2015年高考第一轮复习数学:14.1 导数的概念与运算
- 格式:doc
- 大小:350.50 KB
- 文档页数:9
高考数学一轮复习考点知识专题讲解 导数的概念及其意义、导数的运算考点要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或y ′|0x x =. f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx .(2)函数y =f (x )的导函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln a f (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ). 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)与曲线只有一个公共点的直线一定是曲线的切线.(×)(3)f′(x0)=[f(x0)]′.(×)教材改编题1.若f(x)=1x,则f′(x)=________.答案-x 2x2解析f(x)=1x=12x-,∴f′(x)=3212x--=-x2x2.2.函数f(x)=e x+1x在x=1处的切线方程为.答案y=(e-1)x+2解析f′(x)=e x-1x2,∴f′(1)=e-1,又f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=.答案-1e解析f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.题型一 导数的运算例1(1)(2022·济南质检)下列求导运算正确的是________.(填序号) ①⎝ ⎛⎭⎪⎫1ln x ′=-1x (ln x )2;②(x 2e x )′=2x +e x ; ③(tan x )′=1cos 2x; ④⎝ ⎛⎭⎪⎫x -1x ′=1+1x 2.答案①③④解析⎝ ⎛⎭⎪⎫1ln x ′=-1(ln x )2·(ln x )′=-1x (ln x )2,故①正确;(x 2e x )′=(x 2+2x )e x ,故②错误;(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x ,故③正确;⎝⎛⎭⎪⎫x -1x ′=1+1x 2,故④正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝ ⎛⎭⎪⎫π3sin x ,则f ⎝ ⎛⎭⎪⎫π6=.答案π236+2π3解析f ′(x )=2x +f ′⎝ ⎛⎭⎪⎫π3cos x ,∴f ′⎝ ⎛⎭⎪⎫π3=2π3+12f ′⎝ ⎛⎭⎪⎫π3,∴f ′⎝ ⎛⎭⎪⎫π3=4π3,∴f ⎝ ⎛⎭⎪⎫π6=π236+2π3.教师备选在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)等于()A .26B .29C .212D .215 答案C解析因为在等比数列{a n }中,a 1=2,a 8=4, 所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=2×4=8. 因为函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),所以f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′, 所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.跟踪训练1(1)函数y =sin2x 的导数y ′等于()A .2B .cos2C .2cos2xD .2sin2x 答案C解析y =sin2x =2sin x ·cos x ,y ′=2cos x ·cos x +2sin x ·(-sin x ) =2cos 2x -2sin 2x =2cos2x .(2)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于() A .1 B .2 C .3 D .4 答案C解析当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3. 题型二 导数的几何意义 命题点1求切线方程例2(1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为. 答案5x -y +2=0解析y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l的方程为. 答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2求参数的值(范围)例3(1)(2022·西安模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于()A .4B .3C .2D .1 答案A解析∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵f (x )=a ln x +b ,∴f ′(x )=a x,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln1+b =2,解得b=2,故2a+b=2+2=4.(2)已知曲线f(x)=13x3-x2-ax+1存在两条斜率为3的切线,则实数a的取值范围是________.答案(-4,+∞)解析f′(x)=x2-2x-a,依题意知x2-2x-a=3有两个实数解,即a=x2-2x-3=(x-1)2-4有两个实数解,∴y=a与y=(x-1)2-4的图象有两个交点,∴a>-4.教师备选1.已知曲线f(x)=x3-x+3在点P处的切线与直线x+2y-1=0垂直,则P点的坐标为()A.(1,3) B.(-1,3)C.(1,3)或(-1,3) D.(1,-3)答案C解析设切点P(x0,y0),f′(x)=3x2-1,又直线x+2y-1=0的斜率为-1 2,∴f′(x0)=3x20-1=2,∴x20=1,∴x0=±1,又切点P(x0,y0)在y=f(x)上,∴y0=x30-x0+3,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+12x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于π4的锐角,则实数a的取值范围是()A.[2,+∞) B.[4,+∞) C.(-∞,2] D.(-∞,4] 答案C解析因为y=ln x+12x2+(1-a)x,所以y′=1x+x+1-a,因为曲线在M点处的切线的倾斜角均是不小于π4的锐角,所以y′≥tan π4=1对于任意的x>0恒成立,即1x+x+1-a≥1对任意x>0恒成立,所以x+1x≥a,又x+1x≥2,当且仅当x=1 x ,即x=1时,等号成立,故a≤2,所以a的取值范围是(-∞,2].思维升华(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”.跟踪训练2(1)(2022·南平模拟)若直线y =x +m 与曲线y =e xe 2n 相切,则()A .m +n 为定值B.12m +n 为定值C .m +12n 为定值D .m +13n 为定值答案B解析设直线y =x +m 与曲线y =e x e 2n 切于点002e (,)e x n x ,因为y ′=e x e 2n ,所以02e e x n =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,即12m +n =12.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是. 答案[2,+∞)解析直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x+4x -a =2在(0,+∞)内有解,则a =4x +1x-2,x >0.又4x +1x≥24x ·1x=4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4(1)(2022·驻马店模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于() A .0B .-1C .3D .-1或3 答案D解析由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1, 因为直线l 与g (x )的图象也相切,则方程组⎩⎨⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)若函数f (x )=x 2-1与函数g (x )=a ln x -1的图象存在公切线,则正实数a 的取值范围是()A .(0,e)B .(0,e]C .(0,2e)D .(0,2e] 答案D解析f (x )=x 2-1的导函数f ′(x )=2x ,g (x )=a ln x -1的导函数为g ′(x )=a x. 设切线与f (x )相切的切点为(n ,n 2-1),与g (x )相切的切点为(m ,a ln m -1), 所以切线方程为y -(n 2-1)=2n (x -n ),y -(a ln m -1)=am(x -m ),即y =2nx -n 2-1,y =a mx -a +a ln m -1.所以⎩⎨⎧2n =a m ,n 2+1=a +1-a ln m ,所以a 24m 2=a -a ln m ,由于a >0,所以a4m 2=1-ln m , 即a4=m 2(1-ln m )有解即可. 令h (x )=x 2(1-ln x )(x >0),h ′(x )=x (1-2ln x ),所以h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,最大值为h (e)=e2,当0<x <e 时,h (x )>0, 当x >e 时,h (x )<0, 所以0<a 4≤e2,所以0<a ≤2e.所以正实数a 的取值范围是(0,2e].教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-1 答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于()A .-1B .-2C .1D .2 答案B解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1), 即y =1e x x -1e x x 1+1e x ,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得⎩⎨⎧1ex =1x 2,1ex -1e x x 1=-1+ln x 2,得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+ln11e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11ex , 所以x 2=x 1-1x 1+1, 所以x 2-1=x 1-1x 1+1-1=-2x 1+1, 所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3(1)(2022·雅安模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为() A .2 B .5 C .1 D .0 答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a-1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a-1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)不与x 轴重合的直线l 与曲线f (x )=x 3和y =x 2均相切,则l 的斜率为________. 答案6427解析设直线l 与曲线f (x )=x 3相切的切点坐标为(x 0,x 30),f ′(x )=3x 2,则f ′(x 0)=3x 20,则切线方程为y =3x 20x -2x 30,因为不与x 轴重合的直线l 与曲线y =x 3和y =x 2均相切, 则⎩⎨⎧y =3x 20x -2x 30,y =x 2,得x 2-3x 20x +2x 30=0,Δ=9x 40-8x 30=0,得x 0=0(舍去)或x 0=89,所以l 的斜率为3x 20=6427. 课时精练1.(2022·阳江模拟)下列函数的求导正确的是()A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln10)′=110D .(3x )′=3x 答案B解析(x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对;(ln10)′=0,∴C错;(3x)′=3x·ln3,∴D错.2.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()答案B解析由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率先增大后减小.3.(2022·黑龙江哈师大附中月考)曲线y=2cos x+sin x在(π,-2)处的切线方程为() A.x-y+π-2=0 B.x-y-π+2=0C.x+y+π-2=0 D.x+y-π+2=0答案D解析y′=-2sin x+cos x,当x=π时,k=-2sinπ+cosπ=-1,所以在点(π,-2)处的切线方程,由点斜式可得y+2=-1×(x-π),化简可得x+y-π+2=0.4.(2022·兴义模拟)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)等于()A .-1B .0C .2D .4 答案B解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.设曲线f (x )=a e x +b 和曲线g (x )=cos x +c 在它们的公共点M (0,2)处有相同的切线,则b +c -a 的值为() A .0B .πC.-2D .3 答案D解析∵f ′(x )=a e x ,g ′(x )=-sin x , ∴f ′(0)=a ,g ′(0)=0,∴a =0, 又M (0,2)为f (x )与g (x )的公共点, ∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.已知点A是函数f(x)=x2-ln x+2图象上的点,点B是直线y=x上的点,则|AB|的最小值为()A. 2 B.2 C.433D.163答案A解析当与直线y=x平行的直线与f(x)的图象相切时,切点到直线y=x的距离为|AB|的最小值.f′(x)=2x-1x=1,解得x=1或x=-12(舍去),又f(1)=3,所以切点C(1,3)到直线y=x的距离即为|AB|的最小值,即|AB|min=|1-3|12+12= 2.7.已知函数f(x)的图象如图,f′(x)是f(x)的导函数,设a=f(3)-f(2),则下列结论正确的是()A.f′(2)<f′(3)<aB.f′(2)<a<f′(3)C.f′(3)<a<f′(2)D.a<f′(3)<f′(2)答案C解析a=f(3)-f(2)=f(3)-f(2)3-2,∴a 表示曲线上两点A (2,f (2)),B (3,f (3))连线的斜率, 由图知,曲线切线的斜率越来越小, ∴f ′(3)<a <f ′(2).8.(2022·固原模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是() A.⎣⎢⎡⎭⎪⎫0,3π4 B.⎣⎢⎡⎭⎪⎫0,π2∪⎝⎛⎭⎪⎫3π4,π C.⎝ ⎛⎭⎪⎫π2,3π4 D.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π 答案B解析∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π4,π. 9.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)=________. 答案10解析切点坐标为(2,f (2)),∵切点在切线上,∴f (2)=3×2+1=7, 又k =f ′(2)=3,∴f (2)+f ′(2)=10.10.(2022·四川天府名校联考)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =. 答案-1解析因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x ,f ′(π)=cosπ-π·sinπ=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1. 11.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =. 答案2解析f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1,则a =2.12.已知函数f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为. 答案(-∞,-1)∪(3,+∞)解析因为f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线, 所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根, 则Δ=4a 2-12⎝ ⎛⎭⎪⎫23a +1>0,即a 2-2a -3>0,解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2023(x )等于()A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x答案A解析∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2023=4×505+3,∴f 2023(x )=f 3(x )=-sin x -cos x .14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则()A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案D解析方法一设切点(x 0,y 0),y 0>0,则切线方程为y -b =0e x (x -a ),由⎩⎨⎧ y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二(用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .15.(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,3π4上是凸函数的是________.(填序号)①f (x )=-x 3+3x +4;②f (x )=ln x +2x ;③f (x )=sin x +cos x ;④f (x )=x e x .答案①②③解析对①,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3,f ″(x )=-6x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故①为凸函数; 对②,f (x )=ln x +2x ,f ′(x )=1x+2, f ″(x )=-1x 2, 当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故②为凸函数; 对③,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故③为凸函数; 对④,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )>0,故④不是凸函数. 16.已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________.答案y =e x 或y =x +1解析设直线l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1),即y =1e x ·x -x 11e x +1e x , ①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x, ∴g ′(x 2)=1x 2, 切点为(x 2,ln x 2+2),切线斜率k =1x 2, ∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1, ②由题意知,①与②相同,∴⎩⎨⎧ 1e x =1x 2⇒x 2=1e x -,③-x 11e x +1e x =ln x 2+1,④把③代入④有-x 11e x +1e x =-x 1+1, 即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.。
(1)设函数 y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若 Δx 无限趋近于 0 时,比值Δx =f ′(x )= f ′(x )= 11.导数与导函数的概念Δy f (x 0+Δx )-f (x 0) Δx无限趋近于一个常数 A ,则称 f (x )在 x =x 0 处可导,并称该常数 A 为函数 f (x )在 x =x 0 处的导数(derivative), 记作 f ′(x 0).(2)若 f (x )对于区间(a ,b )内任一点都可导,则 f (x )在各点的导数也随着自变量 x 的变化而变化,因而也是自变量 x 的函数,该函数称为 f (x )的导函数,记作 f ′(x ).2.导数的几何意义函数 y =f (x )在点 x 0 处的导数的几何意义,就是曲线 y =f (x )在点 P (x 0,f (x 0))处的切线的斜率 k ,即 k = f ′(x 0)3.基本初等函数的导数公式基本初等函数f (x )=C (C 为常数)f (x )=x α(α 为常数)f (x )=sin xf (x )=cos xf (x )=e xf (x )=a x (a >0,a ≠1)f (x )=ln xf (x )=log a x (a >0,a ≠1)导函数f ′(x )=0f ′(x )=αx α-f ′(x )=cos_xf ′(x )=-sin_xf ′(x )=e xf ′(x )=a x ln_a1x1x ln a(3)[ ]′= (g (x )≠0).1.(教材改编)f ′(x )是函数 f (x )= x 3+2x +1 的导函数,则 f ′(-1)的值为________.3.设函数 f (x )的导数为 f ′(x ),且 f (x )=f ′( )sin x +cos x ,则 f ′( )=________.上,α 为曲线在点 P 处的切线的倾斜角,则 α 的取值范围是__________.5.(2015· 陕西)设曲线 y =e x 在点(0,1)处的切线与曲线 y = (x >0)上点 P 处的切线垂直,则 P 的坐标为4.导数的运算法则若 f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )· g (x )]′=f ′(x )g (x )+f (x )g ′(x );f (x ) f ′(x )g (x )-f (x )g ′(x ) g (x ) g 2(x )【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)求 f ′(x 0)时,可先求 f (x 0)再求 f ′(x 0).()(3)曲线的切线不一定与曲线只有一个公共点.()(4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)函数 f (x )=sin(-x )的导数是 f ′(x )=cos x .()1 32.如图所示为函数 y =f (x ),y =g (x )的导函数的图象,那么 y =f (x ),y =g (x )的图象可能是________.π π2 44.已知点 P 在曲线 y = 4e x +11x________.例 2 (1)函数 f (x )= 的图象在点(1,-2)处的切线方程为__________.题型一 导数的运算例 1 求下列函数的导数:(1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ;(3)y =3x e x -2x +e ;思维升华 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(1)f (x )=x (2 016+ln x ),若 f ′(x 0)=2 017,则 x 0=________.(2)若函数 f (x )=ax 4+bx 2+c 满足 f ′(1)=2,则 f ′(-1)=________.题型二 导数的几何意义命题点 1 已知切点的切线方程问题ln x -2xx(2)已知函数 y =f (x )及其导函数 y =f ′(x )的图象如图所示,则曲线 y =f (x )在点 P 处的切线方程是_______________.命题点 2 未知切点的切线方程问题例 4 已知 f (x )=ln x ,g (x )= x 2+mx + (m <0),直线 l 与函数 f (x ),g (x )的图象都相切,且与 f (x )图象的⎪⎩y 0-y 1=f ′(x 1)(x 0-x 1)⎪例 3 (1)与直线 2x -y +4=0 平行的抛物线 y =x 2 的切线方程是__________.(2)已知函数 f (x )=x ln x ,若直线 l 过点(0,-1),并且与曲线 y =f (x )相切,则直线 l 的方程为____________.命题点 3 和切线有关的参数问题1 72 2切点为(1,f (1)),则 m =________.命题点 4 导数与函数图象的关系例 5 如图,点 A (2,1),B (3,0),E (x,0)(x ≥0),过点 E 作 OB 的垂线 l △.记 AOB 在直线 l 左侧部分的面积为 S ,则函数 S =f (x )的图象为下图中的________.(填序号)思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点 A (x 0,f (x 0))求斜率 k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率 k ,求切点 A (x 1,f (x 1)),即解方程 f ′(x 1)=k .⎧y 1=f (x 1), (3)若求过点 P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎨ 求解即可. (4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程 度可以判断出函数图象升降的快慢.(1)已知函数 f (x )=x 3-3x ,若过点 A (0,16)且与曲线 y =f (x )相切的直线方程为 y =ax +16,则实数 a 的值是________.(2)若直线 y =2x +m 是曲线 y =x ln x 的切线,则实数 m 的值为________.4.求曲线的切线方程条件审视不准致误典例 若存在过点 O (0,0)的直线 l 与曲线 y =x 3-3x 2+2x 和 y =x 2+a 都相切,求 a 的值.易错分析 由于题目中没有指明点 O (0,0)的位置情况,容易忽略点 O 在曲线 y =x 3-3x 2+2x 上这个隐含条件,进而不考虑 O 点为切点的情况.温馨提醒 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要对该点是否为切点进行讨论.[方法与技巧]1.f ′(x 0)代表函数 f (x )在 x =x 0 处的导数值;(f (x 0))′是函数值 f (x 0)的导数,而函数值 f (x 0)是一个常数, 其导数一定为 0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程. [失误与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点 P 处的切线与过 P 点的切线的区别,前者只有一条,而后者包括了前 者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练(时间:40 分钟)1.已知函数 f (x )的导函数为 f ′(x ),且满足 f (x )=2xf ′(1)+ln x ,则 f ′(1)=________.2.已知曲线 y =ln x 的切线过原点,则此切线的斜率为________.7.在平面直角坐标系 xOy 中,若曲线 y =ax 2+ (a ,b 为常数)过点 P (2,-5),且该曲线在点 P 处的切10.设函数 f (x )=ax - ,曲线 y =f (x )在点(2,f (2))处的切线方程为 7x -4y -12=0.3.已知函数 f (x )的导数为 f ′(x ),且满足关系式 f (x )=x 2+3xf ′(2)+ln x ,则 f ′(2)的值等于________.4.设曲线 y =ax -ln x 在点(1,1)处的切线方程为 y =2x ,则 a =________.5.已知 a 为常数,若曲线 y =ax 2+3x -ln x 存在与直线 x +y -1=0 垂直的切线,则实数 a 的取值范围是__________.6.设函数 f (x )=x (x +k )(x +2k )(x -3k ),若 f ′(0)=6,则 k =________.b x线与直线 7x +2y +3=0 平行,则 a +b 的值是______.8.(2015· 课标全国Ⅱ)已知曲线 y =x +ln x 在点(1,1)处的切线与曲线 y =ax 2+(a +2)x +1 相切,则 a =________.9.已知曲线 y =x 3+x -2 在点 P 0 处的切线 l 1 平行于直线 4x -y -1=0,且点 P 0 在第三象限. (1)求 P 0 的坐标;(2)若直线 l ⊥l 1,且 l 也过切点 P 0,求直线 l 的方程.bx(1)求 f (x )的解析式;(2)证明:曲线 y =f (x )上任一点处的切线与直线 x =0 和直线 y =x 所围成的三角形的面积为定值,并求 此定值.B 组 专项能力提升(时间:20 分钟)11.已知函数 f (x )= x +1,g (x )=a ln x ,若在 x = 处函数 f (x )与 g (x )的图象的切线平行,则实数 a 的值13.若函数 f (x )= x 2-ax +ln x 存在垂直于 y 轴的切线,则实数 a 的取值范围是________. )114为________.12.曲边梯形由曲线 y =x 2+1,y =0,x =1,x =2 所围成,过曲线 y =x 2+1 (x ∈[1,2]上一点 P 作切线, 使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为____________.1214.已知曲线 f (x )=x n +(n ∈N *)与直线 x =1 交于点 P ,设曲线 y =f (x )在点 P 处的切线与 x 轴交点的横 坐标为 x n ,则 log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 的值为________.15.已知函数 f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12 和直线 m :y =kx +9,且 f ′(-1)=0. (1)求 a 的值;(2)是否存在 k ,使直线 m 既是曲线 y =f (x )的切线,又是曲线 y =g (x )的切线?如果存在,求出 k 的值; 如果不存在,请说明理由.。
高三数学一轮复习导数知识点在高三数学的学习中,导数是一个非常重要的概念。
导数是微积分的基础,它在计算函数变化率、解析几何、最值问题等方面起着至关重要的作用。
本文将围绕高三数学一轮复习导数知识点展开讨论,帮助同学们更好地理解和掌握这一内容。
一、导数的定义导数描述了一个函数在某一点上的变化率。
对于函数y=f(x),在给定点x=a处,函数的导数可以定义为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)其中lim代表极限的概念。
简单来说,导数是通过求函数在某点邻近的两点间的斜率的极限值来描述函数在该点上的变化情况。
二、求导法则在高三数学中,导数的求法十分重要。
掌握了合适的求导法则,可以帮助我们更加便捷地求解复杂的导数函数。
下面是一些常见的求导法则:1. 常数法则:若c为常数,则有(d/dx)(c)=0。
2. 幂法则:若y=x^n,则有(d/dx)(x^n)=nx^(n-1),其中n为任意实数。
3. 乘法法则:若y=u(x)v(x),则有(d/dx)(u(x)v(x))=u'(x)v(x)+u(x)v'(x)。
4. 除法法则:若y=u(x)/v(x),则有(d/dx)(u(x)/v(x))=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。
5. 链式法则:若y=f(g(x)),则有(d/dx)(f(g(x)))=f'(g(x))g'(x)。
6. 指数函数和对数函数的导数:若y=a^x,则有(d/dx)(a^x)=a^xln(a),其中a为常数。
通过掌握这些求导法则,我们可以在计算导数时灵活运用,提高效率。
三、导数的应用导数不仅仅是一个数学概念,同时也具有重要的应用价值。
在实际问题中,导数可以帮助我们求解最值问题、判断函数的增减性、描述函数的曲线形状等。
下面是一些常见的导数应用:1. 最值问题:导数可用于求解函数的最大值和最小值。
※第十四章 导数●网络体系总览 ●考点目标位定位要求:(1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.(2)熟记基本求导公式〔C ,x m (m 为有理数),sin x ,cos x ,e x ,a x ,ln x ,log a x 的导数〕,掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.(3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值.●复习方略指南深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解决它是提高分析问题、解决问题能力,学好数学的关键.1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础.2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数运算在解决实际问题中的最值问题时所起的作用.导数的概念与运算●知识梳理1.导数的概念:(1)如果当Δx →0时,xy∆∆有极限,我们就说函数y =f (x )在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim →∆xx y∆∆=0lim →∆x xx f x x f ∆-∆+)()(00. (2)如果函数f (x )在开区间(a ,b )内每一点都可导,就说f (x )在开区间(a ,b )内可导.这时对于开区间(a ,b )内每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),这样就在开区间(a ,b )内构成一个新的函数,这一新函数叫做f (x )在开区间(a ,b )内的导函数,记作f ′(x ),即f ′(x )= 0lim→∆x xx f x x f ∆-∆+)()(,导函数也简称导数.2.导数的几何意义:函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.3.几种常见的导数:C ′=0(C 为常数);(x n )′=nx n -1;(sin x )′=cos x ;(cos x )′=-sin x ;(e x )′=e x ; (a x )′=a x ln a ;(ln x )′=x 1;(log a x )′=x1log a e.4.导数的四则运算法则: 设u 、v 是可导函数,则(u ±v )′=u ′±v ′;(uv )′=u ′v +uv ′;(vu)′=2vv u v u '-' (v ≠0). 特别提示f (x )在x =x 0处的导数f ′(x 0)的实质是“增量之比的极限”,但在计算中取它的应用含义:f ′(x 0)是函数f (x )的导函数f ′(x )当x =x 0时的函数值.●点击双基1.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx ∆∆为 A.Δx +x ∆1+2 B.Δx -x∆1-2 C.Δx +2 +Δx -x∆1解析: y x ∆∆=xx ∆+-+∆+)11(1)1(2=Δx +2.答案:C2.设函数f (x )在x =x 0处可导,则0lim →h hx f h x f )()(00-+A.与x 0,h 都有关B.仅与x 0有关而与h 无关C.仅与h 有关而与x 0无关D.与x 0、h 均无关 答案:B3.设f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A.319 B.316C.313 D.310 解析:f ′(x )=3ax 2+6x ,f ′(-1)=3a -6=4,所以a =310.答案:D4.函数y =x 2的曲线上点A 处的切线与直线3x -y +1=0的夹角为45°,则点A 的坐标为___________.解析:设点A 的坐标为(x 0,y 0),则y ′|x =x 0=2x |x =x 0=2x 0=k 1,又直线3x -y +1=0的斜率k 2=3. ∴tan45°=1=|1|||1212k k k k ++-=|006123x x +-|.解得x 0=41或x 0=-1.∴y 0=161或y 0=1,即A 点坐标为(41,161)或(-1,1). 答案:(41,161)或(-1,1)●典例剖析【例1】 若f ′(x 0)=2,求0lim →k kx f k x f 2)()(00--.剖析:根据导数的定义.解:f ′(x 0)= 0lim→k kx f k x f ---+)()]([00(这时Δx =-k ).∴0lim →k kx f k x f 2)()(00--=0lim →k [-21·kx f k x f ---)()(00]=-21·0lim →k k x f k x f ---)()(00=-21f ′(x 0)=-1.评述:注意f ′(x 0)= 0lim →∆x xx f x x f ∆-∆+)()(00中Δx 的形式的变化,在上述变化中可以看到Δx =-k ,k →0⇒-k →0,∴f ′(x 0)= 0lim→k k x f k x f 3)()3(00---,还可以写成f ′(x 0)= 0lim →k kx f k x f 3)()3(00---或f ′(x 0)=∞→k lim [f (x 0+k1)-f (x 0)]等.【例2】 若f (x )在R 上可导,(1)求f (-x )在x =a 处的导数与f (x )在x =-a 处的导数的关系;(2)证明:若f (x )为偶函数,则f ′(x )为奇函数.剖析:(1)需求f (-x )在x =a 处的导数与f (x )在x =-a 处的导数;(2)求f ′(x ),然后判断其奇偶性.(1)解:设f (-x )=g (x ),则g ′(a )= 0lim→∆x x a g x a g ∆-∆+)()(=0lim →∆x xa f x a f ∆--∆--)()( =-0lim →∆-x xa f x a f ∆---∆--)()(=-f ′(-a ).∴f (-x )在x =a 处的导数与f (x )在x =-a 处的导数互为相反数. (2)证明:f ′(-x )= 0lim→∆x xx f x x f ∆--∆+-)()(=0lim→∆x xx f x x f ∆--∆-)()(=-0lim →∆x xx f x x f ∆--∆-)()(=-f ′(x ). ∴f ′(x )为奇函数.评述:用导数的定义求导数时,要注意Δy 中自变量的变化量应与Δx 一致.(2)中若f (x )为奇函数,f ′(x )的奇偶性如何? 【例3】 求下列函数的导数: (1)y =x 2sin x ;(2)y =ln (x +21x +);(3)y =1e 1e -+x x ;(4)y =xx xx sin cos ++.解:(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=211x x ++·(x +21x +)′=211x x ++(1+21xx+)=211x+.(3)y ′=2)1e ()1e )(1e ()1e ()1e (-'-+--'+x x x x x=2)1(e e 2--x x . (4)y ′=2)sin ()sin )(cos ()sin ()cos (x x x x x x x x x x +'++-+'+=2)sin ()cos 1)(cos ()sin )(sin 1(x x x x x x x x +++-+- =2)sin (1cos sin sin cos x x x x x x x x +--+--.思考讨论函数f (x )在点x 0处是否可导与是否连续有什么关系?夯实基础1.(2004年全国Ⅱ,文3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为 =3x -4 =-3x +2 =-4x +3 =4x -5 解析:y ′=3x 2-6x ,∴y ′|x =1=-3.∴在(1,-1)处的切线方程为y +1=-3(x -1). 答案:B2.(2004年全国Ⅳ,文4)函数y =(x +1)2(x -1)在x =1处的导数等于解析:y ′|x =1=[(x 2+2x +1)(x -1)]′|x =1=[x 3+x 2-x -1]′|x x =1=(3x 2+2x -1)| x =1=4. 答案:D3.(2004年湖北,文3)已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为(x )=(x -1)2+3(x -1) (x )=2(x -1) (x )=2(x -1)2 (x )=x -1 答案:A4.(2004年重庆,理14)曲线y =2-21x 2与y =41x 3-2在交点处的切线夹角是__________.(以弧度数作答)解析:由⎪⎪⎩⎪⎪⎨⎧-=-=242232x y x y 得x 3+2x 2-16=0,(x -2)(x 2+4x +8)=0,∴x =2.∴两曲线只有一个交点.∵y ′=(2-21x 2)′=-x ,∴y ′|x =2=-2.又y ′=(43x -2)′=43x 2,∴当x =2时,y ′=3.∴两曲线在交点处的切线斜率分别为-2、3, |3)2(132⨯-+--|=1.∴夹角为4π.答案:4π5.设f (x )在x =1处连续,且f (1)=0,1lim→x 1)(-x x f =2,求f ′(1). 解:∵f (1)=0, 1lim→x 1)(-x x f =2,∴f ′(1)= 0lim →∆x xf x f ∆-∆+)1()1(=1lim →x 1)1()(--x f x f =1lim →x 1)(-x x f =2. 6.设函数y =ax 3+bx 2+cx +d 的图象与y 轴交点为P 点,且曲线在P 点处的切线方程为12x -y -4=0.若函数在x =2处取得极值0,试确定函数的解析式.解:∵y =ax 3+bx 2+cx +d 的图象与y 轴的交点为P ,∴P 的坐标为P (0,d ).又曲线在点P 处的切线方程为y =12x -4,P 点坐标适合方程,从而d =-4.又切线斜率k =12,故在x =0处的导数y ′|x =0=12,而y ′=3ax 2+2bx +c ,y ′|x =0=c,从而 c =12.又函数在x =2处取得极值0,所以 y ′|x =2=0, f (2)=0,即 12a +4b +12=0, 8a +4b +20=0. 解得a =2,b =-9.∴所求函数解析式为y =2x 3-9x 2+12x -4. 培养能力7.已知函数f (x )=e -x (cos x +sin x ),将满足f ′(x )=0的所有正数x 从小到大排成数列{x n }.求证:数列{f (x n )}为等比数列.证明:f ′(x )=-e -x (cos x +sin x )+e -x (-sin x +cos x )=-2e -x sin x , 由f ′(x )=0,即-2e -x sin x =0,解得x =n π,n ∈Z .从而x n =n π(n =1,2,3…),f (x n )=(-1)n e -πn . 所以)()(1n n x f x f +=-e -π.所以数列{f (x n )}是公比q =-e -π的等比数列. 8.已知函数f (x )=ln (e x +a )(a >0).(1)求函数y =f (x )的反函数y =f -1(x )及f (x )的导数f ′(x );(2)假设对任意x ∈[ln (3a ),ln (4a )],不等式|m -f -1(x )|+ln (f ′(x ))<0成立,求实数m 的取值范围.解:(1)由y =f (x )=ln (e x +a ), 得x =ln (e y -a ),所以y =f -1(x )=ln (e x -a )(x >ln a ).f ′(x )=[ln (e x+a )]′=ax x +e e .(2)由|m -f -1(x )|+ln (f ′(x ))<0,得ln (e x -a )-ln (e x +a )+x <m <ln (e x -a )+ln (e x +a )-x .设ϕ(x )=ln (e x -a )-ln (e x +a )+x , ϕ(x )=ln (e x -a )+ln (e x +a )-x ,于是原不等式对于x ∈[ln (3n ),ln (4a )]恒成立.等价于ϕ(x )<m <ϕ(x ).(*)由ϕ′(x )=a x x -e e -ax x+e e +1,ϕ′(x )= a xx -e e +ax x+e e -1,注意到0<e x -a <e x <e x +a . 故有ϕ′(x )>0, ϕ′(x )>0,从而ϕ(x )、ϕ(x )均在[ln (3a ),ln (4a )]上单调递增,因此不等式(*)成立当且仅当ϕ(ln (4a ))<m <ϕ(ln (3a )),即ln (512a )<m <ln (38a ).探究创新 9.利用导数求和:(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *).(2)S n =C 1n +2C 2n +3C 3n +…+n C n n (n ∈N *).解:(1)当x =1时,S n =1+2+3+…+n =2n (n +1),当x ≠1时,∵x +x 2+x 3+…+x n=xx x n --+11,两边对x 求导,得S n =1+2x +3x 2+…+nxn -1=(x x x n --+11)=21)1()1(1x nx x n n n -++-+.(2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n,两边对x 求导,得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n x n -1. 令x =1,得n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n , 即S n =C 1n +2C 2n +3C 3n +…+n C n n =n ·2n -1. ●思悟小结1.求函数y =f (x )在点x 0处的导数通常有以下两种方法: (1)导数的定义,即求0lim→∆x xx f x x f ∆-∆+)()(00的值.(2)利用导函数的函数值,即先求函数f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f (x ),得函数值f ′(x 0).2.求复合函数的导数的方法步骤:(1)分清复合函数的复合关系,选好中间变量.(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数.(3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数.3.本单元重点体现了极限思想、函数思想及等价转化的思想,在学习过程中应用心体会.●教师下载中心 教学点睛1.在该节教学中要重视对导数的概念、导数的几何意义的理解,注重对导数基本公式的熟练运用.2.可补充导数的另一种定义形式:f ′(x 0)=0lim x x →00)()(x x x f x f --.拓展题例【例题】 讨论函数f (x )=⎩⎨⎧>+≤+)0(1),0(12x x x x 在x =0处的可导性. 解:函数f (x )在x =0处是否可导,即xf x f ∆-∆+)0()0(当Δx →0时的极限是否存在.∵+→∆0lim x xf x f ∆-∆+)0()0(=+→∆0lim x xx ∆-+∆11 =1, =-→∆0lim x xx ∆-+∆11)(2 =0, 又∵+→∆0lim x x f x f ∆-∆+)0()0(≠-→∆0lim x xf x f ∆-∆+)0()0(,∴x f x f ∆-∆+)0()0(当Δx →0时的极限不存在,因此f (x )在x =0处不可导.。
吉林省东北师范大学附属中学2015届高三数学第一轮复习(知识梳理+题型探究+方法提升+课后作业)导数的概念及运算导学案 文知识梳理:(阅读选修教材2-2第2页—第21页) 1、 导数及有关概念:函数的平均变化率:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()()()limx f x x f x f x x∆→+∆-'=∆在定义式中,设x x x ∆+=0,则0x x x -=∆,当x ∆趋近于0时,x 趋近于0x ,因此,导数的定义式可写成000000()()()()()limlim x ox x f x x f x f x f x f x x x x ∆→→+∆--'==∆-. 2.几何意义:几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为000()()()y f x f x x x -='-3.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数..,也可记作y ',即()f x '=y '=xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim00说明 :导数与导函数都称为导数,这要加以区分,求一个函数的导数,就是求导函数,求一个函数在给定点处的导数,就是求导函数值.4.可导: 如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导5.可导与连续的关系:如果函数)(x f y =在点0x 处可导,那么函数)(x f y =在点0x 处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.6.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -∆+=∆()2求平均变化率xx f x x f x y ∆-∆+=∆∆)()(; ()3取极限,得导数y '=()f x '=xyx ∆∆→∆0lim7.几种常见函数的导数: 0'=C (C 为常数); 1)'(-=n n nx x (Q n ∈);x x cos )'(sin =;x x sin )'(cos -=;1(ln )x x'=;1(log )log a a x e x'=, ()xxe e '= ;()ln x x a a a '=二、题型探究:探究一.用导数的定义求函数在某一点处的导函数值。
高三数学一轮复习——导数的概念及运算考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1x,y=x的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(ax+b))的导数;6.会使用导数公式表.知识梳理1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率limx∆→f(x0+Δx)-f(x0)Δx=0limx∆→ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limx∆→ΔyΔx=0limx∆→f(x0+Δx)-f(x0)Δx.(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).~2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx称为函数y=f(x)在开区间内的导函数.3.导数公式表基本初等函数导函数f(x)=c(c为常数)f′(x)=0f (x )=x α(α∈Q *) 】f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e x f ′(x )=e xf (x )=a x (a >0) ~f ′(x )=a x ln af (x )=ln x f ′(x )=1x f (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x );~(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. [微点提醒]′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0. ′=-f ′(x )[f (x )]2.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.—4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( )】解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错. (3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.(选修2-2P19B2改编)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9.&答案 C3.(选修2-2P3例题改编)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-++10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-+,a =v ′(t )=-. 答案 -+ -4.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( )2解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .)由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________. 解析 由题意得f ′(x )=e x ln x +e x ·1x ,则f ′(1)=e. 答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________. 解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,?所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算多维探究角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ;;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x x =e x ⎝ ⎛⎭⎪⎫ln x +1x . (2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3.(3)因为y =ln 1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( )》A.-eC.-2解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B规律方法 1.求函数的导数要准确地把函数分割成基本初等函数的和、差、积、商,再利用运算法则求导.2.复合函数求导,应由外到内逐层求导,必要时要进行换元.3.抽象函数求导,恰当赋值是关键,然后活用方程思想求解. 【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________.<解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4 考点二 导数的几何意义 多维探究角度1 求切线方程'【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) =-2x =-x =2x=x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ):(2)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析 (1)设切点的横坐标为x 0(x 0>0), ∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,;由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1. 又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.]解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎨⎧1-a =2,2a +b =5,解得⎩⎨⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8[规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0) B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________. 解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,、可列方程组⎩⎨⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎨⎧x 0=1,a =-2或⎩⎨⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1, 当x 0=-1时,f (x 0)=1.∴点P 的坐标为(1,-1)或(-1,1).(2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x,[思维升华]1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解. [易错防范]1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′= sin x ;③复合函数求导分不清内、外层函数.2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.?基础巩固题组 (建议用时:35分钟)一、选择题1.下列求导数的运算中错误的是( ) A.(3x )′=3x ln 3 B.(x 2ln x )′=2x ln x +x x,x )))′=x sin x -cos xx 2—D.(sin x ·cos x )′=cos 2x解析 因为⎝ ⎛⎭⎪⎫cos x x ′=-x sin x -cos x x 2,C 项错误. 答案 C2.(2019·日照质检)已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )2,2)2解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e. 答案 B3.函数y =x 3的图象在原点处的切线方程为( )$=x =0=0D.不存在解析 函数y =x 3的导数为y ′=3x 2,则在原点处的切线斜率为0,所以在原点处的切线方程为y -0=0(x -0),即y =0. 答案 C4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( ) 秒末秒末和2秒末秒末秒末和4秒末解析s′(t)=t2-6t+8,由导数的定义知v=s′(t),'令s′(t)=0,得t=2或4,即2秒末和4秒末的速度为零.答案D5.(2019·南阳一模)函数f(x)=x-g(x)的图象在点x=2处的切线方程是y=-x-1,则g(2)+g′(2)=()D.-4解析∵f(x)=x-g(x),∴f′(x)=1-g′(x),又由题意知f(2)=-3,f′(2)=-1,∴g(2)+g′(2)=2-f(2)+1-f′(2)=7.答案A,6.已知e为自然对数的底数,曲线y=a e x+x在点(1,a e+1)处的切线与直线2e x -y-1=0平行,则实数a=()=a e+1,又切线解析∵y′=a e x+1,∴在点(1,a e+1)处的切线的斜率为y′|x=1与直线2e x-y-1=0平行,∴a e+1=2e,解得a=2e-1e.答案B7.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()]解析 由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上是单调递减的,说明函数y =f (x )的切线的斜率在(0,+∞)上也是单调递减的,故可排除A ,C ;又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.答案 D8.(2019·广州调研)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为( ) 2-ln 2 +ln 2解析 由y =x ln x 得y ′=ln x +1,设切点为(x 0,y 0),则k =ln x 0+1,∵切点(x 0,y 0)(x 0>0)既在曲线y =x ln x 上又在直线y =kx -2上,∴⎩⎨⎧y 0=kx 0-2,y 0=x 0ln x 0,∴kx 0-2=x 0ln x 0,∴k =ln x 0+2x 0,则ln x 0+2x 0=ln x 0+1,∴x 0=2,∴k =ln 2+1. 答案 D?二、填空题9.已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为________.解析 由题意得f ′(x )=4x ,令4x 0=-8,则x 0=-2,∴f (x 0)=9,∴点M 的坐标是(-2,9).答案 (-2,9)10.(2017·天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析 f (1)=a ,切点为(1,a ).f ′(x )=a -1x ,则切线的斜率为f ′(1)=a -1,切线方程为:y -a =(a -1)(x -1),令x =0得出y =1,故l 在y 轴上的截距为1.答案 1—11.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)=________.解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=4+3f ′(2)+12=3f ′(2)+92,所以f ′(2)=-94.答案 -9412.已知函数y =f (x )的图象在点(2,f (2))处的切线方程为y =2x -1,则曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为________________.解析 由题意,知f (2)=2×2-1=3,∴g (2)=4+3=7,"∵g ′(x )=2x +f ′(x ),f ′(2)=2,∴g ′(2)=2×2+2=6,∴曲线g (x )=x 2+f (x )在点(2,g (2))处的切线方程为y -7=6(x -2),即6x -y -5=0.答案 6x -y -5=0能力提升题组(建议用时:15分钟)13.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( )C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝ ⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b =⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2.答案 D14.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________.解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时,由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎨⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1].答案 [-2,-1]15.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________.解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0), ∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 22 16.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)新高考创新预测17.(新定义题型)定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x )=[f ′(x )]′. 定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x )在区间D 上为凹函数.已知函数f (x )=x 3-32x 2+1在区间D 上为凹函数,则x 的取值范围是________.解析 因为f (x )=x 3-32x 2+1,因为f ′(x )=3x 2-3x ,f ″(x )=6x -3,令f ″(x )>0,解得x >12,故x 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 答案 ⎝ ⎛⎭⎪⎫12,+∞。
14、导数及其应用 14.1导数的概念【知识网络】1.经历由平均变化率过渡到瞬时变化率的过程. 2.了解导数概念的实际背景,知道瞬时变化率就是导数. 3.体会导数的思想及其内涵.4.通过函数图象直观地理解导数的几何意义. 【典型例题】[例1](1)曲线y=sinx 上两点M (2π,1),N (π,0),则直线MN 的斜率是( )A .1B .-1C .-2πD .-π2(2)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= (3)在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3B .2C .1D .0(4)已知f(x)=x 3+2x 2,则xx f x x f ∆-∆+)()(= .(5)曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 .[例2] 已知f(x)=1+1x,1]上的平均变化率;(1)求f(x)在区间[1,2],[12(2)求f(x)在x=1处的瞬时变化率。
[例3] 如图,已知一个倒置的正四棱锥形容器的底面边长为10cm,高为10m,现用一根水管以9ml/s的速度向容器里注水.(1)将容器中水的高度h表示为时间t的函数,并作出其图象.(2)求第二个1 s 内水面高度的平均变化率.[例4] 设函数2xf分别在1x、2x处取得极小值、极大=xx(3+3)+-值.xoy 平面上点A 、B 的坐标分别为))(,(11x f x 、))(,(22x f x ,求点A 、B 的坐标 .【课内练习】1.已知函数f(x)=x 2+2x -1图象上一点P (1,2),点Q 也是图象上一点,且Q 位于点P 的右边,若点Q 无限逼近P ,则直线PQ 的斜率( ) A .不断增大且为负 B .不断增大且为正 C .不断减小且为正D .不断减小且为负2. 已知函数y=x 2+1的图象上一点A (1,2)及其邻近一点B (1+△x,2+△y),则直线AB的斜率是( ) A .2B .2xC .2+△xD .2+(△x)23. 一质点做直线运动,由始点经过ts 后的距离为s=14t 4-4t 3+16t 2,则速度为0的时刻是 ( )A .4s 末B .8s 末C .0s 末与8 s 末D .C .0s 末,4s 末,8 s 末4. 满足f ′(x)=f(x)的函数是 ( )A .f (x)=1-xB .f (x)=xC .f (x)=0D .f (x)=1 5.直线y=-2x +1上两点的横坐标增量△y 与纵坐标增量△x 的比值是 .6.一质点的运动方程是S=2t 2+1(位移单位:m ,时间单位:s),则平均变化率是 .7.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 . 8.设函数y=f(x)=x 2-1,(1) 当自变量x 由1变到1.1时,求函数值增量△y ; (2) 当自变量x 由1变到1.1时,求函数值的平均变化率; (3) 求该函数图象在点(1,y 0)处的切线方程.9.已知抛物线y=ax 2+bx +c(a ≠0)经过点(1,1),且在点(2,-1)处的切线与直线y=x -3重合,求a,b,c 的值.10.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120).12800080y x x x =-+<≤已知甲、乙两地相距100千米。
精品题库试题文数1.(河北省衡水中学2014届高三下学期二调) 已知函数则方程f(x) =ax恰有两个不同的实根时,实数a的取值范围是(注:e为自然对数的底数)()[解析] 1.作出的草图如图所示,则当时,与相交,设与相切于点,则,,解得,由图象可知方程有两个不同的交点时,.2.(河北省衡水中学2014届高三下学期二调)已知都是定义在R上的函数,,,且,且,.若数列的前n项和大于62,则n的最小值为()[解析] 2.因为,所以为增函数,即,因为,所以,解得,,,,得,最小值为6.3.(河北省石家庄市2014届高三第二次教学质量检测)定义在区间[0,1]上的函数的图象如右图所示,以、、为顶点的的面积记为函数, 则函数的导函数的大致图象为[解析] 3.如图所示,的底边长一定,在点C由A到B的过程中,的面积由小到大再减小,然后再增大再减小,对应的面积函数的导数先正后负,再正到负,且由原图可知,当点C位于AB连线和函数的图象的交点附近时,三角形的面积减或增较快.4.(山西省太原市2014届高三模拟考试)已知方程在(0,+∞)上有两个不同的解a,b(a<b),则下面结论正确的是A.sina=acosb B.sina=-acosb C.cosa=bsinb D.sinb=-bsina[解析] 4.因为有两个根,所以和在上有两个交点,且,画出两个函数的图象如图所示,函数和在上有一个交点,在上有一个切点时满足题意,是方程的根,当时,,,所以在B处的切线为,将代入得,所以,因为三点共线,所以,所以,即.5.(江西省重点中学协作体2014届高三第一次联考)若,则的解集为()A. B.C. D.[解析] 5.由题意知且,又,即,且,所以得.6.(山东省青岛市2014届高三第一次模拟考试) 曲线在处的切线方程为A. B. C. D.[解析] 6.因为,所以,由,所以切线方程为,即.7.(广西省桂林中学2014届高三月考测试题) 设P为曲线C:上的点,且曲线C在点P处的切线倾斜角的取值范围为,则点P横坐标的范围()A. B. C. D.[解析] 7.因为,切线倾斜角的范围为,所以,即,解得.8.(湖北省武汉市2014届高三2月份调研测试) 抛物线C1:x2=2py(p>0)的焦点与双曲线C2:-y2=1的左焦点的连线交C1于第二象限内的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=[解析] 8.抛物线的焦点为,双曲线的右焦点为(2,0) ,渐近线方程为,由得,故,由、、三点共线得.9.(河南省郑州市2014届高中毕业班第一次质量预测) 已知曲线的一条切线的斜率为,则切点的横坐标为A. 3B. 2 C.1 D.[解析] 9.因为,所以令,解得10.(江西省七校2014届高三上学期第一次联考) 设函数的图像在点处切线的斜率为,则函数的部分图像为()[解析] 10.因为,所以为奇函数,排除A, C,因为排除D项11.(山东省济宁市2014届高三上学期期末考试)已知,满足,则函数的图象在点处的切线方程为A. B. C. D.[解析] 11.因为,所以,由得,所以,切线方程为,即.12.(河北省石家庄市2014届高三第二次教学质量检测)函数=的图象在点处的切线方程为, 为的导函数,则 . [解析] 12.由切线的方程可知所以.13.(江苏省南京市、盐城市2014届高三第二次模拟) 设函数f(x) =ax+sinx+cosx.若函数f(x) 的图象上存在不同的两点A,B,使得曲线y=f(x) 在点A,B处的切线互相垂直,则实数a的取值范围为▲.[解析] 13. 由题意,设则,,由得,,令,则,所以,,,,当时,,又,所以.14.(山西省忻州一中、康杰一中、临汾一中、长治一中四校2014届高三第三次联考) 曲线在处的切线方程为 .[解析] 14.因为,所以切线方程为,即.15.(江西省红色六校2014届高三第二次联考) 若曲线在点处的切线与直线垂直,则 ______.[解析] 15.因为切线与直线垂直,所以切线的斜率,又因为,所以.16.(河北省唐山市2014届高三第一次模拟考试)曲线在x=1处的切线与两坐标轴围成的三角形的面积为4,则= .[解析] 16.因为,所以,又,所以切线方程为,令得,令得,所以.17.(北京市东城区2013-2014学年度第二学期教学检测) 定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l: y=x的距离等于曲线C2:x2+(y+4) 2=2到直线l: y=x的距离,则实数a=_______.[解析] 17.由题意知圆心到直线的距离为,所以曲线到直线的距离为,令得,代入得,所以点到的距离为,得或,当时,与相交,不符合题意,故舍去,所以.18.(北京市东城区2013-2014学年度第二学期教学检测) 曲线在点(0,1)处的切线方程为 .[解析] 18.因为,所以,切线方程为.19.(河北省衡水中学2014届高三下学期二调) 已知函数,(a为实数).(Ⅰ) 当a=5时,求函数在处的切线方程;(Ⅱ) 求在区间[t,t+2](t > 0)上的最小值;(Ⅲ) 若存在两不等实根,使方程成立,求实数a的取值范围.[解析] 19.(Ⅰ) 当时,.,故切线的斜率为. 所以切线方程为:, 即.(Ⅱ)①当时, 在区间上为增函数,所以②当时, 在区间上为减函数, 在区间上为增函数,所以(Ⅲ) 由,可得:,,令, ., , ..实数的取值范围为 .20.(河北省石家庄市2014届高三第二次教学质量检测)已知动圆C过定点M(0,2) ,且在x轴上截得弦长为4. 设该动圆圆心的轨迹为曲线C.(Ⅰ)求曲线C方程;(Ⅱ)点A为直线:上任意一点,过A作曲线C的切线,切点分别为P、Q,面积的最小值及此时点A的坐标.[解析] 20.(Ⅰ)设动圆圆心坐标为,根据题意得,化简得.(Ⅱ)解法一:设直线的方程为,由消去得设,则,且以点为切点的切线的斜率为,其切线方程为即同理过点的切线的方程为设两条切线的交点为在直线上,,解得,即则:,即,代入到直线的距离为当时,最小,其最小值为,此时点的坐标为.解法二:设在直线上,点在抛物线上,则以点为切点的切线的斜率为,其切线方程为即同理以点为切点的方程为设两条切线的均过点,则,点的坐标均满足方程,即直线的方程为:代入抛物线方程消去可得:到直线的距离为当时,最小,其最小值为,此时点的坐标为.21.(重庆市杨家坪中学2014届高三下学期第一次月考) 已知函数,曲线在点处切线方程为。
专题4.1 导数的概念与运算1.与基本初等函数相结合考查函数导数的计算,凸显数学运算的核心素养;2.与曲线方程相结合考查导数的几何意义,凸显数学运算、直观想象的核心素养.1.导数的概念 1.平均变化率函数()f x 在区间[]12,x x 上的平均变化率为()()2121f x f x x x --,若21x x x ∆=-,21y y y ∆=-,则平均变化率可表示为y x∆∆. 2.函数()y f x =在0x x =处的导数定义:称函数()y f x =在0x x =处的瞬时变化率0000()()limlim x x f x x f x yx x∆→∆→+∆-∆=∆∆为函数()y f x =在0x x =处的导数,记作()0f x '或0y x '=,即00000()()()lim lim x x f x x f x yf x x x ∆→∆→+∆-∆==∆∆.3.函数()f x 的导函数设函数()y f x =在区间(),a b 上有定义,且()0,x a b ∈,若x ∆无限趋近于0时,比值()()00f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作()0f x '.若函数()y f x =在区间(),a b 内任意一点都可导,则()f x 在各点的导数也随着x 的变化而变化,因而是自变量x 的函数,该函数称作()f x 的导函数,记作()f x '. 即()()()=limx f x x f x f x x∆→+∆-'∆.2.基本初等函数的导数公式及导数的运算法则 1.基本初等函数的导数公式2.导数的运算法则(1)()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;(2)()()()()()()+f x g x f x g x f x g x '''⋅=⎡⎤⎣⎦; (3)()()2()'()()'()()'0()()f x f x g x g x f x g x g x g x ⎡⎤⋅-⋅=≠⎢⎥⎣⎦. (4)复合函数的导数复合函数()()y f g x =的导数和函数()(),y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 3.函数()y f x =在0x x =处的导数几何意义函数()f x 在点0x 处的导数0()f x '的几何意义是在曲线()y f x =上点()()00,x f x 处的切线的斜率(瞬时速度就是位移函数()s t 对时间t 的导数).相应地,切线方程为()()()000y f x f x x x '-=-.导数的概念及计算【方法储备】1.求函数的导数要准确地把函数分割成基本初等函数的和、差、积、商,再利用运算法则求导.步骤为:①分析函数的结构和特征;②选择恰当的求导公式和法则进行求导;③整理结果.2.复合函数的求导方法求复合函数的导数,一般是运用复合函数的求导法则,将问题转化为求基本函数的导数解决.①分析清楚复合函数的复合关系是由哪些基本函数复合而成的,适当选定中间变量; ②分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量; ③根据基本函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数;④复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程. 3.对于比较复杂的函数求导时, 先化简再求导, 技巧为: ①连乘积形式, 先展开化为多项式的形式再求导; ②分式形式的先化为整式函数或者简单的分式函数再求导; ③对数形式的先化为和、差的形式, 再求导; ④根式形式先化为分数指数幂的形式, 再求导;⑤三角形式先利用三角函数公式转化为和或者差的形式再求导; ⑥抽象函数求导, 恰当赋值是关键, 然后活用方程思想求解.|【精研题型】2.下列函数求导运算正确的个数为 ①()21log ln 2x x '=;②()33ln 3x x'=;③sin cos 33ππ'⎛⎫= ⎪⎝⎭ ;④1ln x x '⎛⎫= ⎪⎝⎭. A. 1 B. 2 C. 3 D.43.函数()=sin cos f x x x 的导函数()f x '在[]0π,上的图象大致为A. B.C. D.4.设()f x '是()f x 的导函数,写出一个满足()()f x f x '>在定义域R 上恒成立的函数(f x 【思维升华】C.等边三角形D.等腰钝角三角形【特别提醒】()f x '与()0f x '区别:()f x '是()f x 的导函数,而()0f x '是导函数在0x x =处的导函数值,导数值是常数.求曲线的切线方程及切点坐标【方法储备】利用导数研究曲线的切线问题:(1)函数在切点处的导数值...是切线的斜率..,即已知切点坐标可求切线斜率,已知斜率可求切点坐标;(2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点;(3)曲线()y f x = “在”点()00,P x y 处的切线与“过”点()00,P x y 的切线的区别: 在点()()00,P x f x 出的切线方程式()()()000y f x f x x x '-=-,切线只有一条; 过点(),P m n 的切线方程,需要先设出切点坐标()()00,x f x ,切线方程为()()0y n f x x m '-=-,在依据切点()()00,x f x 在直线上,将切点坐标带入方程求解,即可得切线条数.【精研题型】7.已知函数()221f x x ax a =+++为偶函数,则()f x 在1x =处的切线方程为A. 20x y -=B. 210x y -+=C. 220x y -+=D. 210x y --=8.请写出与曲线()31f x x =+在点()0,1处具有相同切线的一个函数(非常数函数)的解析式为()g x 【思维升华】9.已知函数()()()2ln 110h x a x a x a =+-+< ,在函数()h x 图象上任取两点,A B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是A. (),0-∞B. 2,4⎛--∞ ⎝⎭C. 2,4⎛⎫+-∞- ⎪ ⎪⎝⎭D. 24⎛⎫- ⎪ ⎪⎝⎭【特别提醒】导数运算及切线的理解应注意的问题:(1)注意除法公式中分子的符号,防止与乘法公式混淆.(2)直线与曲线只有一个公共点,直线不一定是曲线的切线,反之,直线是曲线的切线,则直线与曲线可能有其它交点.与切线有关的参数问题【方法储备】1.利用导数的几何意义求参数的基本方法(1)利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围. 2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.【精研题型】11.已知函数()1xf x e mx =-+的图象为曲线C ,若曲线C 上存在与直线12y x =垂直的切线,则实数m 的取值范围是 .12.若直线y kx b =+是曲线()ln 2f x x =+的切线,也是曲线()ln 1y x =+的切线,则b13.已知,a b 为正实数,直线y x a =-与曲线()ln y x b =+相切于点(00,x y【思维升华】14.已知函数()ln f x x x =+,曲线()y f x =在0x x =处的切线l 的方程为1y kx =-,则切线l 与坐标轴所围成的三角形的面积为 A.12 B. 14C.2D.4 15.若函数()ln f x x =与函数()()220g x x x a x =++<有公切线,则实数a 的取值范围是 A.1ln,2e ⎛⎫+∞ ⎪⎝⎭B. ()1,-+∞C. ()1,+∞D. ()ln 2,-+∞ 16.已知函数()272,121ln ,12x x x f x x x ⎧--+≤⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程()f x kx =恰有4个不相等的实数根,则实数k 的取值范围是 .专题4.1导数的概念与运算答案和解析 考点一1.【答案】B【解析】 【分析】本题考查导数的定义,涉及极限的性质,属于基础题. 由导数的定义分析可得答案.解:函数()y f x =在0x x =处可导,00h 0()()limf x h f x h h→+--0000h 0h 0()()()()lim limf x h f x f x h f x h h→→+---=+- 02()f x =',故选.B2.【答案】B【解析】【分析】本题考查导数的运算,属容易题. 根据导数运算法则逐个计算.【解答】解:()21log ln 2x x '=,(3)3ln 3x x '=,sin 03π'⎛⎫= ⎪⎝⎭,211ln (ln )x x x '⎛⎫=- ⎪⎝⎭,正确的为①②,共2个. 故选.B3.【答案】B【解析】 【分析】本题考查利用导数研究函数的单调性,考查学生的逻辑推理能力和运算能力,属于基础题. 先根据角的范围去绝对值,然后利用乘积函数的导数公式进行求导得到导函数()f x ',结合余弦函数的图象可得结论. 【解答】解:当[0,]x π∈时,sin 0x ,则()|sin |cos sin cos f x x x x x ==,22()cos sin cos 2f x x x x ∴'=-=,结合余弦函数的图象可知选项B 正确, 故选:.B4.【答案】()1(x f x e =-答案不唯一)【解析】根据()()f x f x '>可知()()0f x f x '->,据情况写出即可.【解答】解:由题意,设函数()1xf x e =-,可得()xf x e '=,令()()()()110x x F x f x f x e e ='-=--=>恒成立,即函数()1xf x e =-,符合题意.故答案为:() 1.(xf x e =-答案不唯一)5.【答案】A【解析】 【分析】本题考查的知识点是直线的倾斜角,利用导数研究曲线上某点的切线方程,其中利用基本不等式构造关于a 的不等式是解答本题的关键,属于基础题. 由已知中M 是曲线()21ln 12y x x a x =++-上的任一点,曲线在M 点处的切线的倾斜角均不小于4π的锐角,则曲线在M 点处的切线的不小于1,即曲线在M 点处的导函数值不小于1,根据函数的解析式,求出导函数的解析式,构造关于a 的不等式,解不等式即可得到答案. 【解答】 解:()21ln 12y x x a x =++-, 1(1)3y x a a x∴'=++--, 若曲线在M 点处的切线的倾斜角均不小于4π的锐角, 则31a -, 解得 2.a 故选.A6.【答案】D【解析】 【分析】本题主要考查三角形形状的判断,根据导数的运算法则求出函数()f x 和()f x '的解析式是解决本题的关键,属于拔高题.求函数的导数,先求出()16f π'=,然后利用辅助角公式进行化简,求出,A B 的大小即可判断三角形的形状. 【解答】解:函数的导数()()cos sin 6f x x x π'='-,则131()()cossin()()666662262f f f ππππππ'='-='-='-, 则11()262f π'=,则()16f π'=,则()sin 2cos()6f x x x x π'=-=+,()cos 2cos()3f x x x x π=+=-,()()1f A f B ='=,()2cos()16f B B π∴'=+=,即1cos()62B π+=,则63B ππ+=,得6B π=,()2cos()13f A A π=-=,即1cos()32A π-=,则33A ππ-=,则23A π=,则2366C ππππ=--=,则B C =,即ABC 是等腰钝角三角形, 故选:.D考点二7.【答案】A【解析】【分析】本题考查求曲线上一点的切线方程,属于基础题.根据函数()f x 是偶函数可得(1)(1)f f -=,可求出a ,求出函数在1x =处的导数值即为切线斜率,即可求出切线方程.【解答】 解:函数22()1f x x ax a =+++为偶函数, (1)(1)f f ∴-=,即2222a a a a -+=++,解得0a =,2()1f x x ∴=+,则()2f x x '=,(1)2k f ∴='=切,且(1)2f =,∴切线方程为22(1)y x -=-,整理得20.x y -=故选.A8.【答案】21x +(答案不唯一)【解析】【分析】本题主要考查导数的几何意义及求函数在一点处的切线方程,属于中档题.先求出曲线()31f x x =+在点()0,1处的切线方程,进而得出答案. 【解答】解:()()23,00f x x f ''==,即()31f x x =+在点()0,1处切线的斜率为0, 曲线()31f x x =+在点()0,1处的切线方程为y =1,所有在点()0,1处的切线方程为y =1的函数都是正确答案,如()21g x x =+或()21g x x =-+或()cos g x x =等. 故答案为:21x +答案不唯一)9.【答案】B【解析】【分析】本题主要考查导数的几何意义,考查基本不等式的应用及一元二次不等式的解法,属中档题.故选B .10.【答案】(1)证明:若0a =,则321()13f x x x =-+, 令321()()(38)393g x f x x x x x =--=--+, 则2()23(3)(1)g x x x x x '=--=-+, 当(3,)x ∈+∞时,()0g x '>,函数()g x 为增函数,所以()(3)0g x g >=,即()38f x x >-,得证.(2)解:易知曲线的切线斜率都存在, 设切点为321(,1)3N x x x ax -++,又(1,1)M -, 则32213()21MN x x ax k f x x x a x -+='=-+=+, 整理得32203x x a -+=,由题意可知此方程有三个解, 令32()23h x x x a =-+, 2()222(1)(1)h x x x x ∴'=-=+-,由()0h x '>,解得1x >或1x <-,由()0h x '<解得11x -<<,即函数()h x 在(,1)-∞-,(1,)+∞上单调递增,在(1,1)-上单调递减.要使得()0h x =有3个根,则(1)0h ->,且(1)0h <,解得4433a -<<,即a 的取值范围为44,.33⎛⎫- ⎪⎝⎭【解析】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想.(1)若0a =,则321()13f x x x =-+,令()()(38)g x f x x =--,求导,利用单调性求得()0g x >,即可得证;(2)设切点为321(,1)3N x x x ax -++,由()MN k f x =',可得关于x 的方程32203x x a -+=,由过点(1,1)M -可作曲线()y f x =的3条切线,可得方程有三个解,令32()23h x x x a =-+,根据函数的单调性求出a 的范围即可. 考点三11.【答案】(2,)+∞【解析】【分析】本题考查导数的几何意义和两条直线垂直的充要条件,考查推理能力和计算能力,属于中档题.利用()2x f x e m '=-=-即可求得,2x m e =+从而解出m 的范围.【解答】解:()1x f x e mx =-+,()x f x e m ∴'=-,曲线C 存在与直线12y x =垂直的切线, ()2x f x e m ∴'=-=-成立,22x m e ∴=+>,故实数m 的取值范围是(2,).+∞故答案为(2,).+∞12.【答案】1ln2-【解析】【分析】本题考查导数的几何意义,两条切线重合的问题,属于中档题.函数()f x 在点0x 处的导数0()f x '的几何意义是曲线()y f x =在点00(,)P x y 处的切线的斜率.相应地,切线方程为000()().y y f x x x -='-分别求出曲线ln 2y x =+的切线,曲线ln(1)y x =+的切线,根据两条直线表示同一条直线即可求解.【解答】解:对函数ln 2y x =+求导得1y x '=,对ln(1)y x =+求导得11y x '=+, 设直线y kx b =+与曲线ln 2y x =+相切于点111(,)P x y ,与曲线ln(1)y x =+相切于点222(,)P x y ,则1122ln 2,ln(1)y x y x =+=+,由点111(,)P x y 在切线上得()1111ln 2()y x x x x -+=-, 由点222(,)P x y 在切线上得2221ln (1)()1y x x x x -+=-+,这两条直线表示同一条直线, 所以12221211121ln (1)ln 1x x x x x x ⎧=⎪+⎪⎨+⎪+=+⎪+⎩, 解得11111,2,ln 211ln 2.2x k b x x =∴===+-=- 13.【答案】4【解析】【分析】本题考查了导数的运算、导数几何意义的应用,考查了基本不等式求最值的应用及运算求解能力,属于中档题.由题意结合导数的几何意义、导数的运算可得01x b =-、00y =,进而可得1b a +=,再利用()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【解答】解:对()ln y x b =+求导得1y x b'=+, 因为直线y x a =-与曲线ln()y x b =+相切于点00(,)x y , 所以011x b=+即01x b =-, 所以00ln ()ln (1)0y x b b b =+=-+=,所以切点为()1,0b -,由切点()1,0b -在切线y x a =-上可得10b a --=即1b a +=, 所以1111()()2224b a b a b a b a b a b a +=++=+++⋅=, 当且仅当12b a ==时,等号成立. 所以11a b+的最小值是4. 故答案为:4.14.【答案】B【解析】【分析】本题考查导数的运用:求切线方程,以及直线方程的运用,考查方程思想和运算能力,属于中档题.求得()f x 的导数,可得切线的斜率,由已知切线的方程可得k ,0x 的方程组,解方程可得切线的方程,求得切线与坐标轴的交点,由三角形的面积公式计算可得所求值.【解答】解:由()ln f x x x =+,得1()1f x x '=+, 则001()1f x k x '=+=,得011x k =-, 由111ln 11111k f k k k k ⎛⎫=+=-⎪----⎝⎭, 得1ln 01k =-,即2k =, 所以切线l 的方程为21y x =-,令0x =,得到1y =-,令0y =,得到12x =, 所求三角形面积为111|1|224⨯⨯-=, 故选.B15.【答案】A【解析】【分析】本题主要考查了导数的几何意义等基础知识,属于较难题.由切线方程可得,分离参数,得到关于1x 的函数,求出2211111111ln (1)1ln (2)124a x x x x =+--=-+--的取值范围即可,因此正确运用导数的性质是解决问题的关键.【解答】解:设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >, 则切线方程为1111ln ()y x x x x -=-, 设公切线与函数2()2g x x x a =++切于点22222(,2)(0)B x x x a x ++<,,则切线方程为22222(2)2(1)()y x x a x x x -++=+-, 所以有2121212(1)ln 1x x x x a ⎧=+⎪⎨⎪-=-+⎩,210x x <<,1102x ∴<<, 又2211111111ln (1)1ln (2)124a x x x x =+--=-+--, 令11t x =,2102,ln 4t a t t t ∴<<=--, 设21()ln (02)4h t t t t t =--<<, 则211(1)3()1022t h t t t t'--=--=<, ()h t ∴在(0,2)上为减函数,则1()(2)ln 21ln 2h t h e>=--=, 1(ln,)2a e∴∈+∞, 故选.A 16.【答案】1(2 【解析】【分析】 本题主要考查了分段函数性质,函数图像的运用,导数的几何意义,考查了数形结合思想,属于拔高题.由题意根据关于x 的方程()f x kx =恰有4个不相等的实数根可得函数()f x 与y kx =的图象有四个不同的交点,作出函数()f x 与y kx =在同一坐标系中的图象,结合函数图象找到k 的上限和下限求解即可.【解答】解:由题意,关于x 的方程()f x kx =恰有4个不相等的实数根,等价于函数()f x 与y kx =的图象有四个不同的交点,作出作出函数()f x 与y kx =在同一坐标系中的图象如下:结合函数图象可得当直线y kx =过1(1,)2A 点时k 取得下限,即1012102k -==-, 当直线y kx =与1ln 2y x =+相切时k 取得上限, 由1ln 2y x =+,则1y x'=, 设切点00(,)B x y ,则切线方程为()0001y y x x x -=-, 又点B 在1ln 2y x =+上,即001ln 2y x =+, ∴切线方程为()00011ln 2y x x x x ⎛⎫-+=- ⎪⎝⎭,即001ln 2x y x x =+-, 根据原点(0,0)在切线方程001ln 2x y x x =+-上, 00010ln 2x x ∴=+-,解得120x e =, ∴此时直线y kx =的斜率10211e k x e e ===, 综上可得实数k 的取值范围为1,2e e ⎛⎫⎪ ⎪⎝⎭,故答案为1,.2e ⎛ ⎝⎭17.【答案】解:()I 当14a =时,21()cos 14f x x x =+-,1()sin 2f x x x '=-, 所以()f x 的图象在点(,())(0)t f t t π<<处的切线方程为:221(sint)()+cos 1(sint)+sin cos 12424t t t y x t t t x t t t =--+-=--+-, 其在y 轴上截距设为2()+sin cos 14t g t t t t =-+-,则1()(cos ).2g t t t '=- 当(0,)3t π∈时,()0g t '>,()g t 为增函数; 当(,)3t ππ∈时,()0g t '<,()g t 为减函数.所以()g t 在3t π=时取最大值. 故3t π=时,直线l 在y 轴上的截距有最大值;()II 已知()2sin f x ax x '=-,设()()f x h x '=,则()2cos .h x a x '=-(1)当21a 即12a 时,()0h x ', 所以()f x '在R 上为增函数.又(0)0f '=,所以当(,0)x ∈-∞时,()0f x '<,()f x 为减函数;当(0,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()(0)0f x f =,所以12a 时符合题意; (2)当21a -即12a -时,()0h x ',所以()f x '在R 上为减函数. 又(0)0f '=,所以当(,0)x ∈-∞时,()0f x '>,()f x 为增函数;当(0,)x ∈+∞时,()0f x '<,()f x 为减函数.所以()(0)0f x f =,所以12a -时不符合题意; (3)当121a -<<,即1122a -<<时, 当(0,2)x arccos a ∈时,()0h x '<,()f x '为减函数.又(0)0f '=,所以当(0,2)x arccos a ∈时,()0f x '<,()f x 为减函数.所以当(0,2)x arccos a ∈时,()(0)0f x f <=,所以1122a -<<时不符合题意. 综上,a 的取值范围为1[,).2+∞【解析】本题主要考查导数的几何意义,考查利用导数研究函数的单调性与最值,是较难题. ()I 求出14a =时,()f x 的图象在点(,())(0)t f t t π<<处的切线方程,即可求得在y 轴上截距设为2()+sin cos 14t g t t t t =-+-,求导,即可求得当3t π=时,直线l 在y 轴上的截距有最大值;()II 求导()2sin f x ax x '=-,设()()f x h x '=,则()2cos .h x a x '=-分类讨论,(1)当21a 即12a时,可判断出函数()f x 的单调性,求得其当0x =时函数有最小值,则本题可解; (2)当21a -即12a -时,求得其当0x =时函数有最大值,经检验该种情况不符合题意; (3)当121a -<<,即1122a -<<时,同样该情况不符合题意.。
※第十四章 导数●网络体系总览导数导数的应用导数的概念导数的求法 函数的单调性 函数的最大值与最小值函数的极值●考点目标位定位要求:(1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.(2)熟记基本求导公式〔C ,x m (m 为有理数),sin x ,cos x ,e x ,a x ,ln x ,log a x 的导数〕,掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.(3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值.●复习方略指南深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解决它是提高分析问题、解决问题能力,学好数学的关键.1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础.2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数运算在解决实际问题中的最值问题时所起的作用.14.1 导数的概念与运算●知识梳理1.导数的概念:(1)如果当Δx →0时,xy∆∆有极限,我们就说函数y =f (x )在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ′(x 0),即f ′(x 0)= 0lim →∆xx y∆∆=0lim →∆x xx f x x f ∆-∆+)()(00. (2)如果函数f (x )在开区间(a ,b )内每一点都可导,就说f (x )在开区间(a ,b )内可导.这时对于开区间(a ,b )内每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),这样就在开区间(a ,b )内构成一个新的函数,这一新函数叫做f (x )在开区间(a ,b )内的导函数,记作f ′(x ),即f ′(x )= 0lim→∆x xx f x x f ∆-∆+)()(,导函数也简称导数.2.导数的几何意义:函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.3.几种常见的导数:C ′=0(C 为常数);(x n )′=nx n -1;(sin x )′=cos x ;(cos x )′=-sin x ;(e x )′=e x ; (a x )′=a x ln a ;(ln x )′=x1;(log a x )′=x1log a e. 4.导数的四则运算法则: 设u 、v 是可导函数,则(u ±v )′=u ′±v ′;(uv )′=u ′v +uv ′;(vu)′=2v v u v u '-' (v ≠0).特别提示f (x )在x =x 0处的导数f ′(x 0)的实质是“增量之比的极限”,但在计算中取它的应用含义:f ′(x 0)是函数f (x )的导函数f ′(x )当x =x 0时的函数值.●点击双基1.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx ∆∆为 A.Δx +x ∆1+2 B.Δx -x∆1-2 C.Δx +2 D.2+Δx -x∆1解析: yx ∆∆=x x ∆+-+∆+)11(1)1(2=Δx +2.答案:C2.设函数f (x )在x =x 0处可导,则0lim→h hx f h x f )()(00-+A.与x 0,h 都有关B.仅与x 0有关而与h 无关C.仅与h 有关而与x 0无关D.与x 0、h 均无关 答案:B3.设f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于 A.319 B.316C.313D.310 解析:f ′(x )=3ax 2+6x ,f ′(-1)=3a -6=4,所以a =310. 答案:D4.函数y =x 2的曲线上点A 处的切线与直线3x -y +1=0的夹角为45°,则点A 的坐标为___________.解析:设点A 的坐标为(x 0,y 0),则y ′|x =x 0=2x |x =x 0=2x 0=k 1,又直线3x -y +1=0的斜率k 2=3. ∴tan45°=1=|1|||1212k k k k ++-=|006123x x +-|.解得x 0=41或x 0=-1.∴y 0=161或y 0=1,即A 点坐标为(41,161)或(-1,1).答案:(41,161)或(-1,1)●典例剖析【例1】 若f ′(x 0)=2,求0lim→k kx f k x f 2)()(00--.剖析:根据导数的定义.解:f ′(x 0)= 0lim →k kx f k x f ---+)()]([00(这时Δx =-k ).∴0lim →k kx f k x f 2)()(00-- =0lim →k [-21²kx f k x f ---)()(00] =-21²0lim →k k x f k x f ---)()(00=-21f ′(x 0)=-1.评述:注意f ′(x 0)= 0lim →∆x xx f x x f ∆-∆+)()(00中Δx 的形式的变化,在上述变化中可以看到Δx =-k ,k →0⇒-k →0,∴f ′(x 0)= 0lim →k kx f k x f 3)()3(00---,还可以写成f ′(x 0)=0lim→k k x f k x f 3)()3(00---或 f ′(x 0)=∞→k lim [f (x 0+k1)-f (x 0)]等.【例2】 若f (x )在R 上可导,(1)求f (-x )在x =a 处的导数与f (x )在x =-a 处的导数的关系;(2)证明:若f (x )为偶函数,则f ′(x )为奇函数.剖析:(1)需求f (-x )在x =a 处的导数与f (x )在x =-a 处的导数;(2)求f ′(x ),然后判断其奇偶性.(1)解:设f (-x )=g (x ),则g ′(a )= 0lim→∆x x a g x a g ∆-∆+)()(=0lim →∆x xa f x a f ∆--∆--)()( =-0lim →∆-x xa f x a f ∆---∆--)()(=-f ′(-a ).∴f (-x )在x =a 处的导数与f (x )在x =-a 处的导数互为相反数.(2)证明:f ′(-x )= 0lim→∆x xx f x x f ∆--∆+-)()(=0lim→∆x xx f x x f ∆--∆-)()(=-0lim →∆x xx f x x f ∆--∆-)()(=-f ′(x ).∴f ′(x )为奇函数.评述:用导数的定义求导数时,要注意Δy 中自变量的变化量应与Δx 一致.深化拓展(2)中若f (x )为奇函数,f ′(x )的奇偶性如何? 【例3】 求下列函数的导数: (1)y =x 2sin x ;(2)y =ln (x +21x +);(3)y =1e 1e -+x x ;(4)y =xx xx sin cos ++.解:(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=211x x ++·(x +21x +)′=211xx ++(1+21xx +)=211x+.(3)y ′=2)1e ()1e )(1e ()1e ()1e (-'-+--'+x x x x x=2)1(e e 2--x x . (4)y ′=2)sin ()sin )(cos ()sin ()cos (x x x x x x x x x x +'++-+'+=2)sin ()cos 1)(cos ()sin )(sin 1(x x x x x x x x +++-+- =2)sin (1cos sin sin cos x x x x x x x x +--+--.思考讨论函数f (x )在点x 0处是否可导与是否连续有什么关系?●闯关训练 夯实基础1.(2004年全国Ⅱ,文3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为A.y =3x -4B.y =-3x +2C.y =-4x +3D.y =4x -5 解析:y ′=3x 2-6x ,∴y ′|x =1=-3.∴在(1,-1)处的切线方程为y +1=-3(x -1). 答案:B2.(2004年全国Ⅳ,文4)函数y =(x +1)2(x -1)在x =1处的导数等于A.1B.2C.3D.4解析:y ′|x =1=[(x 2+2x +1)(x -1)]′|x =1=[x 3+x 2-x -1]′|x x =1=(3x 2+2x -1)| x =1=4.答案:D3.(2004年湖北,文3)已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为A.f (x )=(x -1)2+3(x -1)B.f (x )=2(x -1)C.f (x )=2(x -1)2D.f (x )=x -1 答案:A4.(2004年重庆,理14)曲线y =2-21x 2与y =41x 3-2在交点处的切线夹角是__________.(以弧度数作答)解析:由⎪⎪⎩⎪⎪⎨⎧-=-=242232x y x y 得x 3+2x 2-16=0,(x -2)(x 2+4x +8)=0,∴x =2.∴两曲线只有一个交点.∵y ′=(2-21x 2)′=-x ,∴y ′|x =2=-2. 又y ′=(43x -2)′=43x 2,∴当x =2时,y ′=3.∴两曲线在交点处的切线斜率分别为-2、3,|3)2(132⨯-+--|=1.∴夹角为4π.答案:4π5.设f (x )在x =1处连续,且f (1)=0,1lim→x 1)(-x x f =2,求f ′(1). 解:∵f (1)=0, 1lim→x 1)(-x x f =2,∴f ′(1)= 0lim →∆x xf x f ∆-∆+)1()1(=1lim →x 1)1()(--x f x f =1lim →x 1)(-x x f =2. 6.设函数y =ax 3+bx 2+cx +d 的图象与y 轴交点为P 点,且曲线在P 点处的切线方程为12x -y -4=0.若函数在x =2处取得极值0,试确定函数的解析式.解:∵y =ax 3+bx 2+cx +d 的图象与y 轴的交点为P ,∴P 的坐标为P (0,d ).又曲线在点P 处的切线方程为y =12x -4,P 点坐标适合方程,从而d =-4.又切线斜率k =12,故在x =0处的导数y ′|x =0=12,而y ′=3ax 2+2bx +c ,y ′|x =0=c,从而 c =12.又函数在x =2处取得极值0,所以 y ′|x =2=0, f (2)=0,即12a +4b +12=0, 8a +4b +20=0. 解得a =2,b =-9.∴所求函数解析式为y =2x 3-9x 2+12x -4. 培养能力7.已知函数f (x )=e -x (cos x +sin x ),将满足f ′(x )=0的所有正数x 从小到大排成数列{x n }.求证:数列{f (x n )}为等比数列.证明:f ′(x )=-e -x (cos x +sin x )+e -x (-sin x +cos x )=-2e -x sin x ,由f ′(x )=0,即-2e -x sin x =0,解得x =n π,n ∈Z .从而x n =n π(n =1,2,3…),f (x n )=(-1)n e-πn. 所以)()(1n n x f x f +=-e-π.所以数列{f (x n )}是公比q =-e -π的等比数列. 8.已知函数f (x )=ln (e x +a )(a >0).(1)求函数y =f (x )的反函数y =f -1(x )及f (x )的导数f ′(x );(2)假设对任意x ∈[ln (3a ),ln (4a )],不等式|m -f -1(x )|+ln (f ′(x ))<0成立,求实数m 的取值范围.解:(1)由y =f (x )=ln (e x +a ), 得x =ln (e y -a ),所以 y =f -1(x )=ln (e x -a )(x >ln a ).f ′(x )=[ln (e x+a )]′=ax x +e e .(2)由|m -f -1(x )|+ln (f ′(x ))<0,得ln (e x -a )-ln (e x +a )+x <m <ln (e x -a )+ln (e x +a )-x . 设ϕ(x )=ln (e x -a )-ln (e x +a )+x , ϕ(x )=ln (e x -a )+ln (e x +a )-x ,于是原不等式对于x ∈[ln (3n ),ln (4a )]恒成立.等价于ϕ(x )<m <ϕ(x ). (*)由ϕ′(x )=a x x -e e -ax x+e e +1,ϕ′(x )= a xx -e e +ax x+e e -1,注意到0<e x -a <e x <e x +a .故有ϕ′(x )>0, ϕ′(x )>0,从而ϕ(x )、ϕ(x )均在[ln (3a ),ln (4a )]上单调递增,因此不等式(*)成立当且仅当ϕ(ln (4a ))<m <ϕ(ln (3a )),即ln (512a )<m <ln (38a ).探究创新9.利用导数求和:(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *).(2)S n =C 1n +2C 2n +3C 3n +…+n C nn (n ∈N *).解:(1)当x =1时,S n =1+2+3+…+n =2n(n +1),当x ≠1时,∵x +x 2+x 3+…+x n=xx x n --+11,两边对x 求导,得S n =1+2x +3x 2+…+nx n-1=(x x x n --+11)=21)1()1(1x nx x n n n -++-+.(2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n ,两边对x 求导,得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n xn -1.令x =1,得n ²2n -1=C 1n +2C 2n +3C 3n +…+n C n n ,即S n =C 1n +2C 2n +3C 3n +…+n C n n =n ²2n -1. ●思悟小结1.求函数y =f (x )在点x 0处的导数通常有以下两种方法: (1)导数的定义,即求0lim→∆x xx f x x f ∆-∆+)()(00的值.(2)利用导函数的函数值,即先求函数f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f (x ),得函数值f ′(x 0).2.求复合函数的导数的方法步骤:(1)分清复合函数的复合关系,选好中间变量.(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数.(3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数.3.本单元重点体现了极限思想、函数思想及等价转化的思想,在学习过程中应用心体会.●教师下载中心 教学点睛1.在该节教学中要重视对导数的概念、导数的几何意义的理解,注重对导数基本公式的熟练运用.2.可补充导数的另一种定义形式:f ′(x 0)=0limx x →00)()(x x x f x f --.拓展题例【例题】 讨论函数f (x )=⎩⎨⎧>+≤+)0(1),0(12x x x x 在x =0处的可导性.解:函数f (x )在x =0处是否可导,即xf x f ∆-∆+)0()0(当Δx →0时的极限是否存在.∵+→∆0lim x xf x f ∆-∆+)0()0(=+→∆0lim x xx ∆-+∆11 =1, -→∆0lim x xf x f ∆-∆+)0()0( =-→∆0lim x xx ∆-+∆11)(2 =0, 又∵+→∆0lim x x f x f ∆-∆+)0()0(≠-→∆0lim x x f x f ∆-∆+)0()0(,∴xf x f ∆-∆+)0()0(当Δx →0时的极限不存在,因此f (x )在x =0处不可导.。