E(5,4);(2)分两种情况:①当P在OA上时,0≤t≤2,如图2,S=S矩形OABC﹣S△PAE﹣S△BEC﹣S△OPC,=8×4﹣×5(4﹣2t)﹣×3×4﹣×8×2t,=﹣3t+16,②当P在AE上时,2<t≤4.5,如图3,S=PE•BC=×4×(8﹣2t)=﹣4t+16.综上所述,S=;(3)存在,由PA=PE可知:P在AE上,如图4,过G作GH⊥OC于H,∵AP+PE=5,∴AP=3,PE=2,设OF=x,则FG=x,FC=8﹣x,由折叠得:∠CGF=∠AOF=90°,由勾股定理得:FC2=FG2+CG2,∴(8﹣x)2=x2+42,解得x=3,∴FG=3,FC=8﹣3=5,FC•GH=FG•CG,×5×GH=×3×4,GH=2.4,由勾股定理得:FH==1.8,∴OH=3+1.8=4.8,∴G(4.8,﹣2.4),∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,∴Q(6.8,﹣2.4)或(2.8,﹣2.4).。
八年级数学上册期末考试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知226a b ab +=,且a>b>0,则a b a b +-的值为( ) A .2 B .±2 C .2 D .±22.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、96.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.下列图形具有稳定性的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.函数132y xx=--+中自变量x的取值范围是__________.3.若m+1m=3,则m2+21m=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD 上.若5DE =,则GE 的长为__________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,再求值:2211(1)m m m m+--÷,其中m=3+1.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、A5、D6、B7、B8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、23x -<≤3、74、()()2a b a b ++.5、49136、8三、解答题(本大题共6小题,共72分)1、x=-1或x=32、333、3p =,1q =.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:①购买A 型公交车6辆,则B 型公交车4辆;②购买A 型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。
八年级上册数学期末考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在一个比例尺为1:1000的地图上,甲乙两地的实际距离为20km,那么在地图上甲乙两地的距离是多少cm?A. 200cmB. 2000cmC. 20000cmD. 200000cm4. 若一个等差数列的首项为2,公差为3,那么第10项是多少?A. 29B. 30C. 31D. 325. 下列图形中,哪一个图形的面积是12cm²?A. 一个边长为4cm的正方形B. 一个半径为2cm的圆C. 一个长为6cm,宽为2cm的长方形D. 一个底边为4cm,高为3cm的三角形二、判断题(每题1分,共5分)6. 两条平行线的同位角相等。
()7. 一个等边三角形的周长是它的任意一边长的三倍。
()8. 任何两个奇数相加的结果都是偶数。
()9. 一个正方形的对角线长度等于它的边长的根号2倍。
()10. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)11. 一个正方形的边长为5cm,那么它的面积是____cm²。
12. 若一个等差数列的第3项为7,第6项为16,那么这个等差数列的公差是____。
13. 两个互质的数的最小公倍数是它们的____。
14. 在直角坐标系中,点(3, 4)到原点的距离是____。
15. 一个圆锥的底面半径为4cm,高为3cm,那么它的体积是____cm³。
16. 请简要解释等差数列和等比数列的定义。
17. 请简要解释勾股定理及其应用。
18. 请简要解释平行线的性质及其应用。
人教版八年级上册数学期末考试试题一、单选题1.当分式22x -有意义时,x 的取值范围是()A .2x >B .2x <C .2x ≠D .2x =2.在211133122x xy a x x y m π+++,,,,,中,分式的个数是()A .2B .3C .4D .53.下列图形中,不是..轴对称图形的是()A .B .C .D .4.已知三角形的三边长分别为2、x 、10,若x 为正整数,则这样的三角形个数为()A .1B .2C .3D .45.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()24444x x x x -+=-+C .()2105521x x x x -=-D .()()2163443x x x x x -+=-++7.如果把分式xy x y +中的x 和y 都扩大2倍,则分式的值()A .扩大4倍B .扩大2倍C .不变D .缩小2倍8.若关于x 的方程2222x m x x ++=--有增根,则m 的取值是()A .0B .2C .-2D .19.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβ∠+∠的度数是A .180°B .220°C .240°D .260°10.张老师和李老师同时从学校出发,步行15千米去书店购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,根据题意,所列的方程是()A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=-二、填空题11.分解因式:x 2-9=______.12.将0.000000823用科学记数法表示为___________13.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.14.比较大小:4442333315.如图,Rt △ABC 中,∠BCA=90°,∠A=30°,BC=2cm ,DE 是AC 边的垂直平分线,连接CD ,则△BCD 的周长是__________________.16.已知12a b =,则分式252a b a b+-的值为______.17.对于实数a ,b ,c ,d ,规定一种运算a b c d =ad-bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=_____.18.如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.三、解答题19.计算:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭;(2)()()2323x y x y +--+.20.分解因式:(1)316m m -;(2)()228a b ab -+.21.解分式方程:(1)233x x =-;(2)28124x x x -=--.22.先化简,再求值:21211x x x x x x x --⎛⎫-÷ ⎪-+⎝⎭,其中3x =.23.如图:△ABC 和△ADE 是等边三角形,证明:BD=CE .24.在争创文明城市的活动中,某市一“少年突击队”决定清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“少年突击队”原计划每小时清运垃圾多少吨?25.已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE .求证:(1)△ABC ≌△DEF ;(2)GF =GC .26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题:(1)猜想并写()11n n =+.(2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值.(3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++.27.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .28.如图,在ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,交AB 于点E ,连接EG 、EF .(1)求证:BG CF =.(2)请你判断:BE CF +与EF 的大小关系,并加以证明.参考答案1.C2.B3.C4.C5.C6.C7.B8.A9.C10.B11.(x +3)(x -3)12.8.23×10-713.144°14.<15.6cm.16.417.2218.20°【分析】根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算.【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D ,∴1,122DBC ABC DCE ACE ∠=∠∠=∠,∵∠ACE=∠A+∠ABC ,∠DCE=∠D+∠DBC ,∴∠D=∠DCE-∠DBC=11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.19.(1)1;(2)224129x y y -+-【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭,=414+-,=1;(2)()()2323x y x y +--+,=()()2323x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦,=()2223x y --,=()224129x y y --+,=224129x y y -+-.20.(1)()()44m m m +-;(2)()22a b +【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=()()()21644m m m m m -=+-;(2)原式=()22222448442a ab b ab a ab b a b -++=++=+.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.21.(1)9x =;(2)无解【分析】先将分式方程化为整式方程,解出整式方程,再将所求的解代入最简公分母中检验,即可求解.【详解】解:(1)233x x =-方程两边同时乘以()3x x -,得:()233x x =-,解得:9x =,检验:当9x =时,()()39930x x -=⨯-≠,所以原方程的解为9x =;(2)28124x x x -=--方程两边同时乘以()24x -,得:()()2248x x x +--=,解得:2x =,检验:当2x =时,224240x -=-=,所以2x =是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的一般步骤,并记住要检验是解题的关键.22.11x x +-,2【分析】根据分式的运算法则进行化简,再代入求值即可.解:原式()()()()()()()2221121212121111111211x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤-+----+=-÷=÷=⨯=⎢⎥--+-+---⎢⎥⎣⎦.当x=3时,原式1312131x x ++===--.【点睛】本题考查分式化简求值,熟练掌握该知识点是解题关键.23.见解析【分析】根据等边三角形的性质可得到两组边对应相等,一组角相等,从而利用SAS 判定两三角形全等,根据全等三角形的对应边相等即可得到BD=CE .【详解】证明:∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°.∴∠BAD=∠CAE .在△BAD 与△CAE 中,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ).∴BD=CE【点睛】此题考查了等边三角形的性质及全等三角形的判定与性质;证明线段相等常常通过三角形全等进行解决,全等的证明是正确解答本题的关键.24.12.5吨【分析】设原计划每小时清运x 吨,根据“使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,”列出方程,即可求解.【详解】解:设原计划每小时清运x 吨,根据题意得:10010042x x-=,解得:12.5x=,经检验,12.5x=是原方程的解,且符合题意,答:“少年突击队”原计划每小时清运垃圾12.5吨.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.25.(1)证明见解析,(2)证明见解析.【分析】(1)先根据BF=CE证明BC=EF,然后利用“边角边”即可证明△ABC和△DEF 全等;(2)根据全等三角形对应角相等可得∠ACB=∠DFE,再根据等角对等边证明即可.【详解】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,∵AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF∴∠ACB=∠DFE∴GF=GC.【点睛】本题考查了全等三角形的判定与性质和等腰三角形的判定,比较简单,证明出BC =EF是解题的关键.26.(1)111n n⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x=【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()111n n 1n n 1=-++;故答案为:111n n ⎛⎫- ⎪+⎝⎭;(2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯=1111111(1()()(2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=112021-=20202021;(3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++,∴211111113()33366918x x x x x x x -+-+-=++++++,∴21113()3918x x x -=++,∴2119918x x x -=++,∴299(9)18x x x =++,∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.27.见解析【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED .【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED .【点睛】本题考查了平行线的性质,全等三角形的判定和性质.28.(1)见解析;(2)BE CF EF +>,见解析【分析】(1)证BDG CDF ≌可得BG CF =;(2)根据全等得到DG DF =,再根据三角形三边关系即可得到结果.【详解】(1)∵BG ∥AC ,∴C GBD ∠=∠,∵D 是BC 的中点,∴BD=DC ,在△BDG 和△CDF 中,C GBDBD CD BDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BDG CDF ≌,∴BG CF =;(2)BE CF EF +>,由BDG CDF ≌得DG DF =,∵ED GF ⊥,∴EG EF =,∵CF BG =,∴+>BG BE EG ,∴BE CF EF +>.。
八年级上学期期末考试数学试卷(附带答案)一.单选题。
(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,沿x轴每秒1个单位长度的速度向右移动,且过点P的直线y=﹣x+b也随之平移,设移动时间为t秒,若直线与线段BM 有公共点,则t的取值范围是()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤5(第10题图)二.填空题。
八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将该选择项目的字母代表填涂在答题卷的相应位置上)1.(3分)计算(﹣x2)3的结果是()A.﹣x6 B.x6C.﹣x5 D.﹣x82.(3分)四边形的内角和为()A.180°B.360°C.540° D.720°3.(3分)用科学记数法表示数0.000301正确的是()A.3×10﹣4 B.30.1×10﹣8C.3.01×10﹣4D.3.01×10﹣54.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.5.(3分)下列运算正确的是()A.﹣a×(﹣a)2=a3B.a×(﹣a)3=a4C.a6÷(2a)2=a3D.a6÷(2a)2=a46.(3分)若等腰三角形的底角是顶角的2倍,则这个等腰三角形的底角的度数是()A.36°B.72°C.36°或72°D.无法确定的7.(3分)若分式有意义,则a满足的条件是()A.a≠1的实数 B.a为任意实数C.a≠1或﹣1的实数D.a=﹣18.(3分)下列各式中的最简分式是()A. B.C.D.9.(3分)分解因式x4﹣1的结果是()A.(x+1)(x﹣1)B.(x2+1)(x2﹣1) C.(x2+1)(x+1)(x﹣1)D.(x+1)2(x﹣1)210.(3分)如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1 B.2 C.3 D.411.(3分)如图,将两块相同的三角板(含30°角)按图中所示位置摆放,若BE交CF于D,AC交BE于M,AB交CF于N,则下列结论中错误的是()A.∠EAC=∠FAB B.∠EAF=∠EDF C.△ACN≌△ABM D.AM=AN 12.(3分)A、B两地相距48km,一艘轮船从A地顺流航行至B地,比从B地逆流航行至A地少用2h,已知水流速度为5km/h,求该轮船在静水中的航行速度是多少km/h?若设该轮船在静水中的速度为xkm/h,则可列方程()A.﹣=2 B.﹣﹣=2C.﹣=2 D. +=2二、填空题(本大题共有4小题,每小题3分,共12分。
第一学期期末测试
八 年 级 数 学
题号 一 二 三 总分 得分
一、 选择题(每题3分,共30分)
1、在下列说法中是错误的( )
A .在△ABC 中,∠C =∠A 一∠
B ,则△AB
C 为直角三角形.
B .在△AB
C 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形. C .在△ABC 中,若35a c =
,4
5
b c =,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.
2、若10<<x ,则x ,x
1,2
x 的大小关系是( )
A.
21x x x << B.21x x x << C.x x x 12<< D.x x x
<<21
3、如果一次函数当自变量的取值范围是时,函数值的取值范围是
,
那么此函数的解析式是( ) A . B .
C .或
D .或 4、若点P(x ,y)的坐标满足xy =0(x ≠y),则点P 必在( ).
A .原点上
B .x 轴上
C .y 轴上
D .x 轴上或y 轴上(除原点)
5、如果方程组的解与方程组的解相同,则的值为( ). A.-1
B.2
C.1
D.0 6、若下列三个二元一次方程:,,有公共解,那么的值应
是( ). A.-4 B.4 C.3 D.-3
7、有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是( ). A .11.6 B .232 C .23.2 D .11.5 8、下列说法中是真命题的有( ) . ①一条直线的平行线只有一条. ②过一点与已知直线平行的直线只有一条. ③因为a ∥b ,c ∥d ,所以a ∥d .
④经过直线外一点有且只有一条直线与已知直线平行. A .1个 B .2个 C .3个 D .4个
9、如果一个三角形的两个外角之和为270°,那么这个三角形是 ( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .无法确定
10、如图,过点Q (0,3.5)的一次函数的图象与正比例函数y=2x 的图象相交于点P ,能表示这个一次函数图象的方程是( )
A . 3x ﹣2y+3.5=0
B . 3x ﹣2y ﹣3.5=0
C . 3x ﹣2y+7=0
D . 3x+2y ﹣7=0 二、 选择题(每题3分,共30分)
11、关于x、y 方程2
2
(1)(1)23k x k x ky k -+++=+,当k =时,它为一元一次方程,
当______k =时,它为二元一次方程.
12、已知a 、b 互为相反数,并且3a-2b =5,则a 2+b 2=________. 13、已知方程组的解为
,那么一次函数y= 与一次函数y= 的交点为(2,
4).
14、给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是______;方差是______ (精确到0.1).
15、如图,AB ⊥EF 于点G ,CD ⊥EF 于点H ,GP 平分∠EGB ,HQ 平分∠CHF ,则图中互相平行的直线有 .
16、已知等腰三角形的一个外角等于100°,则它的底角等于________. 17、若x x -+有意义,则=+1x ________.
18、若,19961995a a a =-+-则2
1995-a 的值等于_________. 19、已知一次函数的图象与轴的交点的横坐标等于2,则的取 值范围是________. 20、已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______. 三、解答题(总分40分) 21、计算下列各题(每题5分,共20分) (1) ()ab b ab a b a ab ÷-+ (2) 23232327264b ab a a a
(3)(4)
22、(5分)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?
23、(5分)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,
求证:∠A=∠F.
24、(15分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.。